BICYCLIC DIGRAPHS WITH EXTREMAL SKEW ENERGY*

XIAOLING SHEN ${ }^{\dagger}$, YAOPING HOU ${ }^{\dagger}$, AND CHONGYAN ZHANG ${ }^{\dagger}$

Abstract

Let \vec{G} be a digraph and $S(\vec{G})$ be the skew-adjacency matrix of \vec{G}. The skew energy of \vec{G} is the sum of the absolute values of eigenvalues of $S(\vec{G})$. In this paper, the bicyclic digraphs with minimal and maximal skew energy are determined.

Key words. Bicyclic digraph, Skew-adjacency matrix, Extremal skew energy.

AMS subject classifications. $05 \mathrm{C} 05,05 \mathrm{C} 50,15 \mathrm{~A} 03$.

1. Introduction. Let G be a simple undirected graph of order n with vertex set $V(G)=\{1, \ldots, n\}$ and \vec{G} be an orientation of G. The skew-adjacency matrix of \vec{G} is the $n \times n$ matrix $S(\vec{G})=\left[s_{i, j}\right], s_{i, j}=1$ and $s_{j, i}=-1$ if $i \rightarrow j$ is an arc of \vec{G}, and $s_{i, j}=s_{j, i}=0$ otherwise. Since $S(\vec{G})$ is a real skew symmetric matrix, all eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of $S(\vec{G})$ are pure imaginary numbers, the singular values of $S(\vec{G})$ are just the absolute values $\left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}$. So the energy of $S(\vec{G})$ defined as the sum of singular values of $S(\vec{G})$ [12] is the sum of the absolute values of its eigenvalues. For convenience, the energy of $S(\vec{G})$ is called skew energy of G (1]), and denoted by $\mathcal{E}_{s}(\vec{G})$.

Energy has close links to chemistry (see, for instance, [6). Since the concept of the energy of simple undirected graphs was introduced by Gutman in [5], there has been lots of research papers on this topic. For a survey, we refer to Section 7 in [3] and references therein. Denote, as usual, the n-vertex path and cycle by P_{n} and C_{n}, respectively. For the extremal energy of bicyclic graphs, let $G(n)$ be the class of bicyclic graphs with n vertices and containing no disjoint odd cycles of lengths k and ℓ with $k+\ell=2(\bmod 4)$. Let S_{n}^{ℓ} be the graph obtained by connecting $n-\ell$ pendant vertices to a vertex of $C_{\ell}, S_{n}^{3,3}$ be the graph formed by joining $n-4$ pendant vertices to a vertex of degree three of the $K_{4}-e$ (see Fig. 1.1), and $S_{n}^{4,4}$ be the graph formed by joining $n-5$ pendant vertices to a vertex of degree three of the complete bipartite graph $K_{2,3}$. Let \mathcal{B}_{n} be the class of all bipartite bicyclic graphs of order n that are not the graph obtained from two cycles C_{a} and $C_{b}(a, b \geq 10$ and $a=b=2$ $(\bmod 4))$ joined by an edge. Zhang and Zhou [14] showed that $S_{n}^{3,3}$ is the graph with

[^0]minimal energy in $G(n)$. In [10], Li et al. showed that $P_{n}^{6,6}$ is the graph with maximal energy in \mathcal{B}_{n}. Additional results on the energy of bicyclic graphs can be found in [4, 7, 11, 13. The skew energy was first introduced by C. Adiga et al. in [1]. Some properties of the skew energy of a digraph are given in [1]. A connected graph with n vertices and $n+1$ edges is called a bicyclic graph. In this paper, we are interested in studying the bicyclic graphs with extremal skew energy.

Fig. 1.1. Graphs $S_{n}^{3,3}, P_{n}^{4,4}$ and their orientations.

The rest of this paper is organized as follows. In Section 2, the bicyclic digraphs of each order n with minimal skew energy are determined. In Section 3, the bicyclic digraphs of each order n with maximal skew energy are determined.
2. Bicyclic graphs with minimal skew energy. Let G be a graph. A linear subgraph L of G is a disjoint union of some edges and some cycles in G ([2]). A k-matching M in G is a disjoint union of k-edges. If $2 k$ is the order of G, then a k matching of G is called a perfect matching of G. The number of k-matchings of graph G is denoted by $m(G, k)$. If C is an even cycle of G, then we say C is evenly oriented relative to an orientation \vec{G} of G if it has an even number of edges oriented in the direction of the routing. Otherwise C is oddly oriented. We call a linear subgraph L of G evenly linear if L contains no cycle with odd length and denote by $\mathcal{E} \mathcal{L}_{i}(G)$ (or $\mathcal{E} \mathcal{L}_{i}$ for short) the set of all evenly linear subgraphs of G with i vertices. For a linear subgraph $L \in \mathcal{E} \mathcal{L}_{i}$, denote by $p_{e}(L)$ (resp., $\left.p_{o}(L)\right)$ the number of evenly (resp., oddly) oriented cycles in L relative to \vec{G}. Denote the characteristic polynomial of $S(\vec{G})$ by

$$
P_{S}(\vec{G} ; x)=\operatorname{det}(x I-S(\vec{G}))=\sum_{i=0}^{n} b_{i} x^{n-i} .
$$

Then $b_{0}=1, b_{2}$ is the number of edges of G, all $b_{i} \geq 0$ and $b_{i}=0$ for all odd i.

We have the following results.
Lemma 2.1. ([]) Let \vec{G} be an orientation of a graph G. Then

$$
b_{i}(\vec{G})=\sum_{L \in \mathcal{E} \mathcal{L}_{i}}(-2)^{p_{e}(L)} 2^{p_{o}(L)}
$$

Lemma 2.2. ([8]) Let $e=u v$ be an edge of G that is on no even cycle of G. Then

$$
\begin{equation*}
P_{S}(\vec{G} ; x)=P_{S}(\vec{G}-e ; x)+P_{S}(\vec{G}-u-v ; x) \tag{2.1}
\end{equation*}
$$

By equating the coefficients of polynomials in Eq. (2.1), we have

$$
\begin{equation*}
b_{2 k}(\vec{G})=b_{2 k}(\vec{G}-e)+b_{2 k-2}(\vec{G}-u-v) \tag{2.2}
\end{equation*}
$$

Furthermore, if $e=u v$ is a pendant edge with pendant vertex v, then

$$
\begin{equation*}
b_{2 k}(\vec{G})=b_{2 k}(\vec{G}-v)+b_{2 k-2}(\vec{G}-u-v) \tag{2.3}
\end{equation*}
$$

For any orientation of a graph that does not contain any even cycle (in particular, a tree or a unicyclic non-bipartite graph $), b_{2 k}(\vec{G})=m(\vec{G}, k)$ by Lemma 2.1.

