REPRESENTATIONS FOR THE DRAZIN INVERSE OF BLOCK CYCLIC MATRICES*

M. CATRAL ${ }^{\dagger}$ AND P. VAN DEN DRIESSCHE ${ }^{\ddagger}$

Abstract

A formula for the Drazin inverse of a block k-cyclic ($k \geq 2$) matrix A with nonzeros only in blocks $A_{i, i+1}$, for $i=1, \ldots, k(\bmod k)$ is presented in terms of the Drazin inverse of a smaller order product of the nonzero blocks of A, namely $B_{i}=A_{i, i+1} \cdots A_{i-1, i}$ for some i. Bounds on the index of A in terms of the minimum and maximum indices of these B_{i} are derived. Illustrative examples and special cases are given.

Key words. Drazin inverse, Block cyclic matrix, Index.

AMS subject classifications. 15A09.

1. Introduction. We consider k-cyclic $(k \geq 2)$ block real or complex matrices of the form

$$
A=\left[\begin{array}{ccccc}
0 & A_{12} & 0 & \cdots & 0 \tag{1.1}\\
0 & 0 & A_{23} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_{k-1, k} \\
A_{k 1} & 0 & 0 & \cdots & 0
\end{array}\right]
$$

where $A_{12}, \ldots, A_{k 1}$ are block submatrices and the diagonal zero blocks are square. It is easily verified that for any matrix A of the form (1.1), the Moore-Penrose inverse A^{\dagger} of A is given by

$$
A^{\dagger}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & A_{k 1}^{\dagger} \tag{1.2}\\
A_{12}^{\dagger} & 0 & \cdots & 0 & 0 \\
0 & A_{23}^{\dagger} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & A_{k-1, k}^{\dagger} & 0
\end{array}\right]
$$

[^0]where $A_{i j}^{\dagger}$ denotes the Moore-Penrose inverse of the block submatrix $A_{i j}$. Note that if each of the blocks $A_{i j}$ is square and invertible, then (1.2) gives the formula for the usual inverse A^{-1} of A. We present a block formula for another type of generalized inverse, the Drazin inverse, of matrices of the form (1.1). Unlike the Moore-Penrose inverse, the Drazin inverse is defined only for square matrices.

Let A be a real or complex square matrix. The Drazin inverse of A is the unique matrix A^{D} satisfying

$$
\begin{array}{r}
A A^{D}=A^{D} A \\
A^{D} A A^{D}=A^{D} \\
A^{q+1} A^{D}=A^{q}, \tag{1.5}
\end{array}
$$

where $q=\operatorname{index} A$, the smallest nonnegative integer q such that $\operatorname{rank} A^{q+1}=\operatorname{rank} A^{q}$. If index $A=0$, then A is nonsingular and $A^{D}=A^{-1}$. If index $A=1$, then $A^{D}=A^{\#}$, the group inverse of A. See [1], 2], [6] and references therein for applications of the Drazin inverse.

Theorem 1.1. [2, Theorem 7.2.3] Let A be a square matrix with index $A=q$. If p is a nonnegative integer and X is a matrix satisfying $X A X=X, A X=X A$, and $A^{p+1} X=A^{p}$, then $p \geq q$ and $X=A^{D}$.

The problem of finding explicit representations for the Drazin inverse of a general 2×2 block matrix of the form

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \tag{1.6}\\
A_{21} & A_{22}
\end{array}\right]
$$

in terms of its blocks was posed by Campbell and Meyer in [2] and special cases of this problem were the focus of several recent papers, including [3]-[10, [13, [14] and [15]. In [4] and [14], representations for 2×2 block matrices matrices of the form (1.6) with A_{11} and A_{22} being square zero diagonal blocks were presented. Such block matrices were called bipartite (or 2-cyclic), and in this article, we extend the results given in [4] to general block k-cyclic matrices as defined in (1.1).
2. Drazin inverse formula for block cyclic matrices. Let A be a block k cyclic matrix of the form given in (1.1). For our Drazin inverse formula we introduce some notation that is also used in writing powers of A. For $i=2, \ldots, k-1$, let B_{i} be the square matrix defined by

$$
\begin{equation*}
B_{i}=A_{i, i+1} \cdots A_{k-1, k} A_{k 1} A_{12} \cdots A_{i-1, i} \tag{2.1}
\end{equation*}
$$

with $B_{1}=A_{12} A_{23} \cdots A_{k-1, k} A_{k 1}$ and $B_{k}=A_{k 1} A_{12} \cdots A_{k-1, k}$, i.e, subscripts are taken $\bmod k$. For ease of notation, we define the matrix product

$$
\begin{equation*}
A_{i \rightarrow j}:=A_{i, i+1} A_{i+1, i+2} \cdots A_{j-1, j} \tag{2.2}
\end{equation*}
$$

ELA

for $j \neq i$. Whenever it arises, we use the convention $A_{i \rightarrow i}=I$, an identity matrix. For example, if $k=4$ then $A_{2 \rightarrow 3}=A_{23}, A_{3 \rightarrow 2}=A_{34} A_{41} A_{12}, A_{2 \rightarrow 1}=A_{23} A_{34} A_{41}$, and by (2.1) $B_{3}=A_{34} A_{41} A_{12} A_{23}$. Observe that $B_{i}=A_{i \rightarrow j} A_{j \rightarrow i}$, for any $j \in\{1, \ldots, k\} \backslash\{i\}$.

