

BICYCLIC DIGRAPHS WITH EXTREMAL SKEW ENERGY*

XIAOLING SHEN^{\dagger}, YAOPING HOU^{\dagger}, AND CHONGYAN ZHANG^{\dagger}

Abstract. Let \vec{G} be a digraph and $S(\vec{G})$ be the skew-adjacency matrix of \vec{G} . The skew energy of \vec{G} is the sum of the absolute values of eigenvalues of $S(\vec{G})$. In this paper, the bicyclic digraphs with minimal and maximal skew energy are determined.

Key words. Bicyclic digraph, Skew-adjacency matrix, Extremal skew energy.

AMS subject classifications. 05C05, 05C50, 15A03.

1. Introduction. Let G be a simple undirected graph of order n with vertex set $V(G) = \{1, \ldots, n\}$ and \overrightarrow{G} be an orientation of G. The skew-adjacency matrix of \overrightarrow{G} is the $n \times n$ matrix $S(\overrightarrow{G}) = [s_{i,j}], s_{i,j} = 1$ and $s_{j,i} = -1$ if $i \to j$ is an arc of \overrightarrow{G} , and $s_{i,j} = s_{j,i} = 0$ otherwise. Since $S(\overrightarrow{G})$ is a real skew symmetric matrix, all eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$ of $S(\overrightarrow{G})$ are pure imaginary numbers, the singular values of $S(\overrightarrow{G})$ are just the absolute values $\{|\lambda_1|, \ldots, |\lambda_n|\}$. So the energy of $S(\overrightarrow{G})$ defined as the sum of singular values of $S(\overrightarrow{G})$ [12] is the sum of the absolute values of its eigenvalues. For convenience, the energy of $S(\overrightarrow{G})$ is called *skew energy* of G ([1]), and denoted by $\mathcal{E}_s(\overrightarrow{G})$.

Energy has close links to chemistry (see, for instance, [6]). Since the concept of the energy of simple undirected graphs was introduced by Gutman in [5], there has been lots of research papers on this topic. For a survey, we refer to Section 7 in [3] and references therein. Denote, as usual, the *n*-vertex path and cycle by P_n and C_n , respectively. For the extremal energy of bicyclic graphs, let G(n) be the class of bicyclic graphs with *n* vertices and containing no disjoint odd cycles of lengths *k* and ℓ with $k + \ell = 2 \pmod{4}$. Let S_n^{ℓ} be the graph obtained by connecting $n - \ell$ pendant vertices to a vertex of C_{ℓ} , $S_n^{3,3}$ be the graph formed by joining n - 4 pendant vertices to a vertex of degree three of the $K_4 - e$ (see Fig. 1.1), and $S_n^{4,4}$ be the graph formed by joining n - 5 pendant vertices to a vertex of degree three of the complete bipartite graph $K_{2,3}$. Let \mathcal{B}_n be the class of all bipartite bicyclic graphs of order nthat are not the graph obtained from two cycles C_a and C_b $(a, b \ge 10$ and a = b = 2(mod 4)) joined by an edge. Zhang and Zhou [14] showed that $S_n^{3,3}$ is the graph with

^{*}Received by the editors on June 14, 2011. Accepted for publication on December 18, 2011. Handling Editor: Xingzhi Zhan. This project is supported by NSF of China.

[†]Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, China (xlshen20032003@yahoo.com.cn, yphou@hunnu.edu.cn).

ELA

minimal energy in G(n). In [10], Li et al. showed that $P_n^{6,6}$ is the graph with maximal energy in \mathcal{B}_n . Additional results on the energy of bicyclic graphs can be found in [4, 7, 11, 13]. The skew energy was first introduced by C. Adiga et al. in [1]. Some properties of the skew energy of a digraph are given in [1]. A connected graph with n vertices and n + 1 edges is called a bicyclic graph. In this paper, we are interested in studying the bicyclic graphs with extremal skew energy.

FIG. 1.1. Graphs $S_n^{3,3}$, $P_n^{4,4}$ and their orientations.

The rest of this paper is organized as follows. In Section 2, the bicyclic digraphs of each order n with minimal skew energy are determined. In Section 3, the bicyclic digraphs of each order n with maximal skew energy are determined.

2. Bicyclic graphs with minimal skew energy. Let G be a graph. A linear subgraph L of G is a disjoint union of some edges and some cycles in G ([2]). A k-matching M in G is a disjoint union of k-edges. If 2k is the order of G, then a k-matching of G is called a *perfect matching* of G. The number of k-matchings of graph G is denoted by m(G, k). If C is an even cycle of G, then we say C is *evenly oriented* relative to an orientation \vec{G} of G if it has an even number of edges oriented in the direction of the routing. Otherwise C is oddly oriented. We call a linear subgraph L of G evenly linear if L contains no cycle with odd length and denote by $\mathcal{EL}_i(G)$ (or \mathcal{EL}_i for short) the set of all evenly linear subgraphs of G with i vertices. For a linear subgraph $L \in \mathcal{EL}_i$, denote by $p_e(L)$ (resp., $p_o(L)$) the number of evenly (resp., oddly) oriented cycles in L relative to \vec{G} . Denote the characteristic polynomial of $S(\vec{G})$ by

$$P_S(\overrightarrow{G};x) = \det(xI - S(\overrightarrow{G})) = \sum_{i=0}^n b_i x^{n-i}.$$

Then $b_0 = 1$, b_2 is the number of edges of G, all $b_i \ge 0$ and $b_i = 0$ for all odd i.

