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NOTES ON GRAPHS WITH LEAST EIGENVALUE AT LEAST −2 ∗
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Abstract. A new proof concerning the determinant of the adjacency matrix of the line graph

of a tree is presented and an invariant for line graphs, introduced by Cvetković and Lepović, with

least eigenvalue at least −2 is revisited and given a new equivalent definition [D. Cvetković and

M. Lepović. Cospectral graphs with least eigenvalue at least −2. Publ. Inst. Math., Nouv. Sér.,

78(92):51–63, 2005.]. Employing this invariant and other techniques, it is shown that the line graphs

of double stars are determined by their adjacency spectra.
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1. Introduction. In this paper, we are concerned only with undirected simple

graphs (loops and multiple edges are not allowed). All notions on graphs that are

used here can be found in [5]. For a graph G = (V (G), E(G)), let n(G), m(G), ℓ(G)

and A = A(G) be the order, size, line graph and adjacency matrix of G, respectively.

For some vertex vi ∈ V (G), let di = d(vi) stand for the degree of vi and ∆(G) be

the maximum degree of G. We denote the characteristic polynomial det(λI − A) of

G by φ(G, λ) or simply φ(G). The adjacency spectrum of G, denoted by Spec(G),

is the multiset of eigenvalues of A(G). Since A(G) is symmetric, its eigenvalues are

real and we set λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G)(G). The maximum eigenvalue λ1(G)

of G is called the spectral radius (or index) of G and it is often denoted by ρ(G).

Additionally, let λ(G) denote the least eigenvalue of G.

Two graphs G and H are said to be A-cospectral if the corresponding adjacency

spectra are the same. A graph is said to be determined by the A-spectrum (or simply a
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DAS-graph) if there is no non-isomorphic graph A-cospectral to it, i.e., φ(G) = φ(H)

implies G ∼= H . The background of the question “which graphs are determined by

their spectrum?” originates from chemistry (in 1956, Günthadr and Primas [16] raised

this question in the context of Hückel’s theory). For additional remarks on the topic

we refer the readers to [11, 12]. There are many papers on A-cospectral graphs and

the methods used to construct them (see [14, 17, 18, 20] for example). By contrast,

the question of determining what kinds of graphs are DAS-graphs is far from resolved.

See [1, 22, 23, 24, 28, 29, 30, 31] for some recent results in this field.

Some other notation and terminology are also needed. Let G1 ∪ G2 denote the

disjoint union of graphs G1 and G2, and kG1 the disjoint union of k copies of G1. Let

nG(H) denote the number of the subgraphs H in graph G. As usual, let Pn, Kn and

K1,n−1 denote the path, the complete graph and the star of order n respectively. Let

Sa,b be the double star obtained from the stars K1,a and K1,b by joining the vertex

of degree a in K1,a and the vertex of degree b in K1,b (see Fig. 4.1). Note that S0,b =

K1,b+1. The well-known cocktail-party graph CP (k) is obtained fromK2k by removing

k disjoint edges. Hoffman [19] introduced the generalized line graph as follows: for any

graph H with n vertices v1, v2, . . . , vn and any non-negative integers a1, a2, . . . , an,

then the generalized line graph L(H ; a1, a2, . . . , an) is the graph consisting of disjoint

copies of ℓ(H) and CP (ai) together with additional edges joining a vertex in ℓ(H)

with a vertex in CP (ai) if the vertex in ℓ(H) corresponding to an edge in H has vi as

an end-vertex (i = 1, 2, . . . , n). The following theorem is a well-known result relating

to generalized line graphs.

Theorem 1.1. (Cameron, Goethals, Seidel, and Shult [3]) Let G be a connected

graph with least eigenvalue at least −2. Then either G is a generalized line graph or

G can be represented by vectors in the root system E8.

Graphs with least eigenvalue at least −2 have been studied since the very begin-

nings of the theory of graph spectra. Much information on this field can be found in

the books [2, 4, 9, 15].