Lemma 2.1. For A given in (1.1) and with the notation above, for $p \geq 0$,

$$
\begin{align*}
A^{k p} & =\left[\begin{array}{cccc}
B_{1}^{p} & 0 & \cdots & 0 \\
0 & B_{2}^{p} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B_{k}^{p}
\end{array}\right], \tag{2.3}\\
A^{k p+1} & =\left[\begin{array}{cccccc}
0 & B_{1}^{p} A_{1 \rightarrow 2} & 0 & \cdots & 0 \\
0 & 0 & B_{2}^{p} A_{2 \rightarrow 3} & \cdots & 0 \\
\vdots & & \vdots & \vdots & \ddots & \\
0 & 0 & 0 & \cdots & B_{k-1}^{p} A_{k-1 \rightarrow k} \\
0 & 0 & 0 & \cdots & & 0
\end{array}\right] \\
A_{k}^{p p+2} A_{k \rightarrow 1} & =\left[\begin{array}{cccccc}
\\
0 & & 0 & B_{1}^{p} A_{1 \rightarrow 3} & \cdots & 0 \\
0 & & 0 & 0 & \cdots & 0 \\
\vdots & & \vdots & \vdots & \ddots & B_{k-2}^{p} A_{k-2 \rightarrow k} \\
B_{k-1}^{p} A_{k-1 \rightarrow 1} & 0 & 0 & \cdots & 0 \\
0 & B_{k}^{p} A_{k \rightarrow 2} & 0 & \cdots & 0
\end{array}\right]
\end{align*}
$$

and so on, until
(2.5) $\quad A^{k p+k-1}=\left[\begin{array}{ccccc}0 & 0 & \cdots & 0 & B_{1}^{p} A_{1 \rightarrow k} \\ B_{2}^{p} A_{2 \rightarrow 1} & 0 & \cdots & 0 & 0 \\ 0 & B_{3}^{p} A_{3 \rightarrow 2} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & B_{k}^{p} A_{k \rightarrow k-1} & 0\end{array}\right]$.

Lemma 2.2. For all $i \neq j, B_{i}^{k} A_{i \rightarrow j}=A_{i \rightarrow j} B_{j}^{k}$.
Proof. $\quad B_{i}^{k} A_{i \rightarrow j}=\left(A_{i \rightarrow j} A_{j \rightarrow i}\right)^{k} A_{i \rightarrow j}=A_{i \rightarrow j} A_{j \rightarrow i}\left(A_{i \rightarrow j} A_{j \rightarrow i}\right)^{k-1} A_{i \rightarrow j}=$ $A_{i \rightarrow j}\left(A_{j \rightarrow i} A_{i \rightarrow j}\right)^{k}=A_{i \rightarrow j} B_{j}^{k}$.

Lemma 2.3. For all $i \neq j, B_{i}^{D} A_{i \rightarrow j}=A_{i \rightarrow j} B_{j}^{D}$. Hence, if $\ell \neq i, j$ satisfies $A_{i \rightarrow j}=A_{i \rightarrow \ell} A_{\ell \rightarrow j}$, then $B_{i}^{D} A_{i \rightarrow j}=A_{i \rightarrow j} B_{j}^{D}=A_{i \rightarrow \ell} B_{\ell}^{D} A_{\ell \rightarrow j}$.

ELA

Proof. $B_{i}^{D} A_{i \rightarrow j}=\left(A_{i \rightarrow j} A_{j \rightarrow i}\right)^{D} A_{i \rightarrow j}=A_{i \rightarrow j}\left(A_{j \rightarrow i} A_{i \rightarrow j}\right)^{D}=A_{i \rightarrow j} B_{j}^{D}$, where the second equality is due to [4, Lemma 2.4].

With the above notation, we now give a formula for the Drazin inverse of a k-cyclic matrix A given by (1.1).