342 X. Shen, Y. Hou, and C. Zhang

We have the following results.

LEMMA 2.1. ([8]) Let \overrightarrow{G} be an orientation of a graph G. Then $b_i(\overrightarrow{G}) = \sum_{L \in \mathcal{EL}_i} (-2)^{p_e(L)} 2^{p_o(L)}.$

LEMMA 2.2. ([8]) Let e = uv be an edge of G that is on no even cycle of G. Then

(2.1)
$$P_S(\vec{G};x) = P_S(\vec{G}-e;x) + P_S(\vec{G}-u-v;x).$$

By equating the coefficients of polynomials in Eq. (2.1), we have

(2.2)
$$b_{2k}(\vec{G}) = b_{2k}(\vec{G}-e) + b_{2k-2}(\vec{G}-u-v).$$

Furthermore, if e = uv is a pendant edge with pendant vertex v, then

(2.3)
$$b_{2k}(\overrightarrow{G}) = b_{2k}(\overrightarrow{G} - v) + b_{2k-2}(\overrightarrow{G} - u - v).$$

For any orientation of a graph that does not contain any even cycle (in particular, a tree or a unicyclic non-bipartite graph), $b_{2k}(\vec{G}) = m(\vec{G}, k)$ by Lemma 2.1.

In [9], the skew energy of \overrightarrow{G} is expressed as the following integral formula:

$$\mathcal{E}_S(\overrightarrow{G}) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{t^2} \ln(1 + \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} b_{2k} t^{2k}) dt.$$

Thus $\mathcal{E}_s(\overrightarrow{G})$ is an increasing function of $b_{2k}(\overrightarrow{G})$, $k = 0, 1, \ldots, \lfloor \frac{n}{2} \rfloor$. Consequently, if $\overrightarrow{G_1}$ and $\overrightarrow{G_2}$ are oriented graphs of G_1 and G_2 , respectively, for which

$$(2.4) b_{2k}(\overrightarrow{G_1}) \ge b_{2k}(\overrightarrow{G_2})$$

for all $\lfloor \frac{n}{2} \rfloor \ge k \ge 0$, then

(2.5)
$$\mathcal{E}_s(\overrightarrow{G_1}) \ge \mathcal{E}_s(\overrightarrow{G_2})$$

Equality in (2.5) is attained only if (2.4) is an equality for all $\lfloor \frac{n}{2} \rfloor \geq k \geq 0$. If the inequalities (2.4) hold for all k, then we write $G_1 \succeq G_2$ or $G_2 \preceq G_1$. If $G_1 \succeq G_2$, but not $G_2 \succeq G_1$, then we write $G_1 \succ G_2$.

Let \overrightarrow{G} be an orientation of a graph G. Let W be a subset of V(G) and $\overline{W} = V(G) \setminus W$. The orientation $\overrightarrow{G'}$ of G obtained from \overrightarrow{G} by reversing the orientations

ELA

of all arcs between \overline{W} and W is said to be obtained from \overrightarrow{G} by a switching with respect to W. Moreover, two orientations \overrightarrow{G} and $\overrightarrow{G'}$ of a graph G are said to be switching-equivalent if $\overrightarrow{G'}$ can be obtained from \overrightarrow{G} by a sequence of switchings. As noted in [1], since the skew adjacency matrices obtained by a switching are similar, their spectra and hence skew energies are equal.

It is easy to verify that up to switching equivalence there are just two orientations of a cycle C: (1) Just one edge on the cycle has the opposite orientation to that of others, we call it orientation +. (2) All edges on the cycle C have the same orientation, we denote this orientation by -. So if a cycle is of even length and oddly oriented, then it is equivalent to the orientation +; if a cycle is of even length and evenly oriented, then it is equivalent to the orientation -. The skew energy of a directed tree is the same as the energy of its underlying tree ([1]). So by switching equivalence, for a unicyclic digraph or bicyclic digraph, we only need to consider the orientations of cycles.

Let C_x , C_y be two cycles in bicyclic graph G with t ($t \ge 0$) common vertices. If $t \le 1$, then G contains exactly two cycles. If $t \ge 2$, then G contains exactly three cycles. The third cycle is denoted by G_z , where z = x + y - 2t + 2. Without loss of generality, assume that $x \le y \le z$.

For convenience, we denote by G^+ (resp., G^-) the unicyclic graph on which the orientation of a cycle is of orientation + (resp., -), and denote by G^* the unicyclic graph on which the orientation of a cycle is of arbitrary orientation *. If $t \leq 1$, we denote by $G^{a,b}$ the bicyclic graph on which cycle C_x is of orientation a and cycle C_y is of orientation b, where $a, b \in \{+, -, *\}$. If $t \geq 2$, we denote by $G^{a,b,c}$ the bicyclic graph on which C_x is of orientation a, C_y is of orientation b, C_z is of orientation c, where $a, b, c \in \{+, -, *\}$. See examples in Fig. 2.2.

For the k-matching number of a graph G, we have the following.

LEMMA 2.3. Let e = uv be an edge of G. Then

- (i) m(G,k) = m(G-e,k) + m(G-u-v,k-1).
- (ii) If G is a forest, then $m(G,k) \leq m(P_n,k), k \geq 1$.
- (iii) If H is a subgraph of G, then $m(H,k) \leq m(G,k)$, $k \geq 1$. Moreover, if H is a proper subgraph of G, then the inequality is strict.