It is an interesting problem to find which graphs with least eigenvalue at least

−2 are A-cospectral graphs or DAS-graphs. Here we mention some known results.

An exceptional graph is a connected graph with least eigenvalue at least −2 which is

not a generalized line graph. Cvetković and Lepović [6, 7] studied the phenomenon of

A-cospectrality in generalized line graphs and in exceptional graphs. For the regular

DAS-graphs with least eigenvalue at least −2, van Dam and Haemers [11] gave an

almost complete answer (see their Theorem 8). Further results on A-cospectral graphs

may be found in Section 4.2 of [9]. However, for the non-regular case, van Dam and

Haemers [11] stated that the following question remains open.

Problem 1.2. Which non-regular graphs with least eigenvalue at least −2 are
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DAS-graphs?

This paper is organized as follows: In Section 2, we cite some useful results of

graphs with least eigenvalue at least −2, and give a new proof of an important result

about the determinant of adjacent matrix of line graph of a tree. In Section 3, we

revisit an invariant, defined by Cvetković and Lepović [8], for the graphs with least

eigenvalue at least −2, and give it a new equivalent definition. In Section 4, we prove

that the line graphs of double stars are determined by their adjacency spectra.

2. Some useful results and a new proof. Doob and Cvetković [13] charac-

terized all connected graphs with the least eigenvalue greater than −2 as follows:

Theorem 2.1. G is a connected graph with λ(G) > −2 if and only if one of the

following holds:

(i) G ∈ G1 = {ℓ(T ) | T is a tree};

(ii) G ∈ G2 = {L(T ; 1, 0, . . . , 0) | T is a tree};

(iii) G ∈ G3 = {ℓ(H) | H is an odd-unicyclic graph};

(iv) G ∈ G4 = {20 graphs with order 6 that are represented in E6};

(v) G ∈ G5 = {110 graphs with order 7 that are represented in E7};

(vi) G ∈ G6 = {443 graphs with order 8 that are represented in E8}.

For convenience, set L = {G | G is a connected graph and λ(G) ≥ −2}, L + =

{G | G is a connected graph and λ(G) > −2} and L 0 = {G | G is a connected graph

and λ(G) = −2}. Clearly, L = L
+ ∪ L

0 and L
+ = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 ∪ G6.

A graph in L (L + or L 0) is called an L -graph (L +-graph or L 0-graph) (see [8]).

For the L +-graphs we have the following result.

Theorem 2.2. (Brouwer, Cohen, and Neumaier [2]) Let G be an L +-graph with

order n. Then

det(2I +A(G)) =



































n+ 1 if G ∈ G1;

4 if G ∈ G2 ∪ G3;

3 if G ∈ G4;

2 if G ∈ G5;

1 if G ∈ G6.

The above theorem has been proved by a lattice-theoretic argument (see, for

example, [2]). It is worth pointing out that Doob and Cvetković [13] gave a proof

for the case G ∈ G2 ∪ G3 by other techniques. Here, we also give a new proof for the

case G ∈ G1 which is independent of lattice theory. Let ψ(G, λ) = det(λI − (D−A))

and ϕ(G, λ) = det(λI − (D + A)) be respectively the characteristic polynomials of
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Laplacian matrix D−A and signless Laplacian matrix D+A of G, where D = D(G) =

diag(d1, d2, . . . , dn(G)) is the degree matrix of G.

Lemma 2.3. [10] Let G be a graph with order n and size m. Then

(i) ϕ(G, λ) = λn−mφ(ℓ(G), λ − 2).

(ii) If G is a bipartite graph, then ψ(G, λ) = ϕ(G, λ).

Theorem 2.4. Let G ∈ G1 be a graph with order n. Then det(2I+A(G)) = n+1.

Proof. Since G ∈ G1, then there exists a tree T such that G = ℓ(T ) and n(T ) =

n+ 1. Note that A(G) is a matrix of order n. Set

ϑ(λ) = |λI − (2I +A(G))| = λn + a1λ
n + · · ·+ an.