Theorem 2.4. Let A be as in (1.1) with associated matrices B_{i} defined as in (2.1) and $A_{i \rightarrow j}$ defined in (2.2). Then, for all $i=1, \ldots, k$,
(2.6) $A^{D}=\left[\begin{array}{ccccc}0 & 0 & \cdots & 0 & A_{1 \rightarrow i} B_{i}^{D} A_{i \rightarrow k} \\ A_{2 \rightarrow i} B_{i}^{D} A_{i \rightarrow 1} & 0 & \cdots & 0 & 0 \\ 0 & A_{3 \rightarrow i} B_{i}^{D} A_{i \rightarrow 2} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & A_{k \rightarrow i} B_{i}^{D} A_{i \rightarrow k-1} & 0\end{array}\right]$.

Moreover, if index $B_{i}=s_{i}$, then index $A \leq k s_{i}+k-1$.
Proof. Denote the matrix on the right hand side of (2.6) by X. Performing block multiplication gives

$$
\begin{aligned}
A X & =\left[\begin{array}{cccc}
A_{12} A_{2 \rightarrow i} B_{i}^{D} A_{i \rightarrow 1} & 0 & \cdots & 0 \\
0 & A_{23} A_{3 \rightarrow i} B_{i}^{D} A_{i \rightarrow 2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & A_{k 1} A_{1 \rightarrow i} B_{i}^{D} A_{i \rightarrow k}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
A_{12} A_{2 \rightarrow i} A_{i \rightarrow 1} B_{1}^{D} & 0 & \cdots & 0 \\
0 & A_{23} A_{3 \rightarrow i} A_{i \rightarrow 2} B_{2}^{D} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & A_{k 1} A_{1 \rightarrow i} A_{i \rightarrow k} B_{k}^{D}
\end{array}\right]
\end{aligned}
$$

(by Lemma 2.3)

$$
=\left[\begin{array}{cccc}
B_{1} B_{1}^{D} & 0 & \cdots & 0 \\
0 & B_{2} B_{2}^{D} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B_{k} B_{k}^{D}
\end{array}\right],
$$

ELA

and by using Lemma 2.3 again

$$
\begin{aligned}
X A & =\left[\begin{array}{cccc}
A_{1 \rightarrow i} B_{i}^{D} A_{i \rightarrow k} A_{k 1} & 0 & \cdots & 0 \\
0 & A_{2 \rightarrow i} B_{i}^{D} A_{i \rightarrow 1} A_{12} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & A_{k \rightarrow i} B_{i}^{D} A_{i \rightarrow k-1} A_{k-1, k}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
B_{1}^{D} A_{1 \rightarrow i} A_{i \rightarrow k} A_{k 1} & 0 & \cdots & 0 \\
0 & B_{2}^{D} A_{2 \rightarrow i} A_{i \rightarrow 1} A_{12} & \ddots & \vdots \\
\vdots & & \ddots & \ddots \\
0 & & \cdots & 0 \\
0 & B_{k}^{D} A_{k \rightarrow i} A_{i \rightarrow k-1} A_{k-1, k}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
B_{1}^{D} B_{1} & 0 & \cdots & 0 \\
0 & B_{2}^{D} B_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B_{k}^{D} B_{k}
\end{array}\right]=\left[\begin{array}{cccc}
B_{1} B_{1}^{D} & 0 & \cdots & 0 \\
0 & B_{2} B_{2}^{D} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B_{k} B_{k}^{D}
\end{array}\right] \\
& =A X,
\end{aligned}
$$

since $B_{i}^{D} B_{i}=B_{i} B_{i}^{D}$ by (1.3). Also, block-multiplying X with $A X$ gives

$$
\begin{aligned}
X A X & =X(A X) \\
& =\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & A_{1 \rightarrow k} B_{k}^{D} B_{k} B_{k}^{D} \\
A_{2 \rightarrow 1} B_{1}^{D} B_{1} B_{1}^{D} & 0 & \cdots & 0 & 0 \\
0 & A_{3 \rightarrow 2} B_{2}^{D} B_{2} B_{2}^{D} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & A_{k \rightarrow k-1} B_{k-1}^{D} B_{k-1} B_{k-1}^{D} & 0
\end{array}\right] \\
& =X, \text { by Lemma 2.3 and since } B_{i}^{D} B_{i} B_{i}^{D}=B_{i}^{D} \text { by (1.4). }
\end{aligned}
$$

Let i be any integer in $\{1, \ldots, k\}$ and suppose that index $B_{i}=s_{i}=s$. Then using (2.3) and Lemma 2.2

$$
\begin{aligned}
A^{k s+k} X & =A^{k(s+1)} X \\
& =\left[\begin{array}{ccccc}
\\
0 & 0 & \cdots & 0 A_{1 \rightarrow i} B_{i}^{s+1} B_{i}^{D} A_{i \rightarrow k} \\
A_{2 \rightarrow i} B_{i}^{s+1} B_{i}^{D} A_{i \rightarrow 1} & 0 & \cdots & 0 & 0 \\
0 A_{3 \rightarrow i} B_{i}^{s+1} B_{i}^{D} A_{i \rightarrow 2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots A_{k \rightarrow i} B_{i}^{s+1} B_{i}^{D} A_{i \rightarrow k-1} & 0
\end{array}\right]
\end{aligned}
$$