We define m(G,0) = 1 and m(G,k) = 0 for $k > \frac{n}{2}$.

In [9], the authors discussed the unicyclic digraph with extremal skew energy and established the following.

LEMMA 2.4. ([9]) (1) Among all unicyclic digraphs on n vertices, $\overrightarrow{S_n^3}$ has the

FIG. 2.1. Examples for orientation representations of bicyclic digraphs.

minimal skew energy and $\overrightarrow{S_n^4}^-$ has the second minimal skew energy for $n \ge 6$; both $\overrightarrow{S_5^3}$ and $\overrightarrow{S_5^4}^-$ have the minimal skew energy, $\overrightarrow{S_5^4}^+$ has the second minimal skew energy for n = 5; $\overrightarrow{C^4}^-$ has the minimal skew energy, $\overrightarrow{S_4^3}$ has the second minimal skew energy for n = 4.

(2) Among all orientations of unicyclic graphs, $\overrightarrow{P_n^4}^+$ is the unique directed graph with maximal skew energy.

For bicyclic digraphs, we have the following.

LEMMA 2.5. Let \overrightarrow{G} be a bicyclic digraph of order $n \geq 8$, $G \neq S_n^{3,3}$. Then $\overrightarrow{G} \succ (S_n^{3,3})^{*,*,-}$.

Proof. We prove the statement by induction on n. By Lemma 2.1, the characteristic polynomials of $S((S_n^{3,3})^{*,*,-})$, $S(\overrightarrow{S_n^3})$ and $S(\overrightarrow{S_n^4})$ are:

$$P_S((S_n^{3,3})^{*,*,-}) = x^{n-4}(x^4 + (n+1)x^2 + 2(n-4))$$

$$P_S(S_n^3) = x^{n-4}(x^4 + nx^2 + (n-3)),$$

$$P_S(\overrightarrow{S_n^4}) = x^{n-4}(x^4 + nx^2 + 2(n-4)).$$

It suffices to prove that $b_4(\overrightarrow{G}) > 2(n-4)$ for $\overrightarrow{G} \neq (S_n^{3,3})^{*,*,-}$.

Let n = 8.

Case 1.1. $t \leq 1$.

Subcase 1.1.1. x = y = 4. Then we can choose an edge e = uv on some C_4 such that G - u - v is connected. By Lemma 2.1, we have

$$b_4(G^{*,*}) \ge m(G,2) - 4$$

= $m(G-e,2) + m(G-u-v,1) - 4$
 $\ge m(G-e,2) + 6 - 4$
> $m(P_6,2) + 2$ (P_6 is a proper subgraph of $G-e$)
= $8 = b_4((S_8^{3,3})^{*,*,-}).$

Subcase 1.1.2. Either x or y is 4. Without loss of generality, suppose that x = 4. Chose an edge e = uv on C_y such that G - u - v has at least 4 edges. By Lemma 2.1,

$$b_4(G^{*,*}) \ge m(G,2) - 2$$

= $m(G - e, 2) + m(G - u - v, 1) - 2$
 $\ge m(G - e, 2) + 4 - 2$
 $> m(S_6^4, 2) + 2$ (S_6^4 is a proper subgraph of $G - e$)
 $> 8 = b_4((S_8^{3,3})^{*,*,-}).$

Subcase 1.1.3. Neither x nor y is 4. Then x = y = 3 or x = 3, y = 5. We can chose an edge e = uv on any cycle such that G - u - v contains at least 3 edges. By Lemma 2.1, we get

$$\begin{split} b_4(G^{*,*}) &= m(G,2) \\ &= m(G-e,2) + m(G-u-v,1) \\ &\geq m(G-e,2) + 3 \\ &= b_4(G-e) + 3 \quad (G-e \text{ is a unicyclic graph without cycle of length 4}) \\ &> b_4(\overrightarrow{S_8^3}) + 3 \quad (by \text{ Lemma } 2.4) \\ &= 8 = b_4((S_8^{3,3})^{*,*,-}). \end{split}$$

Case 1.2. $t \geq 2$.

Subcase 1.2.1. Each cycle is of length 4. Then t = 3 and there are 3 vertices outside of those cycles, say v_1 , v_2 , v_3 . Let v_1 be a pendant vertex of G and u_1 be the adjacent vertex of v_1 , v_2 be a pendant vertex of $G - v_1$ and u_2 be the adjacent vertex of v_2 , v_3 be a pendant vertex of $G - v_1 - v_2$ and u_3 be the adjacent vertex of v_3 . By Eq. (2.3), we have

$$b_4(G^{*,*}) = b_4(G^{*,*} - v_1) + b_2(G^{*,*} - u_1 - v_1)$$

X. Shen, Y. Hou, and C. Zhang

$$\geq b_4(G^{*,*} - v_1) + 3$$

$$\geq b_4(G^{*,*} - v_1 - v_2) + 6$$

$$\geq b_4(G^{*,*} - v_1 - v_2 - v_3) + 9$$

$$> 8 = b_4((S_8^{3,3})^{*,*,-}).$$

Subcase 1.2.2. There are two cycles of length 4 in G, say, C_x , C_y , then t = 2 and z = x + y - 2t + 2 = 6. There are two vertices outside of G. Similar to the proof of subcase 1.2.1, we can obtain $b_4(G^{*,*}) > b_4((S_8^{3,3})^{*,*,-})$.