In [9, the skew energy of \vec{G} is expressed as the following integral formula:

$$
\mathcal{E}_{S}(\vec{G})=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{t^{2}} \ln \left(1+\sum_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor} b_{2 k} t^{2 k}\right) d t
$$

Thus $\mathcal{E}_{s}(\vec{G})$ is an increasing function of $b_{2 k}(\vec{G}), k=0,1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$. Consequently, if $\overrightarrow{G_{1}}$ and $\overrightarrow{G_{2}}$ are oriented graphs of G_{1} and G_{2}, respectively, for which

$$
\begin{equation*}
b_{2 k}\left(\overrightarrow{G_{1}}\right) \geq b_{2 k}\left(\overrightarrow{G_{2}}\right) \tag{2.4}
\end{equation*}
$$

for all $\left\lfloor\frac{n}{2}\right\rfloor \geq k \geq 0$, then

$$
\begin{equation*}
\mathcal{E}_{s}\left(\overrightarrow{G_{1}}\right) \geq \mathcal{E}_{s}\left(\overrightarrow{G_{2}}\right) \tag{2.5}
\end{equation*}
$$

Equality in (2.5) is attained only if (2.4) is an equality for all $\left\lfloor\frac{n}{2}\right\rfloor \geq k \geq 0$. If the inequalities (2.4) hold for all k, then we write $G_{1} \succeq G_{2}$ or $G_{2} \preceq G_{1}$. If $G_{1} \succeq G_{2}$, but not $G_{2} \succeq G_{1}$, then we write $G_{1} \succ G_{2}$.

Let \vec{G} be an orientation of a graph G. Let W be a subset of $V(G)$ and $\bar{W}=$ $V(G) \backslash W$. The orientation $\overrightarrow{G^{\prime}}$ of G obtained from \vec{G} by reversing the orientations
of all arcs between \bar{W} and W is said to be obtained from \vec{G} by a switching with respect to W. Moreover, two orientations \vec{G} and $\overrightarrow{G^{\prime}}$ of a graph G are said to be switching-equivalent if $\overrightarrow{G^{\prime}}$ can be obtained from \vec{G} by a sequence of switchings. As noted in [1], since the skew adjacency matrices obtained by a switching are similar, their spectra and hence skew energies are equal.

It is easy to verify that up to switching equivalence there are just two orientations of a cycle C : (1) Just one edge on the cycle has the opposite orientation to that of others, we call it orientation + . (2) All edges on the cycle C have the same orientation, we denote this orientation by -. So if a cycle is of even length and oddly oriented, then it is equivalent to the orientation + ; if a cycle is of even length and evenly oriented, then it is equivalent to the orientation -. The skew energy of a directed tree is the same as the energy of its underlying tree ([1]). So by switching equivalence, for a unicyclic digraph or bicyclic digraph, we only need to consider the orientations of cycles.

Let C_{x}, C_{y} be two cycles in bicyclic graph G with $t(t \geq 0)$ common vertices. If $t \leq 1$, then G contains exactly two cycles. If $t \geq 2$, then G contains exactly three cycles. The third cycle is denoted by G_{z}, where $z=x+y-2 t+2$. Without loss of generality, assume that $x \leq y \leq z$.

For convenience, we denote by G^{+}(resp., G^{-}) the unicyclic graph on which the orientation of a cycle is of orientation + (resp., -), and denote by G^{*} the unicyclic graph on which the orientation of a cycle is of arbitrary orientation $*$. If $t \leq 1$, we denote by $G^{a, b}$ the bicyclic graph on which cycle C_{x} is of orientation a and cycle C_{y} is of orientation b, where $a, b \in\{+,-, *\}$. If $t \geq 2$, we denote by $G^{a, b, c}$ the bicyclic graph on which C_{x} is of orientation a, C_{y} is of orientation b, C_{z} is of orientation c, where $a, b, c \in\{+,-, *\}$. See examples in Fig. 2.2.

For the k-matching number of a graph G, we have the following.
Lemma 2.3. Let $e=u v$ be an edge of G. Then
(i) $m(G, k)=m(G-e, k)+m(G-u-v, k-1)$.
(ii) If G is a forest, then $m(G, k) \leq m\left(P_{n}, k\right), k \geq 1$.
(iii) If H is a subgraph of G, then $m(H, k) \leq m(G, k), k \geq 1$. Moreover, if H is a proper subgraph of G, then the inequality is strict.

We define $m(G, 0)=1$ and $m(G, k)=0$ for $k>\frac{n}{2}$.
In [9], the authors discussed the unicyclic digraph with extremal skew energy and established the following.

Lemma 2.4. (9]) (1) Among all unicyclic digraphs on n vertices, $\overrightarrow{S_{n}^{3}}$ has the

$$
t=0, G^{+,-}
$$

$$
t=1, G^{+,+}
$$

$t=2, G^{+,+,-}$

Fig. 2.1. Examples for orientation representations of bicyclic digraphs.
minimal skew energy and ${\overrightarrow{S_{n}^{4}}}^{-}$has the second minimal skew energy for $n \geq 6$; both $\overrightarrow{S_{5}^{3}}$ and ${\overrightarrow{S_{5}^{4}}}^{-}$have the minimal skew energy, ${\overrightarrow{S_{5}^{4}}}^{+}$has the second minimal skew energy for $n=5 ;{\overrightarrow{C^{4}}}^{-}$has the minimal skew energy, $\overrightarrow{S_{4}^{3}}$ has the second minimal skew energy for $n=4$.
(2) Among all orientations of unicyclic graphs, ${\overrightarrow{P_{n}^{4}}}^{+}$is the unique directed graph with maximal skew energy.

For bicyclic digraphs, we have the following.
Lemma 2.5. Let \vec{G} be a bicyclic digraph of order $n \geq 8, G \neq S_{n}^{3,3}$. Then $\vec{G} \succ\left(S_{n}^{3,3}\right)^{*, *,-}$.