Since index $B_{i}=s$, it follows by (1.5) that $B_{i}^{s+1} B_{i}^{D}=B_{i}^{s}$. Thus, using Lemma 2.2 and $A_{\ell \rightarrow i} A_{i \rightarrow j}=A_{\ell \rightarrow j}$ for $\ell \neq j$,

$$
\begin{aligned}
A^{k s+k} X & =\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & A_{1 \rightarrow k} B_{k}^{s} \\
A_{2 \rightarrow 1} B_{1}^{s} & 0 & \cdots & 0 & 0 \\
0 & A_{3 \rightarrow 2} B_{2}^{s} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & A_{k \rightarrow k-1} B_{k-1}^{s} & 0
\end{array}\right] \\
& =A^{k s+k-1},
\end{aligned}
$$

from (2.5) by using Lemma[2.2, By Theorem 1.1, index $A \leq k s+k-1$ and $X=A^{D}$. \square
Thus, the Drazin inverse of a k-cyclic matrix is reduced to calculating the Drazin inverse of the smallest order Drazin inverse of any of the matrix products B_{i}.

Corollary 2.5. If A of the form in (1.1) is nonnegative and has at least one $B_{i}^{D} \geq 0$, then A^{D} is nonnegative.

The following example illustrates Theorem 2.4 and Corollary 2.5.
Example 2.6. Let

$$
A=\left[\begin{array}{c|cc|c}
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\hline 1 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{c|c|c}
0 & A_{12} & 0 \\
\hline 0 & 0 & A_{23} \\
\hline A_{31} & 0 & 0
\end{array}\right]
$$

Then $B_{1}=A_{12} A_{23} A_{31}=1, B_{2}=A_{23} A_{31} A_{12}=\frac{1}{2} J_{2}$ (where J_{2} is 2×2 all ones matrix) and $B_{3}=A_{31} A_{12} A_{23}=1$. Note that index $B_{1}=0$ and $B_{1}^{D}=B_{1}^{-1}=1$. Using Theorem 2.4

$$
A^{D}=\left[\begin{array}{c|c|c}
0 & 0 & B_{1}^{D} A_{12} A_{23} \\
\hline A_{23} A_{31} B_{1}^{D} & 0 & 0 \\
\hline 0 & A_{31} B_{1}^{D} A_{12} & 0
\end{array}\right]=\left[\begin{array}{c|cc|c}
0 & 0 & 0 & 1 \\
\hline 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\hline 0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]=A^{2}
$$

In fact, $\operatorname{rank} A=\operatorname{rank} A^{2}$, hence $A^{D}=A^{\#}=A^{2}$ agreeing with Theorem 2.2 in [11.
3. Index of A in relation to the indices of the block products. With A as in (1.1), for $j \geq 0$, by (2.3) and (2.4),

$$
\begin{align*}
& \operatorname{rank} A^{k j}=\operatorname{rank} B_{1}^{j}+\operatorname{rank} B_{2}^{j}+\cdots+\operatorname{rank} B_{k}^{j} \tag{3.1}\\
& \operatorname{rank} A^{k j+1}=\operatorname{rank} B_{1}^{j} A_{12}+\operatorname{rank} B_{2}^{j} A_{23}+\cdots+\operatorname{rank} B_{k}^{j} A_{k 1} . \tag{3.2}
\end{align*}
$$

ELA

The following rank inequality is used throughout the proof of Lemma 3.2 and can be found in standard linear algebra texts (see, e.g., [12, page 13]).

Lemma 3.1. (Frobenius Inequality) If U is $m \times n, V$ is $n \times p$ and W is $p \times q$, then

$$
\operatorname{rank} U V+\operatorname{rank} V W \leq \operatorname{rank} V+\operatorname{rank} U V W
$$

Lemma 3.2. Let A be as in (1.1) with associated matrices B_{i} defined in (2.1), and let $s=$ index $B_{i} \geq 1$ for some $i \in\{1, \ldots, k\}$. Then $\operatorname{rank} A^{k s-k+1}<\operatorname{rank} A^{k s-k}$.