Subcase 1.2.3. There is just one cycle of length 4 in G, say, C_x . If $C_y = C_3$, then t = 2 and there are 3 vertices outside of G. Similar to the proof of subcase 1.2.1, we get $b_4(G^{*,*}) > b_4((S_8^{3,3})^{*,*,-})$. If $y \ge 5$, we can chose an edge e = uv on C_y such that $m(G - u - v, 1) \ge 6$. Then similar to the proof of subcase 1.1.2, we get that $b_4(G^{*,*}) > b_4((S_8^{3,3})^{*,*,-})$.

Subcase 1.2.4. G contains no cycle of length 4. Similar to the proof of subcase 1.1.3, the result holds for n = 8.

Suppose n > 8 and $\overrightarrow{G}' \succ (S_{n'}^{3,3})^{*,*,-}$ for any bicyclic digraph G' of order n', n' < n. Denote by p the number of pendant vertices in G.

If p = 0, then \overrightarrow{G} has no pendant vertex. Three cases are considered in the following.

Case 2.1. t = 1. Let e = uv be an edge on C_x and u is the common vertex of C_x and C_y . By Lemmas 2.1 and 2.3, and $m(P_n, 2) = \frac{(n-2)(n-3)}{2}$, we have

$$b_4(G^{*,*}) \ge m(G,2) - 4$$

= $m(G - e, 2) + m(G - u - v, 1) - 4$
= $m(P_n^y, 2) + m(P_{x-2} \bigcup P_{n-x}, 1) - 4$
= $m(P_n, 2) + m(P_{y-2} \bigcup P_{n-y}, 1) + n - 8$
= $\frac{(n-2)(n-3)}{2} + n - 4 + n - 8 > 2(n-4)$

since $\frac{(n-2)(n-3)}{2} - 4 = \frac{(n-6)(n+1)+4}{2} > 0$ for n > 7.

Case 2.2. $t \ge 2$. Suppose e = uv is an edge on C_x and u is the common vertex of C_x and C_y . By Lemmas 2.1 and 2.3

$$b_4(G^{*,*}) \ge m(G,2) - 6$$

= $m(G - e, 2) + m(G - u - v, 1) - 6$
= $m(P_n^y, 2) + n - 3 - 6$

Bicyclic Digraphs With Extremal Skew Energy

$$= m(P_n, 2) + m(P_{y-2} \bigcup P_{n-y}, 1) + n - 9$$

= $\frac{(n-2)(n-3)}{2} + n - 4 + n - 9 > 2(n-4)$

since $\frac{(n-2)(n-3)}{2} - 5 = \frac{(n-6)(n+1)+2}{2} > 0$ for n > 7.

Case 2.3. t = 0. Suppose that C_x and C_y are joined by a path of length $a, n-8 \ge a \ge 0$. Let e = uv be an edge on C_x , where u is the vertex of degree 3. Similar to the proof of case 2.1, we obtain $b_4(G^{*,*}) > 2(n-4)$. Therefore, $b_4(G^{*,*}) \ge b_4((S_n^{3,3})^{*,*,-})$ for p = 0.

Let $p \ge 1$ and v be a pendant vertex of G with corresponding unique edge uv. Since $G^{*,*} - u - v$ has at least 3 edges, by Eq. (2.2) and the induction hypothesis,

$$\begin{split} b_4(G^{*,*}) &= b_4(G^{*,*}-v) + b_2(G^{*,*}-u-v) \\ &> b_4((S^{3,3}_{n-1})^{-,*,*}) + 3 \\ &= 2(n-1-4) + 3 > 2(n-4) = b_4((S^{3,3}_n)^{*,*,-}). \quad \Box \end{split}$$

For n = 7, similar to the proof of Lemma 2.5 for n = 8, both $(S_7^{4,4})^{-,-,-}$ and $(S_n^{3,3})^{*,*,-}$ have the minimal skew energy. Since

$$P_S((S_n^{4,4})^{-,-,-}) = x^{n-4}(x^4 + (n+1)x^2 + 3(n-5)),$$

 $b_4((S_6^{4,4})^{-,-,-}) = 3$ and $b_4((S_5^{4,4})^{-,-,-}) = 0$. In a similar way to the proof of Lemma 2.5 for n = 8, we can get that $(S_6^{4,4})^{-,-,-}$ has the minimal skew energy for n = 6 and $(S_5^{4,4})^{-,-,-}$ has the minimal skew energy for n = 5.

By Lemma 2.5 and the above statements, we obtain the following.

THEOREM 2.6. Among all bicyclic digraphs of order n, $(S_n^{3,3})^{*,*,-}$ has the minimal skew energy for $n \ge 8$; both $(S_7^{3,3})^{*,*,-}$ and $(S_7^{4,4})^{-,-,-}$ have the minimal skew energy for n = 7; $(S_n^{4,4})^{-,-,-}$ has the minimal skew energy for n = 5, 6.

3. Bicyclic digraphs with maximal skew energy. For the path, by Lemmas 2.1 and 2.3, we can easily get the following statements.

LEMMA 3.1. Let \overrightarrow{F}_n be a forest of order n. Then $\overrightarrow{F}_n \preceq \overrightarrow{P}_n$. Equality holds if and only if $F_n = P_n$.

Since the skew energy of a directed forest is the same as the energy of its underlying forest, by [6], we have the following.