Suppose that the roots of ϑ(λ) are λ1, λ2, . . . , λn. Thus,

(2.1) det(2I +A(G)) = λ1λ2 · · ·λn.

Since
∏n

i=1 λi = (−1)nan, by (2.1) we have that

det(2I +A(G)) = (−1)nan.

Since T is bipartite, from Lemma 2.3 we get that ψ(T, λ) = ϕ(T, λ) = λφ(G, λ − 2).

Since φ(G, λ − 2) = |(λ− 2)I −A(G)| = ϑ(λ), we have

ψ(T, λ) = λϑ(λ) = λn+1 + a1λ
n + · · ·+ anλ.

Note that an = (−1)n(n + 1)τ(T ), where τ(T ) is the number of spanning trees in T

[21]. Consequently, an = (−1)n(n+ 1), and therefore, det(2I + A(G)) = n+ 1.

3. An important graph invariant. Cvetković and Lepović [8] adopted the

nomenclature from lattice theory and defined

dG = (−1)nφ(G,−2)

as the discriminant of an L -graph G. Additionally, for an L -graph G they obtained

an important graph invariant named star value and showed that its formula is

S =
(−1)n

(n− k)!
φ(n−k)(G, λ− 2) = (−1)nΠG(0) =

k
∏

i=1

(λi + 2),

where φ(p)(x) denotes the p-th derivative function of φ(x), ΠG(λ) =
∏k

i=1(λ−(λi+2))

(it is called the principal polynomial of G [8]) and λ1, λ2, . . . , λk are the eigenvalues

greater than −2 of G. For the discriminant and the star value of G, we have the
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following conclusion. If G is an L 0-graph, then dG = 0 < S. On the other hand, it

is easy to see that φ(G, λ − 2) = λn−kΠG(λ) and then dG = S if G is an L +-graph.

Now we synthesize the above facts into the following definition:

Definition 3.1. Let G be an L -graph of order n and ΠG(λ) the principal

polynomial of G. Then the star value of G is defined as

⋆(G) =

{

(−1)nΠG(0) if G ∈ L 0;

(−1)nφ(G,−2) if G ∈ L +.

The following corollary is an immediate consequence of Definition 3.1:

Corollary 3.2. Let G = ∪k
i=1Gi and H be two L -graphs. Then

(i) ⋆(G) =
∏k

i=1 ⋆(Gi);

(ii) if G and H are A-cospectral, then ⋆(G) = ⋆(H).

Corollary 3.2(ii) indicates that the star value of a graph is a graph invariant

determined by the spectrum. The readers will see that it will play an important role

in studying the spectral characterization of graphs with least eigenvalue at least −2.

Note that φ(G,−2) = det(−2I − A(G)) = (−1)n det(2I + A(G)), where n is the

order of G. Hence, det(2I + A(G)) = (−1)nφ(G,−2) and so the following corollary

follows from Theorem 2.2 and Definition 3.1:

Corollary 3.3. Let G be an L +-graph with order n. Then

(3.1) ⋆(G) =



























n+ 1 if G ∈ G1;

4 if G ∈ G2 ∪ G3;

3 if G ∈ G4;

2 if G ∈ G5;

1 if G ∈ G6.

For an L 0-graph, we pose the following problem.

Problem 3.4. Let G be an L 0-graph. Can we determine a formula of its star

value ⋆(G) by means of the parameters of G, such as the order, the size, etc?

4. Spectral characterization of line graphs of double stars. The graphs

used in this section are shown in Figure 4.1. In this section, we investigate the

spectral characterization of line graphs of double stars Sa,b and set b ≥ a ≥ 0. Note

ℓ(S0,b) = Kb+1 which has been shown to be a DAS-graph (see [11]). In what follows

we will directly use a well-known fact that if G and H are A-cospectral graphs, then

they respectively share the same order and size.
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ℓ(Sa,b)

4 4

Fig. 4.1. Double star Sa,b and its line graph.