Proof. Let $s=\operatorname{index} B_{i}$ for some $i \in\{1, \ldots, k\}$. From (3.2),

$$
\begin{aligned}
\operatorname{rank} A^{k s-k+1}= & \operatorname{rank} A^{k(s-1)+1} \\
= & \operatorname{rank} B_{1}^{s-1} A_{12}+\operatorname{rank} B_{2}^{s-1} A_{23}+\operatorname{rank} B_{3}^{s-1} A_{34}+\cdots \\
& +\operatorname{rank} B_{k}^{s-1} A_{k 1},
\end{aligned}
$$

where the terms can be reordered as

$$
\operatorname{rank} B_{i}^{s-1} A_{i, i+1}+\operatorname{rank} B_{i+1}^{s-1} A_{i+1, i+2}+\cdots+\operatorname{rank} B_{k}^{s-1} A_{k 1}+\operatorname{rank} B_{1}^{s-1} A_{12}+\cdots
$$

$$
\begin{equation*}
+\operatorname{rank} B_{i-1}^{s-1} A_{i-1, i} \tag{3.3}
\end{equation*}
$$

Using Lemma 2.2, the first two terms in the expression in (3.3) can be written as

$$
\operatorname{rank} A_{i, i+1} B_{i+1}^{s-1}+\operatorname{rank} B_{i+1}^{s-1} A_{i+1, i+2}
$$

and using the Frobenius inequality (Lemma 3.1),

$$
\begin{aligned}
\operatorname{rank} B_{i}^{s-1} A_{i, i+1}+\operatorname{rank} B_{i+1}^{s-1} A_{i+1, i+2} & \leq \operatorname{rank} B_{i+1}^{s-1}+\operatorname{rank} A_{i, i+1} B_{i+1}^{s-1} A_{i+1, i+2} \\
& =\operatorname{rank} B_{i+1}^{s-1}+\operatorname{rank} B_{i}^{s-1} A_{i \rightarrow i+2},
\end{aligned}
$$

where the equality is again due to Lemma 2.2. Thus,

$$
\begin{gathered}
\operatorname{rank} A^{k s-k+1} \leq \operatorname{rank} B_{i+1}^{s-1}+\operatorname{rank} B_{i}^{s-1} A_{i \rightarrow i+2}+\operatorname{rank} B_{i+2}^{s-1} A_{i+2, i+3}+\cdots \\
+\operatorname{rank} B_{i-1}^{s-1} A_{i-1, i} .
\end{gathered}
$$

Applying Lemma 2.2 and the Frobenius inequality again to the second and third terms on the righthand side of the inequality in (3.4) gives

$$
\operatorname{rank} B_{i}^{s-1} A_{i \rightarrow i+2}+\operatorname{rank} B_{i+2}^{s-1} A_{i+2, i+3} \leq \operatorname{rank} B_{i+2}^{s-1}+\operatorname{rank} A_{i \rightarrow i+3} B_{i+3}^{s-1} .
$$

Continuing in this manner gives

$$
\begin{align*}
\operatorname{rank} A^{k s-k+1} \leq & \operatorname{rank} B_{i+1}^{s-1}+\operatorname{rank} B_{i+2}^{s-1}+\cdots+\operatorname{rank} B_{i-1}^{s-1}+ \\
& \operatorname{rank} A_{i \rightarrow i-1} B_{i-1}^{s-1} A_{i-1, i} . \tag{3.5}
\end{align*}
$$

Using Lemma 2.2, the last term on the righthand side of the inequality in (3.5) becomes

$$
\operatorname{rank} B_{i}^{s-1} A_{i \rightarrow i-1} A_{i-1, i}=\operatorname{rank} B_{i}^{s-1} B_{i}=\operatorname{rank} B_{i}^{s}<\operatorname{rank} B_{i}^{s-1}
$$

since index $B_{i}=s$. Thus,

$$
\begin{aligned}
\operatorname{rank} A^{k s-k+1}< & \operatorname{rank} B_{i+1}^{s-1}+\operatorname{rank} B_{i+2}^{s-1}+\cdots \operatorname{rank} B_{k}^{s-1}+\operatorname{rank} B_{1}^{s-1}+\cdots \\
& \operatorname{rank} B_{i-1}^{s-1}+\operatorname{rank} B_{i}^{s-1} \\
= & \operatorname{rank} A^{k(s-1)}=\operatorname{rank} A^{k s-k}
\end{aligned}
$$

where the equality follows from (3.1).
Theorem 3.3. Let A be as in (1.1) with associated matrices B_{i} defined in (2.1). Then, the following statements hold.
(i) If index $B_{i}=0$ for all $i=1, \ldots, k$, then A is nonsingular and index $A=0$.
(ii) If index $B_{i}=s_{i} \geq 1$ for some $i \in\{1, \ldots, k\}$, then index $A \geq k s_{i}-k+1$.

Proof. The first statement follows immediately from (2.3) and (3.1). For the second statement, let index $B_{i}=s_{i} \geq 1$ for some $i \in\{1, \ldots, k\}$. Then rank $A^{k s_{i}-k+1}<$ $\operatorname{rank} A^{k s_{i}-k}$, by Lemma 3.2. From the strict inequality, index $A \geq k s_{i}-k+1$.