Proof. We prove the statement by induction on n. By Lemma 2.1 the characteristic polynomials of $S\left(\left(S_{n}^{3,3}\right)^{*, *,-}\right), S\left(\vec{S}_{n}^{3}\right)$ and $S\left({\overrightarrow{S_{n}^{4}}}^{-}\right)$are:

$$
\begin{aligned}
P_{S}\left(\left(S_{n}^{3,3}\right)^{*, *,-}\right) & =x^{n-4}\left(x^{4}+(n+1) x^{2}+2(n-4)\right) \\
P_{S}\left(\overrightarrow{S_{n}^{3}}\right) & =x^{n-4}\left(x^{4}+n x^{2}+(n-3)\right) \\
P_{S}\left({\overrightarrow{S_{n}^{4}}}^{-}\right) & =x^{n-4}\left(x^{4}+n x^{2}+2(n-4)\right)
\end{aligned}
$$

It suffices to prove that $b_{4}(\vec{G})>2(n-4)$ for $\vec{G} \neq\left(S_{n}^{3,3}\right)^{*, *,-}$.
Let $n=8$.

Case 1.1. $t \leq 1$.

Subcase 1.1.1. $x=y=4$. Then we can choose an edge $e=u v$ on some C_{4} such that $G-u-v$ is connected. By Lemma [2.1] we have

$$
\begin{aligned}
b_{4}\left(G^{*, *}\right) & \geq m(G, 2)-4 \\
& =m(G-e, 2)+m(G-u-v, 1)-4 \\
& \geq m(G-e, 2)+6-4 \\
& >m\left(P_{6}, 2\right)+2 \quad\left(P_{6} \text { is a proper subgraph of } G-e\right) \\
& =8=b_{4}\left(\left(S_{8}^{3,3}\right)^{*, *,-}\right) .
\end{aligned}
$$

Subcase 1.1.2. Either x or y is 4. Without loss of generality, suppose that $x=4$. Chose an edge $e=u v$ on C_{y} such that $G-u-v$ has at least 4 edges. By Lemma 2.1,

$$
\begin{aligned}
b_{4}\left(G^{*, *}\right) & \geq m(G, 2)-2 \\
& =m(G-e, 2)+m(G-u-v, 1)-2 \\
& \geq m(G-e, 2)+4-2 \\
& >m\left(S_{6}^{4}, 2\right)+2 \quad\left(S_{6}^{4} \text { is a proper subgraph of } G-e\right) \\
& >8=b_{4}\left(\left(S_{8}^{3,3}\right)^{*, *,-}\right) .
\end{aligned}
$$

Subcase 1.1.3. Neither x nor y is 4. Then $x=y=3$ or $x=3, y=5$. We can chose an edge $e=u v$ on any cycle such that $G-u-v$ contains at least 3 edges. By Lemma 2.1, we get

$$
\begin{aligned}
b_{4}\left(G^{*, *}\right) & =m(G, 2) \\
& =m(G-e, 2)+m(G-u-v, 1) \\
& \geq m(G-e, 2)+3 \\
& =b_{4}(G-e)+3 \quad(G-e \text { is a unicyclic graph without cycle of length } 4) \\
& >b_{4}\left(\overrightarrow{S_{8}^{3}}\right)+3 \quad(b y \text { Lemma } \\
& =8=b_{4}\left(\left(S_{8}^{3,3}\right)^{*, *,-}\right)
\end{aligned}
$$

Case 1.2. $t \geq 2$.
Subcase 1.2.1. Each cycle is of length 4 . Then $t=3$ and there are 3 vertices outside of those cycles, say v_{1}, v_{2}, v_{3}. Let v_{1} be a pendant vertex of G and u_{1} be the adjacent vertex of v_{1}, v_{2} be a pendant vertex of $G-v_{1}$ and u_{2} be the adjacent vertex of v_{2}, v_{3} be a pendant vertex of $G-v_{1}-v_{2}$ and u_{3} be the adjacent vertex of v_{3}. By Eq. (2.3), we have

$$
b_{4}\left(G^{*, *}\right)=b_{4}\left(G^{*, *}-v_{1}\right)+b_{2}\left(G^{*, *}-u_{1}-v_{1}\right)
$$

$$
\begin{aligned}
& \geq b_{4}\left(G^{*, *}-v_{1}\right)+3 \\
& \geq b_{4}\left(G^{*, *}-v_{1}-v_{2}\right)+6 \\
& \geq b_{4}\left(G^{*, *}-v_{1}-v_{2}-v_{3}\right)+9 \\
& >8=b_{4}\left(\left(S_{8}^{3,3}\right)^{*, *,-}\right)
\end{aligned}
$$

Subcase 1.2.2. There are two cycles of length 4 in G, say, C_{x}, C_{y}, then $t=2$ and $z=x+y-2 t+2=6$. There are two vertices outside of G. Similar to the proof of subcase 1.2.1, we can obtain $b_{4}\left(G^{*, *}\right)>b_{4}\left(\left(S_{8}^{3,3}\right)^{*, *,-}\right)$.

Subcase 1.2.3. There is just one cycle of length 4 in G, say, C_{x}. If $C_{y}=C_{3}$, then $t=2$ and there are 3 vertices outside of G. Similar to the proof of subcase 1.2.1, we get $b_{4}\left(G^{*, *}\right)>b_{4}\left(\left(S_{8}^{3,3}\right)^{*, *,-}\right)$. If $y \geq 5$, we can chose an edge $e=u v$ on C_{y} such that $m(G-u-v, 1) \geq 6$. Then similar to the proof of subcase 1.1.2, we get that $b_{4}\left(G^{*, *}\right)>b_{4}\left(\left(S_{8}^{3,3}\right)^{*, *,-}\right)$.

Subcase 1.2.4. G contains no cycle of length 4. Similar to the proof of subcase 1.1.3, the result holds for $n=8$.

Suppose $n>8$ and $\vec{G}^{\prime} \succ\left(S_{n^{\prime}}^{3,3}\right)^{*, *,-}$ for any bicyclic digraph G^{\prime} of order n^{\prime}, $n^{\prime}<n$. Denote by p the number of pendant vertices in G.

If $p=0$, then \vec{G} has no pendant vertex. Three cases are considered in the following.