Schwenk [25] defined an operation on graphs named generalized composition. If a

graphH is labeled and has s vertices, then the graphG = H [H1, H2, . . . , Hs] is formed

by taking the disjoint graphs H1, H2, . . . , Hs and then joining every vertex of Hi to

every vertex ofHj whenever ui is adjacent to uj inH (1 ≤ i, j ≤ s). Assume that Hi is

an ri-regular graph (1 ≤ i ≤ s). Then the partition V (G) = V (H1)∪V (H2)∪· · · V (Hs)

is equitable. Let T be the quotient matrix associated with this partition.

Lemma 4.1. (Schwenk [25]) Let Hi be an ri-regular graph (1 ≤ i ≤ s) and let

G = H [H1, H2, . . ., Hs] defined above. Then

φ(G) = φ(λI − T )

s
∏

i=1

φ(Hi)

λ− ri
.

Lemma 4.2. Let n(ℓ(Sa,b)) = n. Then ρ(ℓ(Sa,b)) > n−2 if and only if a ∈ {0, 1}.

Proof. If b = 1, then a = 0 or 1. Thus, ℓ(Sa,b) = P2 or P3 and so the lemma holds.

Next set b ≥ 2. Clearly, ℓ(Sa,b) = P3[Ka,K1,Kb]. Since the partition V (Sa,b) =

V (Ka) ∪ V (K1) ∪ V (Kb) is equitable, from Lemma 4.1 we get

φ(ℓ(Sa,b)) = φ(λI − T ) ·
φ(Ka)

λ− (a− 1)
·
φ(K1)

λ
·

φ(Kb)

λ− (b− 1)
,

where T =





a− 1 1 0

a 0 b

0 1 b− 1



. A direct calculation shows that

(4.1) φ(ℓ(Sa,b)) = (λ+1)a+b−2[λ3−(a+b−2)λ2−(2a−ab+2b−1)λ−(a−2ab+b)].

Let f(λ) denote the cubic factor. It is easy to see that ρ(ℓ(Sa,b)) is the largest root of

f(λ). Note that f(a+b) = ab(a+b+2) > 0 and f(a+b−1) = −a2−ab−b2+a2b+ab2.

Since ∂f(a+b−1)
∂a

= (2a+ b)(b− 1) > 0, then for a > 2 we get that

f(a+ b− 1) > f(2 + b− 1) = (b + 1)2 − 5 > 0

> f(1 + b− 1) = −1 > f(0 + b− 1) = −b2.(4.2)
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Since f(λ) is continuous in the interval [a + b − 1, a + b], if f(λ) > 0 for any λ ∈

[a+ b− 1, a+ b], then f(λ) has no roots in [a+ b− 1, a+ b]. Note that n− 1 = a+ b.

Since a + b − 1 = n− 2 < ρ(ℓ(Sa,b)) < n− 1 = a + b, there exists at least one point

a0 + b− 1 ∈ [a+ b− 1, a+ b] such that f(a0 + b− 1) < 0. Since a is a positive integer,

it follows from (4.2) that a = 1 or 0. This establishes the necessity.

Now we show the sufficiency. If a = 0, then n = b + 1 and ℓ(Sa,b) = Kn with

ρ(Kn) = n− 1 > n− 2. If a = 1, then n = b+2. from (4.1) we get that ρ(S1,b) is the

largest root of

f(λ) = λ3 − (b− 1)λ2 − (b+ 1)λ+ (b− 1) = 0.

Since f(n−1) = f(b+1) = b(b+3) > 0 and f(n−2) = f(b) = −1, n−2 < ρ(ℓ(S1,b)) <

n− 1.

Lemma 4.3. Let b ≥ a > 1. Then ℓ(Sa,b) has exactly four different eigenval-

ues ρ(ℓ(Sa,b)), λ2, λ3 = −1, λ(ℓ(Sa,b)) such that λ2 and λ(ℓ(Sa,b)) are simple, the

multiplicity of −1 is a+ b− 2 and

(4.3) b+ 1 > ρ(ℓ(Sa,b)) > b > λ2 > 0 > λ3 = −1 > λ(ℓ(Sa,b)) > −2.