X. Shen, Y. Hou, and C. Zhang

Lemma 3.2.

$$\overrightarrow{P}_{n} \succ \overrightarrow{P}_{2} \bigcup \overrightarrow{P}_{n-2} \succ \overrightarrow{P}_{4} \bigcup \overrightarrow{P}_{n-4} \succ \cdots \succ \overrightarrow{P}_{2k} \bigcup \overrightarrow{P}_{n-2k} \succ \overrightarrow{P}_{2k+1} \bigcup \overrightarrow{P}_{n-2k-1} \\ \succ \overrightarrow{P}_{2k-1} \bigcup \overrightarrow{P}_{n-2k+1} \succ \cdots \succ \overrightarrow{P}_{3} \bigcup \overrightarrow{P}_{n-3} \succ \overrightarrow{P}_{1} \bigcup \overrightarrow{P}_{n-1}.$$

LEMMA 3.3. For any bicyclic graph G with $t \leq 1$, $G^{*,*} \preceq G^{+,+}$.

Proof. If two cycles are of odd length, then by Lemma 2.1, for any orientation of G, $b_{2k}(\overrightarrow{G}) = m(G,k)$, for all $0 \le k \le \lfloor \frac{n}{2} \rfloor$. Thus $G^{*,*} = G^{+,+}$. If there is exactly one cycle of even length in G, say, C_x , then

 $b_{2k}(G^{-,*}) = m(G,k) - 2m(G - C_x, k - \frac{x}{2}) \le b_{2k}(G^{+,+}) = m(G,k) + 2m(G - C_x, k - \frac{x}{2}).$

If both x and y are even, then

$$\begin{split} b_{2k}(G^{-,-}) &= m(G,k) - 2m(G-C_x,k-\frac{x}{2}) - 2m(G-C_y,k-\frac{y}{2}) \\ &+ 4m(G-C_x-C_y,k-\frac{x+y}{2}) \leq b_{2k}(G^{\pm,\mp}) = m(G,k) \\ &\pm 2m(G-C_x,k-\frac{x}{2}) \mp 2m(G-C_y,k-\frac{y}{2}) \\ &- 4m(G-C_x-C_y,k-\frac{x+y}{2}) \leq b_{2k}(G^{+,+}) = m(G,k) \\ &+ 2m(G-C_x,k-\frac{x}{2}) + 2m(G-C_y,k-\frac{y}{2}) \\ &+ 4m(G-C_x-C_y,k-\frac{x+y}{2}). \quad \Box \end{split}$$

LEMMA 3.4. Let \overrightarrow{G} be a bicyclic digraph of order n with $t \leq 1$, $\overrightarrow{G} \neq (P_n^{4,4})^{+,+}$. Then $\overrightarrow{G} \prec (P_n^{4,4})^{+,+}$ for $n \geq 8$.

Proof. We divide the proof into two cases.

Case 1. There is at least one cycle of length odd, say, C_x .

(i) t = 1, we can choose an edge e = uv on C_x such that u is the common vertex of two cycles. Obviously, $\overrightarrow{G} - e$ is a unicyclic graph and $\overrightarrow{G} - u - v$ is a forest.

By Eq. (2.2), Lemmas 2.3 and 2.4, we have

$$\begin{split} b_{2k}(\overrightarrow{G}) &= b_{2k}(\overrightarrow{G}-e) + b_{2k-2}(\overrightarrow{G}-u-v) \\ &< b_{2k}(\overrightarrow{P}_n^{4^{+}}) + b_{2k-2}(\overrightarrow{P}_2 \bigcup \overrightarrow{P}_{n-4}) \quad (by \ Lemmas \ 2.4 \ and \ 3.2) \\ &= m(P_n^4,k) + 3m(P_{n-4},k-2) + m(P_{n-4},k-1) \\ &< m(P_n^4,k) + m(P_{n-4}^4,k-1) + 5m(P_{n-4}^4,k-2) + 4m(P_{n-8},k-4) \end{split}$$

$$= b_{2k}((P_n^{4,4})^{+,+}).$$

(ii) t = 0. We can choose an edge e = uv on C_x such that u is a vertex in a path which connects C_x and C_y . Obviously, $\vec{G} - e$ is a unicyclic graph and $\vec{G} - u - v$ is the disjoint union of a forest and a unicyclic graph.

Claim 1.
$$P_a \bigcup \overrightarrow{P_{n-a}^{b++}} \prec P_2 \bigcup \overrightarrow{P_{n-2}^{4++}}, a \neq 2.$$

Proof. By Lemmas 2.4 and 3.2, we have

$$\begin{split} b_{2k}(P_a\bigcup\overline{P_{n-a}^{b}}^{+}) &< b_{2k}(P_a\bigcup\overline{P_{n-a}^{4}}^{+}) \\ &= m(P_a\bigcup P_{n-a}^{4},k) + 2m(P_a\bigcup P_{n-a-4},k-2) \\ &< m(P_a\bigcup P_{n-a},k) + m(P_a\bigcup P_2\bigcup P_{n-a-4},k-1) \\ &+ 2m(P_2\bigcup P_{n-6},k-2) \\ &< m(P_2\bigcup P_{n-2},k) + m(P_2\bigcup P_2\bigcup P_{n-6},k-1) \\ &+ 2m(P_2\bigcup P_{n-6},k-2) \\ &= b_{2k}(P_2\bigcup\overline{P_{n-2}^{4}}^{+}). \quad \Box \end{split}$$