Case 2.1. $t=1$. Let $e=u v$ be an edge on C_{x} and u is the common vertex of C_{x} and C_{y}. By Lemmas 2.1 and 2.3, and $m\left(P_{n}, 2\right)=\frac{(n-2)(n-3)}{2}$, we have

$$
\begin{aligned}
b_{4}\left(G^{*, *}\right) & \geq m(G, 2)-4 \\
& =m(G-e, 2)+m(G-u-v, 1)-4 \\
& =m\left(P_{n}^{y}, 2\right)+m\left(P_{x-2} \bigcup P_{n-x}, 1\right)-4 \\
& =m\left(P_{n}, 2\right)+m\left(P_{y-2} \bigcup P_{n-y}, 1\right)+n-8 \\
& =\frac{(n-2)(n-3)}{2}+n-4+n-8>2(n-4)
\end{aligned}
$$

since $\frac{(n-2)(n-3)}{2}-4=\frac{(n-6)(n+1)+4}{2}>0$ for $n>7$.
Case 2.2. $t \geq 2$. Suppose $e=u v$ is an edge on C_{x} and u is the common vertex of C_{x} and C_{y}. By Lemmas 2.1 and 2.3

$$
\begin{aligned}
b_{4}\left(G^{*, *}\right) & \geq m(G, 2)-6 \\
& =m(G-e, 2)+m(G-u-v, 1)-6 \\
& =m\left(P_{n}^{y}, 2\right)+n-3-6
\end{aligned}
$$

$$
\begin{aligned}
& =m\left(P_{n}, 2\right)+m\left(P_{y-2} \bigcup P_{n-y}, 1\right)+n-9 \\
& =\frac{(n-2)(n-3)}{2}+n-4+n-9>2(n-4)
\end{aligned}
$$

since $\frac{(n-2)(n-3)}{2}-5=\frac{(n-6)(n+1)+2}{2}>0$ for $n>7$.
Case 2.3. $t=0$. Suppose that C_{x} and C_{y} are joined by a path of length $a, n-8 \geq$ $a \geq 0$. Let $e=u v$ be an edge on C_{x}, where u is the vertex of degree 3 . Similar to the proof of case 2.1, we obtain $b_{4}\left(G^{*, *}\right)>2(n-4)$. Therefore, $b_{4}\left(G^{*, *}\right) \geq b_{4}\left(\left(S_{n}^{3,3}\right)^{*, *,-}\right)$ for $p=0$.

Let $p \geq 1$ and v be a pendant vertex of G with corresponding unique edge $u v$. Since $G^{*, *}-u-v$ has at least 3 edges, by Eq. (2.2) and the induction hypothesis,

$$
\begin{aligned}
b_{4}\left(G^{*, *}\right) & =b_{4}\left(G^{*, *}-v\right)+b_{2}\left(G^{*, *}-u-v\right) \\
& >b_{4}\left(\left(S_{n-1}^{3,3}\right)^{-, *, *}\right)+3 \\
& =2(n-1-4)+3>2(n-4)=b_{4}\left(\left(S_{n}^{3,3}\right)^{*, *,-}\right)
\end{aligned}
$$

For $n=7$, similar to the proof of Lemma 2.5 for $n=8$, both $\left(S_{7}^{4,4}\right)^{-,-,-}$and $\left(S_{n}^{3,3}\right)^{*, *,-}$ have the minimal skew energy. Since

$$
P_{S}\left(\left(S_{n}^{4,4}\right)^{-,-,-}\right)=x^{n-4}\left(x^{4}+(n+1) x^{2}+3(n-5)\right)
$$

$b_{4}\left(\left(S_{6}^{4,4}\right)^{-,-,-}\right)=3$ and $b_{4}\left(\left(S_{5}^{4,4}\right)^{-,-,-}\right)=0$. In a similar way to the proof of Lemma 2.5 for $n=8$, we can get that $\left(S_{6}^{4,4}\right)^{-,-,-}$has the minimal skew energy for $n=6$ and $\left(S_{5}^{4,4}\right)^{-,-,-}$has the minimal skew energy for $n=5$.

By Lemma 2.5 and the above statements, we obtain the following.
Theorem 2.6. Among all bicyclic digraphs of order n, $\left(S_{n}^{3,3}\right)^{*, *,-}$ has the minimal skew energy for $n \geq 8$; both $\left(S_{7}^{3,3}\right)^{*, *,-}$ and $\left(S_{7}^{4,4}\right)^{-,-,-}$have the minimal skew energy for $n=7$; $\left(S_{n}^{4,4}\right)^{-,-,-}$has the minimal skew energy for $n=5,6$.
3. Bicyclic digraphs with maximal skew energy. For the path, by Lemmas 2.1 and 2.3, we can easily get the following statements.

Lemma 3.1. Let \vec{F}_{n} be a forest of order n. Then $\vec{F}_{n} \preceq \vec{P}_{n}$. Equality holds if and only if $F_{n}=P_{n}$.

Since the skew energy of a directed forest is the same as the energy of its underlying forest, by [6, we have the following.

Lemma 3.2.

$$
\begin{aligned}
\vec{P}_{n} & \succ \vec{P}_{2} \bigcup \vec{P}_{n-2} \succ \vec{P}_{4} \bigcup \vec{P}_{n-4} \succ \cdots \succ \vec{P}_{2 k} \bigcup \vec{P}_{n-2 k} \succ \vec{P}_{2 k+1} \bigcup \vec{P}_{n-2 k-1} \\
& \succ \vec{P}_{2 k-1} \bigcup \vec{P}_{n-2 k+1} \succ \cdots \succ \vec{P}_{3} \bigcup \vec{P}_{n-3} \succ \vec{P}_{1} \bigcup \vec{P}_{n-1} .
\end{aligned}
$$