Proof. We retain the notation of Lemma 4.2. From (4.1) it follows that ρ(ℓ(Sa,b))

and λ(ℓ(Sa,b)) are the roots of f(λ). Since f(−1) = ab > 0, then −1 is not a root of

f(λ). Thus, λ2 is also a root of f(λ) and the multiplicity of −1 is a+b−2 by (4.1). A

straightforward calculation shows that f(b+1) = (b− a)(b+4)+ 4 > 0, f(b) = −a <

0, f(0) = a(b − 1) + b(a− 1) > 0 and f(−2) = −a− b− 2 < 0, and so the inequality

(4.3) follows.

Lemma 4.4. No two non-isomorphic line graphs of double stars are A-cospectral.

Proof. Let ℓ(Sa,b) and ℓ(Sa′,b′) be A-cospectral. Then a+ b = a′ + b′. From (4.1)

it follows that ab = a′b′ (since the constant terms in the cubic factors of φ(ℓ(Sa,b))

and φ(ℓ(Sa′,b′)) are equal). Solving the equations a+ b = a′ + b′ and ab = a′b′ we get

that a = a′, b = b′ or a = b′, b = a′.

Theorem 4.5. ℓ(S1,n−2) is a DAS-graph.

Proof. Let ℓ(S1,n−2) = G and let H be any graph A-cosptral with G. Then

n(H) = n(G) = n and ρ(H) = ρ(G). Since ∆(H) ≥ ρ(H), by Lemma 4.2 we get

that ∆(H) > n − 2 and so ∆(H) = n − 1. Hence, H is a connected graph. Since

λ(H) = λ(G) > −2, H ∈
⋃6
i=1Gi by Theorem 2.1. From Corollary 3.3 it follows that

⋆(H) = ⋆(G) = n + 1. If n = 2 or 3, then G = P2 or P3 which has been proved to

be a DAS-graph. Now set n ≥ 4; then ⋆(H) ≥ 5, and therefore, H ∈ G1 by Corollary

3.3. Thus, H = ℓ(T ), where T is a tree. Since e1 has degree n − 1 in H , the other
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edges of T must be adjacent to e1, and this implies that T is a double star Sa,b. From

Lemma 4.4 it follows that H ∼= G.

Lemma 4.6. [26] The double star Sa,b is determined by the Laplacian spectrum.

Lemma 4.7. [27] A graph has exactly one positive eigenvalue if and only if its

non-isolated vertices form a complete multipartite graph.

Theorem 4.8. Let n = a+ b+ 1 and b ≥ a ≥ 2. Then ℓ(Sa,b) is a DAS-graph.

Proof. Let ℓ(Sa,b) = G and let H be any graph A-cospectral with G. Then

n(H) = n(G) = n. We first show the following consequence:

Claim: H is a connected graph.

Assume by way of contradiction that H =
⋃k
i=1Hi, where k > 1 and Hi (1 ≤

i ≤ k) is a connected component of H . Since λ(H) = min{λ(Hi) | i = 1, . . . , k} =

λ(G) > −2, by Theorem 2.1 we get that Hi ∈
⋃6

j=1Gj (i = 1, . . . , k). Without loss of

generality, set λ(H) = λ(H1) = λ(ℓ(Sa,b)). Note that ℓ(Sa,b) has only one eigenvalue

λ(ℓ(Sa,b)) less than −1. Hence, λ(H1) < −1 and λ(Hi) ≥ −1 (i = 2, . . . , k). Since

H has no eigenvalue 0, then each Hi is not an isolated vertex, and therefore, Hi has

at least one edge (2 ≤ i ≤ k). Consequently, λ(Hi) ≤ −1 and so λ(Hi) = −1 which

implies that Hi is a complete graph Kai
(2 ≤ i ≤ k). Thus,

H = H1 ∪Ka2
∪ · · · ∪Kak

, where a2 ≥ a3 ≥ · · · ≥ ak.