By Eq. (2.2), Lemmas 2.1, 2.3 and 2.4, we have

$$\begin{split} b_{2k}(\overrightarrow{G}) &= b_{2k}(\overrightarrow{G}-e) + b_{2k-2}(\overrightarrow{G}-u-v) \\ &< b_{2k}(\overrightarrow{P_n^4}^+) + b_{2k-2}(P_2 \bigcup \overrightarrow{P_{n-4}^4}^+) \quad (by \ Claim \ 1) \\ &= m(P_n^4,k) + 2m(P_{n-4},k-2) + m(P_2 \bigcup P_{n-4}^4,k-1) \\ &+ 2m(P_2 \bigcup P_{n-8},k-2) \\ &\leq m(P_n^4,k) + m(P_2 \bigcup P_{n-4}^4,k-1) + 4m(P_{n-4},k-2) \\ &\leq m(P_n^4,k) + m(P_2 \bigcup P_{n-4}^4,k-1) + 4m(P_{n-4}^4,k-2) + 4m(P_{n-8},k-4) \\ &= b_{2k}((P_n^{4,4})^{+,+}). \end{split}$$

Case 2. Two cycles are of even lengths.

By Lemma 3.3, we only need to consider $G^{+,+}$.

(1) t = 1. We can choose an edge e = uv in cycle C_x , u is the common vertex of two cycles. By Lemma 2.1, we have

$$b_{2k}(G^{+,+}) = m(G,k) + 2m(G - C_x, k - \frac{x}{2}) + 2m(G - C_y, k - \frac{y}{2})$$

X. Shen, Y. Hou, and C. Zhang

$$\leq m(G-e,k) + m(G-u-v,k-1) + 2m(P_{n-4},k-2) \\ + 2m(G-C_y,k-\frac{y}{2}) \\ = b_{2k}(\overrightarrow{G-e}^+) + m(G-u-v,k-1) + 2m(P_{n-4},k-2) \\ \leq b_{2k}(\overrightarrow{G-e}^+) + m(P_2 \bigcup P_{n-4},k-1) + 2m(P_{n-4},k-2)) \\ < b_{2k}(\overrightarrow{P_n^4}^+) + m(P_2 \bigcup P_{n-4},k-1) + 2m(P_{n-4},k-2) \\ = m(P_n^4,k) + m(P_2 \bigcup P_{n-4},k-1) + 4m(P_{n-4},k-2) \\ \leq m(P_n^4,k) + m(P_2 \bigcup P_{n-4},k-1) + 4m(P_{n-4},k-2) + 4m(P_{n-8},k-4) \\ = b_{2k}((P_n^{4,4})^{+,+}).$$

(ii) t = 0. Choose an edge e = uv on the path which connects C_x and C_y . Assume that one of the two components of G - e is of order j. By Eq. (2.2), we get

$$\begin{split} b_{2k}(G^{+,+}) &= b_{2k}(G^{+,+}-e) + b_{2k-2}(G^{+,+}-u-v) \\ &< b_{2k}(\overrightarrow{P_j^4}^+ \bigcup \overrightarrow{P_{n-j}^4}^+) + b_{2k-2}(\overrightarrow{P_{j-1}^4}^+ \bigcup \overrightarrow{P_{n-j-1}^4}) \\ &(\ or < b_{2k}(\overrightarrow{P_j^4}^+ \bigcup \overrightarrow{P_{n-j}^4}^+) + b_{2k-2}(P_3 \bigcup \overrightarrow{P_{n-5}^4}^+)) \\ &= b_{2k}((P_n^{4,4})^{+,+}). \quad \Box \end{split}$$

LEMMA 3.5. Let \overrightarrow{G} be a bicyclic digraph of order n with $t \geq 2$. Then $\overrightarrow{G} \prec (P_n^{4,4})^{+,+}$ for $n \geq 8$.

Proof. We prove statement by dividing three cases.

Case 1. x = y = z = 4. Then t = 3. If both C_x and C_y are oddly oriented, then C_z must be evenly oriented. We can choose an edge e = uv such that G - u - v is disconnected. Without loss of generality, we assume that e is on C_y .

$$\begin{split} b_{2k}(G^{+,+,-}) &= m(G,k) + 2m(G-C_x,k-2) + 2m(G-C_y,k-2) \\ &- 2m(G-C_z,k-2) \\ &\leq m(G-e,k) + m(G-u-v,k-1) + 2m(G-C_x,k-2) \\ &+ 2m(G-C_y,k-2) \\ &\leq b_{2k}(\overrightarrow{G}-e) + m(P_2 \bigcup P_{n-4},k-1) + 2m(P_{n-4},k-2) \\ &< b_{2k}(\overrightarrow{P_n^{4+}}) + m(P_2 \bigcup P_{n-4},k-1) + 2m(P_{n-4},k-2) \\ &= m(P_n^4,k) + m(P_2 \bigcup P_{n-4},k-1) + 4m(P_{n-4},k-2) \\ &\leq m(P_n^4,k) + m(P_2 \bigcup P_{n-4},k-1) + 4m(P_{n-4}^4,k-2) \end{split}$$

Bicyclic Digraphs With Extremal Skew Energy

$$+4m(P_{n-8}, k-4) = b_{2k}((P_n^{4,4})^{+,+}).$$

If either C_x or C_y is oddly oriented, then C_z must be oddly oriented. Similarly, we can prove that $b_{2k}(G^{+,-,+}) < b_{2k}((P_n^{4,4})^{+,+})$ or $b_{2k}(G^{-,+,+}) < b_{2k}((P_n^{4,4})^{+,+})$.