The next result follows immediately from Theorem 3.3(ii).
Corollary 3.4. Let A be as in (1.1) with associated matrices B_{i} defined in (2.1). If index $A \leq 1$, then index $B_{i} \leq 1$ for all $i=1, \ldots, k$. That is, if the group inverse $A^{\#}$ exists, then the group inverses $B_{i}^{\#}$ exist for all $i=1, \ldots, k$.

Note however that the converse to Corollary 3.4 is false (see, e.g., 4. Example 4.3]).

Remark 3.5. If A of the form (1.1) is nonnegative and all matrices with the same,+ 0 sign pattern as A that have index 1 have at least one $B_{i}^{\#}$ nonnegative, then these group inverses are nonnegative (Corollary 2.5) and A is conditionally $S^{2} G I$ in the notation of Zhou et al. [15].

Corollary 3.6. Let A be as in (1.1) with associated matrices B_{i} defined in (2.1), and let $s=\min _{1 \leq i \leq k}$ index B_{i} and $s^{\prime}=\max _{1 \leq i \leq k}$ index $B_{i}>0$. Then $k s^{\prime}-k+1 \leq$ index $A \leq k s+k-1$. If $s^{\prime}=0$, then index $A=0$.

Corollary 3.6 leads to a result about the indices of B_{i} that is of independent interest.

Theorem 3.7. Let A be as in (1.1) with associated matrices B_{i} defined in (2.1), and let $s_{\ell}=\operatorname{index} B_{\ell}$ for $\ell \in\{1, \ldots, k\}$. Then $\left|s_{i}-s_{j}\right| \leq 1$ for all $i, j \in\{1, \ldots, k\}$.

Proof. Let $s=\min _{1 \leq i \leq k}$ index B_{i} and $s^{\prime}=\max _{1 \leq i \leq k}$ index B_{i}, and suppose that $s^{\prime}=s+t$ where $t \geq 0$. By Corollary 3.6

$$
k(s+t)-k+1 \leq \operatorname{index} A \leq k s+k-1
$$

It follows that

$$
k(s+t)-k+1 \leq k s+k-1
$$

or equivalently,

$$
k(t-2)+2 \leq 0
$$

As $k \geq 2$, the inequality above is possible only if $t \leq 1$. Thus, $s^{\prime}-s=t \leq 1$ and \mid index $B_{i}-\operatorname{index} B_{j} \mid \leq 1$ for all i, j.

The next result gives tight bounds on index A in terms of the minimum index of the block products B_{i}. The proof is immediate from Corollary 3.6 and Theorem 3.7.

Theorem 3.8. Let A be as in (1.1) with associated matrices B_{i} defined in (2.1), and let $s=\min _{1 \leq i \leq k}$ index B_{i}. Then, exactly one of the following holds:
(i) index $B_{i}=s$ for all $i=1, \ldots, k$, or
(ii) index $B_{i}=s+1$ for some $i=1, \ldots, k$.

If (i) holds, then $k s-k+1 \leq \operatorname{index} A \leq k s+k-1$. If (ii) holds, then $k s+1 \leq$ index $A \leq k s+k-1$.

The above result generalizes bounds found in [4, Section 3] and shows that if $k=2$ and (ii) holds, then index $A=2 s+1$.

We now give examples that illustrate Theorem 3.8.
Example 3.9. Let A be the matrix in Example 2.6. Using the notation in Theorem 3.8, $s=0=$ index $B_{1}=$ index B_{3} and index $B_{2}=1=s+1$. Applying the result with $k=3$ gives the bounds $1 \leq \operatorname{index} A \leq 2$. Since $\operatorname{rank} A=\operatorname{rank} A^{2}$, index $A=1=k s+1$, which is the lower bound of Theorem 3.8, case (ii).

Example 3.10. Let

$$
A=\left[\begin{array}{c|cc|ccc}
0 & 1 & -1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -1 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{c|c|c}
0 & A_{12} & 0 \\
\hline 0 & 0 & A_{23} \\
\hline A_{31} & 0 & 0
\end{array}\right]
$$

Then $B_{1}=3, B_{2}=\left[\begin{array}{cc}3 & -3 \\ 0 & 0\end{array}\right]$ and $B_{3}=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$. Note that index $B_{1}=0$ and $B_{1}^{D}=B_{1}^{-1}=\frac{1}{3}$. Using Theorem 2.4.

$$
A^{D}=\left[\begin{array}{c|cc|ccc}
0 & 0 & 0 & 0 & \frac{1}{3} & \frac{2}{3} \\
\hline 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & \frac{1}{3} & -\frac{1}{3} & 0 & 0 & 0 \\
0 & \frac{1}{3} & -\frac{1}{3} & 0 & 0 & 0 \\
0 & \frac{1}{3} & -\frac{1}{3} & 0 & 0 & 0
\end{array}\right] .
$$

Using the notation in Theorem 3.8, $s=0=\operatorname{index} B_{1}$ and index $B_{2}=\operatorname{index} B_{3}=1=$ $s+1$. Applying the theorem with $k=3$ gives the bounds $1 \leq$ index $A \leq 2$. It can be computed that index $A=2=k s+k-1$, which is the upper bound of Theorem 3.8, case (ii).