Lemma 3.3. For any bicyclic graph G with $t \leq 1, G^{*, *} \preceq G^{+,+}$.
Proof. If two cycles are of odd length, then by Lemma 2.1 for any orientation of $G, b_{2 k}(\vec{G})=m(G, k)$, for all $0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$. Thus $G^{*, *}=G^{+,+}$. If there is exactly one cycle of even length in G, say, C_{x}, then
$b_{2 k}\left(G^{-, *}\right)=m(G, k)-2 m\left(G-C_{x}, k-\frac{x}{2}\right) \leq b_{2 k}\left(G^{+,+}\right)=m(G, k)+2 m\left(G-C_{x}, k-\frac{x}{2}\right)$.
If both x and y are even, then

$$
\begin{aligned}
b_{2 k}\left(G^{-,-}\right) & =m(G, k)-2 m\left(G-C_{x}, k-\frac{x}{2}\right)-2 m\left(G-C_{y}, k-\frac{y}{2}\right) \\
& +4 m\left(G-C_{x}-C_{y}, k-\frac{x+y}{2}\right) \leq b_{2 k}\left(G^{ \pm, \mp}\right)=m(G, k) \\
& \pm 2 m\left(G-C_{x}, k-\frac{x}{2}\right) \mp 2 m\left(G-C_{y}, k-\frac{y}{2}\right) \\
& -4 m\left(G-C_{x}-C_{y}, k-\frac{x+y}{2}\right) \leq b_{2 k}\left(G^{+,+}\right)=m(G, k) \\
& +2 m\left(G-C_{x}, k-\frac{x}{2}\right)+2 m\left(G-C_{y}, k-\frac{y}{2}\right) \\
& +4 m\left(G-C_{x}-C_{y}, k-\frac{x+y}{2}\right) .
\end{aligned}
$$

Lemma 3.4. Let \vec{G} be a bicyclic digraph of order n with $t \leq 1, \vec{G} \neq\left(P_{n}^{4,4}\right)^{+,+}$. Then $\vec{G} \prec\left(P_{n}^{4,4}\right)^{+,+}$for $n \geq 8$.

Proof. We divide the proof into two cases.
Case 1. There is at least one cycle of length odd, say, C_{x}.
(i) $t=1$, we can choose an edge $e=u v$ on C_{x} such that u is the common vertex of two cycles. Obviously, $\vec{G}-e$ is a unicyclic graph and $\vec{G}-u-v$ is a forest.

By Eq. (2.2), Lemmas [2.3) and [2.4, we have

$$
\begin{aligned}
b_{2 k}(\vec{G}) & =b_{2 k}(\vec{G}-e)+b_{2 k-2}(\vec{G}-u-v) \\
& <b_{2 k}\left(\vec{P}_{n}^{4}\right)+b_{2 k-2}\left(\vec{P}_{2} \bigcup \vec{P}_{n-4}\right) \quad(\text { by Lemmas 2.4 and [3.2) } \\
& =m\left(P_{n}^{4}, k\right)+3 m\left(P_{n-4}, k-2\right)+m\left(P_{n-4}, k-1\right) \\
& <m\left(P_{n}^{4}, k\right)+m\left(P_{n-4}^{4}, k-1\right)+5 m\left(P_{n-4}^{4}, k-2\right)+4 m\left(P_{n-8}, k-4\right)
\end{aligned}
$$

$$
=b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)
$$

(ii) $t=0$. We can choose an edge $e=u v$ on C_{x} such that u is a vertex in a path which connects C_{x} and C_{y}. Obviously, $\vec{G}-e$ is a unicyclic graph and $\vec{G}-u-v$ is the disjoint union of a forest and a unicyclic graph.

Claim 1. $P_{a} \bigcup \overrightarrow{P_{n-a}^{b}} \prec P_{2} \bigcup \overrightarrow{P_{n-2}^{4}}+a \neq 2$.
Proof. By Lemmas 2.4 and 3.2, we have

$$
\begin{aligned}
b_{2 k}\left(P_{a} \bigcup \overrightarrow{P_{n-a}^{b}}\right)< & b_{2 k}\left(P_{a} \bigcup \overrightarrow{P_{n-a}^{4}}+\right. \\
= & m\left(P_{a} \bigcup P_{n-a}^{4}, k\right)+2 m\left(P_{a} \bigcup P_{n-a-4}, k-2\right) \\
< & m\left(P_{a} \bigcup P_{n-a}, k\right)+m\left(P_{a} \bigcup P_{2} \bigcup P_{n-a-4}, k-1\right) \\
& +2 m\left(P_{2} \bigcup P_{n-6}, k-2\right) \\
< & m\left(P_{2} \bigcup P_{n-2}, k\right)+m\left(P_{2} \bigcup P_{2} \bigcup P_{n-6}, k-1\right) \\
& +2 m\left(P_{2} \bigcup P_{n-6}, k-2\right) \\
= & b_{2 k}\left(P_{2} \bigcup \overrightarrow{P_{n-2}^{4}}\right) .
\end{aligned}
$$

By Eq. (2.2), Lemmas 2.1, 2.3 and 2.4, we have

$$
\begin{aligned}
b_{2 k}(\vec{G})= & b_{2 k}(\vec{G}-e)+b_{2 k-2}(\vec{G}-u-v) \\
< & b_{2 k}\left({\overrightarrow{P_{n}^{4}}}^{+}\right)+b_{2 k-2}\left(P_{2} \bigcup \overrightarrow{P_{n-4}^{4}}\right) \quad(\text { by Claim 1) } \\
= & m\left(P_{n}^{4}, k\right)+2 m\left(P_{n-4}, k-2\right)+m\left(P_{2} \bigcup P_{n-4}^{4}, k-1\right) \\
& +2 m\left(P_{2} \bigcup P_{n-8}, k-2\right) \\
\leq & m\left(P_{n}^{4}, k\right)+m\left(P_{2} \bigcup P_{n-4}^{4}, k-1\right)+4 m\left(P_{n-4}, k-2\right) \\
\leq & m\left(P_{n}^{4}, k\right)+m\left(P_{2} \bigcup P_{n-4}^{4}, k-1\right)+4 m\left(P_{n-4}^{4}, k-2\right)+4 m\left(P_{n-8}, k-4\right) \\
= & b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)
\end{aligned}
$$