If both C_x and C_y are evenly oriented, then C_z is also evenly oriented.

$$b_{2k}(G^{-,-,-}) = m(G,k) - 2m(G - C_x, k - 2) - 2m(G - C_y, k - 2)$$

-2m(G - C_z, k - 2)
$$\leq m(G,k) + 2m(G - C_x, k - 2) + 2m(G - C_y, k - 2)$$

-2m(G - C_z, k - 2)
$$= b_{2k}(G^{+,-,+}) < b_{2k}((P_n^{4,4})^{+,+}).$$

Case 2. x = y = 4, $z \neq 4$. Then t = 2 and z = 6. If both C_x and C_y are oddly oriented, then C_z is oddly oriented. Since $n \geq 8$, we can choose an edge e = uv such that G - u - v is disconnected and u is one of the common vertices between C_x and C_y . Without loss of generality, we suppose that e is on C_y . Then both $G - C_y$ and $G - C_z$ are also disconnected. Note that $G - C_x = G - e - C_x$, by Lemma 2.1, we get

$$\begin{split} b_{2k}(G^{+,+,+}) &= m(G,k) + 2m(G-C_x,k-2) + 2m(G-C_y,k-2) \\ &+ 2m(G-C_z,k-3) \\ &\leq m(G-e,k) + m(G-u-v,k-1) + 2m(G-e-C_x,k-2) \\ &+ 2m(P_2 \bigcup P_{n-6},k-2) + 2m(P_2 \bigcup P_{n-8},k-3) \\ &\leq b_{2k}(\overrightarrow{G-e}^+) + m(P_2 \bigcup P_{n-4},k-1) \\ &+ 2m(P_2 \bigcup P_{n-6},k-2) + 2m(P_2 \bigcup P_{n-8},k-3) \\ &< b_{2k}(\overrightarrow{P_n^4}^+) + m(P_2 \bigcup P_{n-4},k-1) \\ &+ 2m(P_2 \bigcup P_{n-6},k-2) + 2m(P_2 \bigcup P_{n-8},k-3) \\ &= m(P_n^4,k) + m(P_2 \bigcup P_{n-4},k-1) + 2m(P_{n-4},k-2) \\ &+ 2m(P_2 \bigcup P_{n-6},k-2) + 2m(P_2 \bigcup P_{n-8},k-3) \\ &\leq m(P_n^4,k) + m(P_2 \bigcup P_{n-4},k-1) + 4m(P_{n-4}^4,k-2) \\ &+ 4m(P_{n-8},k-4) \\ &= b_{2k}((P_n^{4,4})^{+,+}). \end{split}$$

If either C_x or C_y is oddly oriented, then C_z is evenly oriented. By Lemma

352

X. Shen, Y. Hou, and C. Zhang

2.1, $b_{2k}(G^{+,-,-}) \le b_{2k}(G^{+,+,+}) < b_{2k}((P_n^{4,4})^{+,+})$, or $b_{2k}(G^{-,+,-}) \le b_{2k}(G^{+,+,+}) < b_{2k}((P_n^{4,4})^{+,+})$.

If both C_x and C_y are evenly oriented, then C_z is oddly oriented and

 $b_{2k}(G^{-,-,+}) \le b_{2k}(G^{+,+,+}) < b_{2k}((P_n^{4,4})^{+,+}).$

Case 3. There aren't two cycles with length 4. Since there is at least one cycle of even length in \overrightarrow{G} , without loss of generality, we assume that C_x is a cycle of minimal even length.

Subcase 3.1. t is even.

Subcase 3.1.1. y is even and both C_x and C_y are oddly oriented. Then $y, z > x \ge 4$ and C_z is oddly oriented. Let e = uv be an edge on C_y and u is the common vertex of C_x and C_y .

Claim 2. $m(P_{n-2}, k-1) \ge m(P_{n-4}, k-2) \ge \cdots \ge m(P_{n-2\ell}, k-\ell).$

Proof. By Lemma 2.3, we get

$$m(P_{n-2}, k-1) = m(P_{n-3}, k-1) + m(P_{n-4}, k-2)$$

= $m(P_{n-3}, k-1) + m(P_{n-5}, k-2) + m(P_{n-6}, k-3)$
= $\sum_{i=1}^{\ell-1} m(P_{n-(2i+1)}, k-i) + m(P_{n-2\ell}, k-\ell).$

11

Claim 2 follows immediately. \square

By Lemma 2.1 and Claim 2, we get

$$b_{2k}(G^{+,+,+}) = m(G,k) + 2m(G - C_x, k - 2) + 2m(G - C_y, k - \frac{g}{2}) + 2m(G - C_z, k - \frac{z}{2}) \leq m(G - e, k) + m(G - u - v, k - 1) + 2m(G - e - C_x, k - 2) + 4m(P_{n-6}, k - 3) \leq b_{2k}(\overrightarrow{G - e^+}) + m(P_{n-2}, k - 1) + 4m(P_{n-6}, k - 3) < b_{2k}(\overrightarrow{P_n^{4+}}) + m(P_{n-2}, k - 1) + 4m(P_{n-8} \bigcup P_2, k - 3) + 4m(P_{n-9}, k - 4) = m(P_n^4, k) + 2m(P_{n-4}, k - 2) + m(P_2 \bigcup P_{n-4}, k - 1) + m(P_{n-5}, k - 2) + 4m(P_{n-8} \bigcup P_2, k - 3) + 4m(P_{n-9}, k - 4) \leq m(P_n^4, k) + m(P_2 \bigcup P_{n-4}^4, k - 1) + 4m(P_{n-4}, k - 2)$$