Example 3.11. Let

$$
A=\left[\begin{array}{ccccc}
0 & B & 0 & \cdots & 0 \\
0 & 0 & I & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & I \\
I & 0 & 0 & \cdots & 0
\end{array}\right]
$$

where B is a square matrix and I is an identity matrix of the same order as B. Note that $B_{i}=B$ for all i. Suppose that index $B=s$. Then index $A=k s$, the midpoint of the interval $[k s-k+1, k s+k-1]$ in Theorem 3.8 case (i), and from Theorem [2.4

$$
A^{D}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & B^{D} B \\
B^{D} & 0 & \cdots & 0 & 0 \\
0 & B^{D} B & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & B^{D} B & 0
\end{array}\right]
$$

Example 3.12. Let

$$
A=\left[\begin{array}{ccccc}
0 & F & 0 & \cdots & 0 \\
0 & 0 & F & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & F \\
F & 0 & 0 & \cdots & 0
\end{array}\right]
$$

where F is a square matrix. Then index $A=\operatorname{index} F$ and $B_{i}=F^{k}$ for $i=1, \ldots, k$. Setting index $A=\ell$ and index $B_{i}=s$ gives $s=\left\lceil\frac{\ell}{k}\right\rceil$. Thus, index A can take any value in the interval $[k s-k+1, k s$], which is half the range given in Theorem 3.8 case (i).

Examples 3.11 and 3.12 have B_{i}, and thus index B_{i}, the same for all i. The following result determines index A in this case, and the necessary and sufficient conditions reduce to the result of [4, Theorem 3.5] for $k=2$.

Theorem 3.13. Let A be a block k-cyclic matrix of the form in (1.1) with associated matrices B_{i} defined in (2.1), and suppose that $s=\min _{1 \leq i \leq k} \operatorname{index} B_{i} \geq 1$.
Then index $A=k s$ if and only if
(i) index $B_{i}=s$ for all $i=1, \ldots, k$, and
(ii) $\operatorname{rank} B_{j}^{s}<\operatorname{rank} B_{j}^{s-1} A_{j \rightarrow j-1}$ for some $j \in\{1, \ldots, k\}$.

If (i) holds, then $\operatorname{rank} B_{i}^{s}=\operatorname{rank} B_{j}^{s}$ for all $i, j=1, \ldots, k$. If (i) holds but (ii) does not hold, then index $A<k s$.

Proof. Suppose that index $A=k s$. Then rank $A^{k s}<\operatorname{rank} A^{k s-1}$. It follows, using (2.3), (2.5) and (3.1), that $\sum_{i=1}^{k} \operatorname{rank} B_{i}^{s}<\sum_{i=1}^{k} \operatorname{rank} B_{i}^{s-1} A_{i \rightarrow i-1}$. Thus, $\operatorname{rank} B_{j}^{s}<\operatorname{rank} B_{j}^{s-1} A_{j \rightarrow j-1}$ for some $j \in\{1, \ldots, k\}$, hence (ii) holds. Suppose on the contrary that (i) does not hold. Then, for some $j \in\{1, \ldots, k\}$, index $B_{j}=$ $s+1$ (by Theorem (3.8). Thus, $\operatorname{rank} B_{j}^{s}>\operatorname{rank} B_{j}^{s+1}$, hence by (2.3) $\operatorname{rank} A^{k s}=$ $\sum_{i=1}^{k} \operatorname{rank} B_{i}^{s}>\sum_{i=1}^{k} \operatorname{rank} B_{i}^{s+1}=\operatorname{rank} A^{k(s+1)}$. This implies that $\operatorname{rank} A^{k s}>$ $\operatorname{rank} A^{k s+k}$, so index $A>k s$, a contradiction. Hence, (i) and (ii) must hold.