Case 2. Two cycles are of even lengths.
By Lemma 3.3, we only need to consider $G^{+,+}$.
(1) $t=1$. We can choose an edge $e=u v$ in cycle C_{x}, u is the common vertex of two cycles. By Lemma 2.1, we have

$$
b_{2 k}\left(G^{+,+}\right)=m(G, k)+2 m\left(G-C_{x}, k-\frac{x}{2}\right)+2 m\left(G-C_{y}, k-\frac{y}{2}\right)
$$

$$
\begin{aligned}
\leq & m(G-e, k)+m(G-u-v, k-1)+2 m\left(P_{n-4}, k-2\right) \\
& +2 m\left(G-C_{y}, k-\frac{y}{2}\right) \\
= & b_{2 k}\left(\overrightarrow{G-e}++m(G-u-v, k-1)+2 m\left(P_{n-4}, k-2\right)\right. \\
\leq & b_{2 k}\left(\overrightarrow{G-e}++m\left(P_{2} \bigcup P_{n-4}, k-1\right)+2 m\left(P_{n-4}, k-2\right)\right) \\
< & b_{2 k}\left(\vec{P}_{n}^{4}\right)+m\left(P_{2} \bigcup P_{n-4}, k-1\right)+2 m\left(P_{n-4}, k-2\right) \\
= & m\left(P_{n}^{4}, k\right)+m\left(P_{2} \bigcup P_{n-4}, k-1\right)+4 m\left(P_{n-4}, k-2\right) \\
\leq & m\left(P_{n}^{4}, k\right)+m\left(P_{2} \bigcup P_{n-4}^{4}, k-1\right)+4 m\left(P_{n-4}^{4}, k-2\right)+4 m\left(P_{n-8}, k-4\right) \\
= & b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right) .
\end{aligned}
$$

(ii) $t=0$. Choose an edge $e=u v$ on the path which connects C_{x} and C_{y}. Assume that one of the two components of $G-e$ is of order j. By Eq. (2.2), we get

$$
\begin{aligned}
b_{2 k}\left(G^{+,+}\right)= & b_{2 k}\left(G^{+,+}-e\right)+b_{2 k-2}\left(G^{+,+}-u-v\right) \\
& <b_{2 k}\left({\overrightarrow{P_{j}^{4}}}^{+} \bigcup \overrightarrow{P_{n-j}^{4}}\right)+b_{2 k-2}\left(\overrightarrow{P_{j-1}^{4}} \bigcup \overrightarrow{P_{n-j-1}^{4}}\right) \\
& \left(\text { or }<b_{2 k}\left({\overrightarrow{P_{j}^{4}}}^{+} \bigcup \overrightarrow{P_{n-j}^{4}}\right)+b_{2 k-2}\left(P_{3} \bigcup \overrightarrow{P_{n-5}^{4}}\right)\right) \\
= & b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right) .
\end{aligned}
$$

Lemma 3.5. Let \vec{G} be a bicyclic digraph of order n with $t \geq 2$. Then $\vec{G} \prec$ $\left(P_{n}^{4,4}\right)^{+,+}$for $n \geq 8$.

Proof. We prove statement by dividing three cases.
Case 1. $x=y=z=4$. Then $t=3$. If both C_{x} and C_{y} are oddly oriented, then C_{z} must be evenly oriented. We can choose an edge $e=u v$ such that $G-u-v$ is disconnected. Without loss of generality, we assume that e is on C_{y}.

$$
\begin{aligned}
b_{2 k}\left(G^{+,+,-}\right)= & m(G, k)+2 m\left(G-C_{x}, k-2\right)+2 m\left(G-C_{y}, k-2\right) \\
& -2 m\left(G-C_{z}, k-2\right) \\
\leq & m(G-e, k)+m(G-u-v, k-1)+2 m\left(G-C_{x}, k-2\right) \\
& +2 m\left(G-C_{y}, k-2\right) \\
\leq & b_{2 k}(\vec{G}-e)+m\left(P_{2} \bigcup P_{n-4}, k-1\right)+2 m\left(P_{n-4}, k-2\right) \\
< & b_{2 k}\left(\vec{P}_{n}^{4}\right)+m\left(P_{2} \bigcup P_{n-4}, k-1\right)+2 m\left(P_{n-4}, k-2\right) \\
= & m\left(P_{n}^{4}, k\right)+m\left(P_{2} \bigcup P_{n-4}, k-1\right)+4 m\left(P_{n-4}, k-2\right) \\
\leq & m\left(P_{n}^{4}, k\right)+m\left(P_{2} \bigcup P_{n-4}^{4}, k-1\right)+4 m\left(P_{n-4}^{4}, k-2\right)
\end{aligned}
$$

$$
\begin{aligned}
& +4 m\left(P_{n-8}, k-4\right) \\
= & b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right) .
\end{aligned}
$$

If either C_{x} or C_{y} is oddly oriented, then C_{z} must be oddly oriented. Similarly, we can prove that $b_{2 k}\left(G^{+,-,+}\right)<b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)$or $b_{2 k}\left(G^{-,+,+}\right)<b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)$.

If both C_{x} and C_{y} are evenly oriented, then C_{z} is also evenly oriented.

$$
\begin{aligned}
b_{2 k}\left(G^{-,-,-}\right)= & m(G, k)-2 m\left(G-C_{x}, k-2\right)-2 m\left(G-C_{y}, k-2\right) \\
& -2 m\left(G-C_{z}, k-2\right) \\
\leq & m(G, k)+2 m\left(G-C_{x}, k-2\right)+2 m\left(G-C_{y}, k-2\right) \\
& -2 m\left(G-C_{z}, k-2\right) \\
= & b_{2 k}\left(G^{+,-,+}\right)<b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right) .
\end{aligned}
$$

Case 2. $x=y=4, z \neq 4$. Then $t=2$ and $z=6$. If both C_{x} and C_{y} are oddly oriented, then C_{z} is oddly oriented. Since $n \geq 8$, we can choose an edge $e=u v$ such that $G-u-v$ is disconnected and u is one of the common vertices between C_{x} and C_{y}. Without loss of generality, we suppose that e is on C_{y}. Then both $G-C_{y}$ and $G-C_{z}$ are also disconnected. Note that $G-C_{x}=G-e-C_{x}$, by Lemma 2.1] we get