From (4.3) it follows that ρ(H) = ρ(ℓ(Sa,b)) is not an integer, which, together with

ρ(H) = max{ρ(H1), ρ(Ka2
) = a2 − 1}, leads to ρ(H) = ρ(H1).

If H1 has exactly two different eigenvalues ρ(H1) and λ(H1), then H1 must be a

complete graph whose spectral radius ρ(H1) = n(H1)−1 is an integer, a contradiction.

Hence, H1 has at least three different eigenvalues ρ(H1), λ2(H1), λ(H1).

Note that Spec(Kai
) = {ai−1,−1ai−1} (i = 2, . . . , k). If ai 6= aj (2 ≤ i 6= j ≤ k),

then H has at least three positive eigenvalues ρ(H), ai − 1, aj − 1 which contradicts

the fact that H has exactly two positive eigenvalues (see (4.3)). Thus, a2 = · · · = ak

which shows that the multiplicity of eigenvalue a2 − 1 is k − 1.

Since the second largest positive eigenvalue of H is simple (see Lemma 4.3),

then k − 1 = 1 and so k = 2 and H = H1 ∪ Ka2
. Note again that H has four

different eigenvalues ρ(H) = ρ(H1) = ρ(ℓ(Sa,b)), λ2(H) = λ2(ℓ(Sa,b)), λ3(H) =

λ3(ℓ(Sa,b)) = −1, λ(H) = λ(H1) = λ(ℓ(Sa,b)). If H1 has four different eigenvalues

ρ(H1), λ2(H1), λ3(H1), λ(H1), then λ2(H) = λ2(H1) = a2− 1 and λ3(H) = λ3(H1) =

−1 which contradicts the fact that λ2(H) is simple. So, H1 has exactly three differ-

ent eigenvalues ρ(H1), λ2(H1), λ(H1) and the possibly different eigenvalues of H lie

in {ρ(H1), λ2(H1), λ(H1)} ∪ {a2 − 1,−1}.
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If λ2(H1) > 0, then λ2(H1) = a2 − 1 which contradicts that the second largest

eigenvalue of H is simple. If λ2(H1) < 0, then λ2(H1) = −1 and thus H1 has only

one positive eigenvalue. By Lemma 4.7 we get that H1 is a complete multipartite

graph Kc1,c2,...,cs . It has been proved that H1 = Kc1,c2,...,cs has eigenvalue 0 with

multiplicity n(H1)− s (see [5] pp. 74). Since H has no eigenvalue 0, then n(H1) = s

and so H1 is a complete graph Kn(H1) with integral spectral radius n(H1) − 1, a

contradiction. This finishes the proof of the Claim.

From Corollaries 3.2 and 3.3 we get that ⋆(H) = ⋆(G) = n+1. By the condition

of the theorem, we have ⋆(H) ≥ 6 and thus H ∈ G1 by Theorem 2.1. So, there

exists a tree T such that H = ℓ(T ). From φ(ℓ(Sa,b), λ) = φ(ℓ(T ), λ) it follows that

λφ(ℓ(Sa,b), λ−2) = λφ(ℓ(T ), λ−2) which by Lemma 2.3(i) yields ϕ(T, λ) = ϕ(Sa,b, λ)

and so ψ(T, λ) = ψ(Sa,b, λ) by Lemma 2.3(ii). From Lemma 4.6 it follows that

T ∼= Sa,b and so H = ℓ(T ) ∼= ℓ(Sa,b).

Combining the fact that ℓ(S0,b) = Kb+1 is a DAS-graph and Theorems 4.5 and

4.8 we immediately obtain the main result of this section:

Theorem 4.9. Let b ≥ a ≥ 0. Then ℓ(Sa,b,) is a DAS-graph.
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