For the reverse implication, suppose that (i) and (ii) hold. Then rank $A^{k s}=$ $\sum_{i=1}^{k} \operatorname{rank} B_{i}^{s}<\sum_{i=1}^{k} \operatorname{rank} B_{i}^{s-1} A_{i \rightarrow i-1}=\operatorname{rank} A^{k(s-1)+(k-1)}=\operatorname{rank} A^{k s-1}$, where the strict inequality is due to (ii). Thus, index $A \geq k s$. Note that since rank $B_{i}^{s} \geq$ $\operatorname{rank} B_{i}^{s} A_{i \rightarrow j} \geq \operatorname{rank} B_{i}^{s+1}$ and $\operatorname{rank} B_{i}^{s} A_{i \rightarrow j}=\operatorname{rank} A_{i \rightarrow j} B_{j}^{s}$ (by Lemma 2.2), it follows using (i) that $\operatorname{rank} B_{i}^{s+1}=\operatorname{rank} B_{i}^{s}=\operatorname{rank} B_{i}^{s} A_{i \rightarrow j}=\operatorname{rank} A_{i \rightarrow j} B_{j}^{s}=\operatorname{rank} B_{j}^{s+1}$ for all i, j. Thus, $\operatorname{rank} A^{k s}=\sum_{i=1}^{k} \operatorname{rank} B_{i}^{s}=\sum_{i=1}^{k} \operatorname{rank} B_{i}^{s} A_{i \rightarrow i+1}=\operatorname{rank} A^{k s+1}$, using (3.1) and (3.2) . Hence, $\operatorname{rank} A^{k s}=\operatorname{rank} A^{k s+1}$, and so index $A \leq k s$. This
proves that $\operatorname{index} A=k s$. The last two statements of the theorem follow from the proof above.

The result of Theorem 3.13 is illustrated by Example 3.11 since rank $B_{2}^{s}<$ $\operatorname{rank} B_{2}^{s-1} A_{2 \rightarrow 1}=\operatorname{rank} B_{2}^{s-1}$, it follows that $\operatorname{rank} A=k s$. Example 3.12 also illustrates Theorem 3.13, since $\operatorname{rank} A^{k s}=\operatorname{rank} A^{k s+1}$ and $\operatorname{rank} F^{k s}<\operatorname{rank} F^{k(s-1)} F^{k-1}$ $=\operatorname{rank} F^{k s-1}$ if and only if index $F=\operatorname{index} A=k s$; otherwise index $A<k s$.

Acknowledgement. The research of PvdD was supported in part by an NSERC Discovery grant. The authors thank D.D. Olesky for helpful discussions.

REFERENCES

[1] A. Ben-Israel and T.N.E. Greville. Generalized Inverses: Theory and Applications, second edition. Springer, New York, 2003.
[2] S.L. Campbell and C.D. Meyer. Generalized Inverses of Linear Transformations. Pitman, London, 1979; Dover, New York, 1991.
[3] N. Castro-Gonzáles, E. Dopazo, and J. Robles. Formulas for the Drazin inverse of special block matrices. Applied Mathematics and Computation, 174:252-270, 2006.
[4] M. Catral, D.D. Olesky, and P. van den Driessche. Block representations of the Drazin inverse of a bipartite matrix. Electronic Journal of Linear Algebra, 18:98-107, 2009.
[5] D.S. Cvetković-Ilić. A note on the representation for the Drazin inverse of 2×2 block matrices. Linear Algebra and its Applications, 429:242-248, 2008.
[6] D.S. Cvetković-Ilić, J. Chen, and Z. Xu. Explicit representations of the Drazin inverse of block matrix and modified matrix. Linear and Multilinear Algebra, 57(4):355-364, 2009.
[7] C. Deng and Y. Wei. A note on the Drazin inverse of an anti-triangular matrix. Linear Algebra and its Applications, 431:1910-1922, 2009.
[8] C. Deng and Y. Wei. Representations for the Drazin inverse of 2×2 block operator matrix with singular Schur complement. Linear Algebra and its Applications, 435:2766-2783, 2011.
[9] E. Dopazo and M.F. Martínez-Serrano. Further results on the representation of the Drazin inverse of a 2×2 block matrix. Linear Algebra and its Applications, 432:1896-1904, 2010.
[10] R. Hartwig, X. Li, and Y. Wei. Representations for the Drazin inverse of a 2×2 block matrix. SIAM Journal on Matrix Analysis and Applications, 27:757-771, 2006.
[11] E. Haynsworth and J.R. Wall. Group inverses of certain nonnegative matrices. Linear Algebra and its Applications, 25:271-288, 1979.
[12] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, New York, 1985.
[13] X. Li and Y. Wei. A note on the representations for the Drazin inverse of 2×2 block matrices. Linear Algebra and its Applications, 423:332-338, 2007.
[14] Q. Xu, Y. Wei, and C. Song. Explicit characterization of the Drazin index. Linear Algebra and its Applications, 436:2273-2298, 2012.
[15] J. Zhu, C. Bu, and Y. Wei. Group inverse for block matrices and some related sign analysis. Linear and Multilinear Algebra, 2011. Available at http://www.tandfonline.com/doi/abs/10.1080/03081087.2011.625498.

[^0]: *Received by the editors on February 6, 2012. Accepted for publication on April 15, 2012. Handling Editor: Leslie Hogben.
 ${ }^{\dagger}$ Department of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207, USA (catralm@xavier.edu).
 ${ }^{\ddagger}$ Department of Mathematics and Statistics, University of Victoria, Victoria BC V8W 3R4, Canada (pvdd@math.uvic.ca).