$$
\begin{aligned}
b_{2 k}\left(G^{+,+,+}\right)= & m(G, k)+2 m\left(G-C_{x}, k-2\right)+2 m\left(G-C_{y}, k-2\right) \\
& +2 m\left(G-C_{z}, k-3\right) \\
\leq & m(G-e, k)+m(G-u-v, k-1)+2 m\left(G-e-C_{x}, k-2\right) \\
& +2 m\left(P_{2} \bigcup P_{n-6}, k-2\right)+2 m\left(P_{2} \bigcup P_{n-8}, k-3\right) \\
\leq & b_{2 k}(\overrightarrow{G-e})+m\left(P_{2} \bigcup P_{n-4}, k-1\right) \\
& +2 m\left(P_{2} \bigcup P_{n-6}, k-2\right)+2 m\left(P_{2} \bigcup P_{n-8}, k-3\right) \\
< & b_{2 k}\left({\overrightarrow{P_{n}^{4}}}^{+}\right)+m\left(P_{2} \bigcup P_{n-4}, k-1\right) \\
& +2 m\left(P_{2} \bigcup P_{n-6}, k-2\right)+2 m\left(P_{2} \bigcup P_{n-8}, k-3\right) \\
= & m\left(P_{n}^{4}, k\right)+m\left(P_{2} \bigcup P_{n-4}, k-1\right)+2 m\left(P_{n-4}, k-2\right) \\
& +2 m\left(P_{2} \bigcup P_{n-6}, k-2\right)+2 m\left(P_{2} \bigcup P_{n-8}, k-3\right) \\
\leq & m\left(P_{n}^{4}, k\right)+m\left(P_{2} \bigcup P_{n-4}^{4}, k-1\right)+4 m\left(P_{n-4}^{4}, k-2\right) \\
& +4 m\left(P_{n-8}, k-4\right) \\
= & b_{2 k}\left(\left(P_{n}^{4,4}\right)+,+\right) .
\end{aligned}
$$

If either C_{x} or C_{y} is oddly oriented, then C_{z} is evenly oriented. By Lemma
2.1, $b_{2 k}\left(G^{+,-,-}\right) \leq b_{2 k}\left(G^{+,+,+}\right)<b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)$, or $b_{2 k}\left(G^{-,+,-}\right) \leq b_{2 k}\left(G^{+,+,+}\right)<$ $b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)$.

If both C_{x} and C_{y} are evenly oriented, then C_{z} is oddly oriented and

$$
b_{2 k}\left(G^{-,-,+}\right) \leq b_{2 k}\left(G^{+,+,+}\right)<b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right) .
$$

Case 3. There aren't two cycles with length 4. Since there is at least one cycle of even length in \vec{G}, without loss of generality, we assume that C_{x} is a cycle of minimal even length.

Subcase 3.1. t is even.

Subcase 3.1.1. y is even and both C_{x} and C_{y} are oddly oriented. Then $y, z>x \geq 4$ and C_{z} is oddly oriented. Let $e=u v$ be an edge on C_{y} and u is the common vertex of C_{x} and C_{y}.

Claim 2. $m\left(P_{n-2}, k-1\right) \geq m\left(P_{n-4}, k-2\right) \geq \cdots \geq m\left(P_{n-2 \ell}, k-\ell\right)$.
Proof. By Lemma 2.3, we get

$$
\begin{aligned}
m\left(P_{n-2}, k-1\right) & =m\left(P_{n-3}, k-1\right)+m\left(P_{n-4}, k-2\right) \\
& =m\left(P_{n-3}, k-1\right)+m\left(P_{n-5}, k-2\right)+m\left(P_{n-6}, k-3\right) \\
& =\sum_{i=1}^{\ell-1} m\left(P_{n-(2 i+1)}, k-i\right)+m\left(P_{n-2 \ell}, k-\ell\right) .
\end{aligned}
$$

Claim 2 follows immediately.
By Lemma 2.1 and Claim 2, we get

$$
\begin{aligned}
b_{2 k}\left(G^{+,+,+}\right)= & m(G, k)+2 m\left(G-C_{x}, k-2\right)+2 m\left(G-C_{y}, k-\frac{y}{2}\right) \\
& +2 m\left(G-C_{z}, k-\frac{z}{2}\right) \\
\leq & m(G-e, k)+m(G-u-v, k-1)+2 m\left(G-e-C_{x}, k-2\right) \\
& +4 m\left(P_{n-6}, k-3\right) \\
\leq & b_{2 k}\left(\overrightarrow{G-e}+{ }^{+}\right)+m\left(P_{n-2}, k-1\right)+4 m\left(P_{n-6}, k-3\right) \\
< & b_{2 k}\left(\vec{P}_{n}^{+}\right)+m\left(P_{n-2}, k-1\right)+4 m\left(P_{n-8} \bigcup P_{2}, k-3\right) \\
& +4 m\left(P_{n-9}, k-4\right) \\
= & m\left(P_{n}^{4}, k\right)+2 m\left(P_{n-4}, k-2\right)+m\left(P_{2} \bigcup P_{n-4}, k-1\right)+m\left(P_{n-5}, k-2\right) \\
& +4 m\left(P_{n-8} \bigcup P_{2}, k-3\right)+4 m\left(P_{n-9}, k-4\right) \\
\leq & m\left(P_{n}^{4}, k\right)+m\left(P_{2} \bigcup P_{n-4}^{4}, k-1\right)+4 m\left(P_{n-4}, k-2\right)
\end{aligned}
$$

$$
\begin{aligned}
& +4 m\left(P_{n-8} \bigcup P_{2}, k-3\right)+4 m\left(P_{n-8}, k-4\right) \\
= & b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)
\end{aligned}
$$

If either C_{x} or C_{y} is oddly oriented, then C_{z} is evenly oriented. By Lemma 2.1. $b_{2 k}\left(G^{+,-,-}\right) \leq b_{2 k}\left(G^{+,+,+}\right)<b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)$, or $b_{2 k}\left(G^{-,+,-}\right) \leq b_{2 k}\left(G^{+,+,+}\right)<$ $b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)$.

If both C_{x} and C_{y} are evenly oriented, then C_{z} is oddly oriented and

$$
b_{2 k}\left(G^{-,-,+}\right) \leq b_{2 k}\left(G^{+,+,+}\right)<b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)
$$

Subcase 3.1.2. y is odd. Then z is also odd. We can choose an edge $e=u v$ on C_{y} such that u is the common vertex and v is not the common vertex. By Lemma 2.1, we get

$$
\begin{aligned}
b_{2 k}\left(G^{-, *, *}\right) \leq & b_{2 k}\left(G^{+, *, *}\right)=b_{2 k}\left(\overrightarrow{G-e}+b_{2 k-2}(\vec{G}-u-v)\right. \\
< & b_{2 k}\left(\vec{P}_{n}^{4}\right)+b_{2 k-2}\left(\vec{P}_{n-2}\right) \\
= & m\left(P_{n}^{4}, k\right)+2 m\left(P_{n-4}, k-2\right)+m\left(P_{n-2}, k-1\right) \\
< & m\left(P_{n}^{4}, k\right)+m\left(P_{2} \bigcup P_{n-4}, k-1\right)+m\left(P_{n-5}, k-2\right)+2 m\left(P_{n-4}, k-2\right) \\
\leq & m\left(P_{n}^{4}, k\right)+m\left(P_{2} \bigcup P_{n-4}^{4}, k-1\right)+4 m\left(P_{n-4}^{4}, k-2\right) \\
& +4 m\left(P_{n-8}, k-4\right) \\
= & b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right) .
\end{aligned}
$$

Subcase 3.2. t is odd.

Subcase 3.2.1. y is even. Then $y>4$. If both C_{x} and C_{y} are oddly oriented, then z is even and C_{z} is evenly oriented. Let $e=u v$ be an edge on C_{y} and u is the common vertex between C_{x} and C_{y}. Then

$$
\begin{aligned}
b_{2 k}\left(G^{+,+,-}\right)= & m(G, k)+2 m\left(G-C_{x}, k-2\right)+2 m\left(G-C_{y}, k-\frac{y}{2}\right) \\
& -2 m\left(G-C_{z}, k-\frac{z}{2}\right) \\
\leq & m(G-e, k)+m(G-u-v, k-1)+2 m\left(G-C_{x}, k-2\right) \\
& +2 m\left(P_{n-6}, k-3\right) \\
\leq & b_{2 k}\left(\overrightarrow{G-e}+\vec{G}^{+}\right)+m\left(P_{n-2}, k-1\right)+2 m\left(P_{n-6}, k-3\right) \\
< & b_{2 k}\left(\vec{P}_{n}^{+}\right)+m\left(P_{n-2}, k-1\right)+2 m\left(P_{n-6}, k-3\right) \\
= & m\left(P_{n}^{4}, k\right)+2 m\left(P_{n-4}, k-2\right)+m\left(P_{2} \bigcup P_{n-4}, k-1\right)+m\left(P_{n-5}, k-2\right) \\
& +2 m\left(P_{n-6}, k-3\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & m\left(P_{n}^{4}, k\right)+m\left(P_{2} \bigcup P_{n-4}^{4}, k-1\right)+4 m\left(P_{n-4}^{4}, k-2\right) \\
& +4 m\left(P_{n-8}, k-4\right) \\
= & b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)
\end{aligned}
$$

If either C_{x} or C_{y} is oddly oriented, then C_{z} is oddly oriented. Similar to the above proof, $b_{2 k}\left(G^{+,-,+}\right)<b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)$or $b_{2 k}\left(G^{-,+,+}\right)<b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)$.

If both C_{x} and C_{y} are evenly oriented, then C_{z} is evenly oriented, so

$$
b_{2 k}\left(G^{-,-,-}\right) \leq b_{2 k}\left(G^{+,+,-}\right)<b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)
$$

Subcase 3.2.2. y is odd. Then z is odd too. Similar to the proof of subcase 3.1.2, we obtain $b_{2 k}\left(G^{-, *, *}\right) \leq b_{2 k}\left(G^{+, *, *}\right)<b_{2 k}\left(\left(P_{n}^{4,4}\right)^{+,+}\right)$.

Combining all those cases above, we complete the proof.
By identifying two vertices of two cycles with length 4, we get a graph $G_{7}^{4,4}$. For $n=6,7$, similar to the proofs of Lemmas 3.4, 3.5, we obtain that the following graphs have the maximal skew energy.

FIG. 3.1. The maximal skew energy graph $\left(P_{6}^{4,4}\right)^{+,+,+}$for $n=6$ and $\left(G_{7}^{4,4}\right)^{+,+}$for $n=7$.

By Lemmas 3.4 and 3.5, we obtain the following statement.
Theorem 3.6. Among all bicyclic digraphs with order $n \geq 8,\left(P_{n}^{4,4}\right)^{+,+}$has the maximal skew energy; $\left(G_{7}^{4,4}\right)^{+,+}$has the the maximal skew energy for $n=7$; $\left(P_{6}^{4,4}\right)^{+,+,+}$has the the maximal skew energy for $n=6$.

Acknowledgment. The authors would like to thank the referees for some very useful comments and valuable suggestions, which make a number of improvements on this paper.

REFERENCES

[1] C. Adiga, R. Balakrishnan, and W. So. The skew energy of a digraph. Linear Algebra Appl., 432:1825-1835, 2010.
[2] D. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs. Academic Press, New York, 1979.
[3] M. Dehmer and F. Emmert-Streib. Analysis of Complex Networks: From Biology to Linguistics. WILEY-VCH Verlag GmbH \& Co. hGaA, Weinheim, 2009.
[4] B. Furtula, S. Radenković, and I. Gutman. Bicyclic molecular graphs with greatest energy. J. Serb. Chem. Soc., 73:431-433, 2008.
[5] I. Gutman. The energy of a graph. Ber. Math.-Statist. Sekt. Forsch. Graz, 103:1-22, 1978.
[6] I. Gutman and O. Polanski. Mathematical Concepts in Organic Chemistry. Springer-Verlag, Berlin, 1986.
[7] Y. Hou. Bicyclic graphs with minimum energy. Linear Multilinear Algebra, 49:347-354, 2001.
[8] Y. Hou and T. Lei. Characteristic polynomials of skew-adjacency matrices of oriented graphs. Electron. J. Combin., 18(1):R156, 2011.
[9] Y. Hou, X. Shen, and C. Zhang. Oriented unicyclic graphs with extremal skew energy. Available at http://arxiv.org/abs/1108.6229.
[10] X. Li and J. Zhang. On bicyclic graphs with maximal energy. Linear Algebra Appl., 427:87-98, 2007.
[11] Z. Liu and B. Zhou. Minimal energies of bipartite bicyclic graphs. MATCH Commun. Math. Comput. Chem., 59:381-396, 2008.
[12] V. Nikiforov. The energy of graphs and matrices, J. Math. Anal. Appl., 326:1472-1475, 2007.
[13] Y. Yang and B. Zhou. Minimal energy of bicyclic graphs of a given diameter. MATCH Commun. Math. Comput. Chem., 59:321-342, 2008.
[14] J. Zhang and B. Zhou. On bicyclic graphs with minimal energies. J. Math. Chem., 37:423-431, 2005.

[^0]: *Received by the editors on June 14, 2011. Accepted for publication on December 18, 2011. Handling Editor: Xingzhi Zhan. This project is supported by NSF of China.
 ${ }^{\dagger}$ Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, China (xlshen20032003@yahoo.com.cn, yphou@hunnu.edu.cn).