Bicyclic Digraphs With Extremal Skew Energy

$$+4m(P_{n-8}\bigcup P_2, k-3) + 4m(P_{n-8}, k-4)$$

= $b_{2k}((P_n^{4,4})^{+,+}).$

If either C_x or C_y is oddly oriented, then C_z is evenly oriented. By Lemma 2.1, $b_{2k}(G^{+,-,-}) \leq b_{2k}(G^{+,+,+}) < b_{2k}((P_n^{4,4})^{+,+})$, or $b_{2k}(G^{-,+,-}) \leq b_{2k}(G^{+,+,+}) < b_{2k}((P_n^{4,4})^{+,+})$.

If both C_x and C_y are evenly oriented, then C_z is oddly oriented and

$$b_{2k}(G^{-,-,+}) \le b_{2k}(G^{+,+,+}) < b_{2k}((P_n^{4,4})^{+,+}).$$

Subcase 3.1.2. y is odd. Then z is also odd. We can choose an edge e = uv on C_y such that u is the common vertex and v is not the common vertex. By Lemma 2.1, we get

$$\begin{split} b_{2k}(G^{-,*,*}) &\leq b_{2k}(G^{+,*,*}) = b_{2k}(\overrightarrow{G-e}^+) + b_{2k-2}(\overrightarrow{G} - u - v) \\ &< b_{2k}(\overrightarrow{P_n^+}) + b_{2k-2}(\overrightarrow{P}_{n-2}) \\ &= m(P_n^4,k) + 2m(P_{n-4},k-2) + m(P_{n-2},k-1) \\ &< m(P_n^4,k) + m(P_2 \bigcup P_{n-4},k-1) + m(P_{n-5},k-2) + 2m(P_{n-4},k-2) \\ &\leq m(P_n^4,k) + m(P_2 \bigcup P_{n-4}^4,k-1) + 4m(P_{n-4}^4,k-2) \\ &+ 4m(P_{n-8},k-4) \\ &= b_{2k}((P_n^{4,4})^{+,+}). \end{split}$$

Subcase 3.2. t is odd.

Subcase 3.2.1. y is even. Then y > 4. If both C_x and C_y are oddly oriented, then z is even and C_z is evenly oriented. Let e = uv be an edge on C_y and u is the common vertex between C_x and C_y . Then

$$b_{2k}(G^{+,+,-}) = m(G,k) + 2m(G - C_x, k - 2) + 2m(G - C_y, k - \frac{y}{2}) -2m(G - C_z, k - \frac{z}{2}) \leq m(G - e, k) + m(G - u - v, k - 1) + 2m(G - C_x, k - 2) +2m(P_{n-6}, k - 3) \leq b_{2k}(\overrightarrow{G - e}^+) + m(P_{n-2}, k - 1) + 2m(P_{n-6}, k - 3) < b_{2k}(\overrightarrow{P_n^+}) + m(P_{n-2}, k - 1) + 2m(P_{n-6}, k - 3) = m(P_n^4, k) + 2m(P_{n-4}, k - 2) + m(P_2 \bigcup P_{n-4}, k - 1) + m(P_{n-5}, k - 2) +2m(P_{n-6}, k - 3)$$

X. Shen, Y. Hou, and C. Zhang

$$\leq m(P_n^4, k) + m(P_2 \bigcup P_{n-4}^4, k-1) + 4m(P_{n-4}^4, k-2) +4m(P_{n-8}, k-4) = b_{2k}((P_n^{4,4})^{+,+}).$$

If either C_x or C_y is oddly oriented, then C_z is oddly oriented. Similar to the above proof, $b_{2k}(G^{+,-,+}) < b_{2k}((P_n^{4,4})^{+,+})$ or $b_{2k}(G^{-,+,+}) < b_{2k}((P_n^{4,4})^{+,+})$.

If both C_x and C_y are evenly oriented, then C_z is evenly oriented, so

$$b_{2k}(G^{-,-,-}) \le b_{2k}(G^{+,+,-}) < b_{2k}((P_n^{4,4})^{+,+}).$$

Subcase 3.2.2. y is odd. Then z is odd too. Similar to the proof of subcase 3.1.2, we obtain $b_{2k}(G^{-,*,*}) \leq b_{2k}(G^{+,*,*}) < b_{2k}((P_n^{4,4})^{+,+})$.

Combining all those cases above, we complete the proof. \square

By identifying two vertices of two cycles with length 4, we get a graph $G_7^{4,4}$. For n = 6, 7, similar to the proofs of Lemmas 3.4, 3.5, we obtain that the following graphs have the maximal skew energy.

FIG. 3.1. The maximal skew energy graph $(P_6^{4,4})^{+,+,+}$ for n = 6 and $(G_7^{4,4})^{+,+}$ for n = 7.

By Lemmas 3.4 and 3.5, we obtain the following statement.

THEOREM 3.6. Among all bicyclic digraphs with order $n \geq 8$, $(P_n^{4,4})^{+,+}$ has the maximal skew energy; $(G_7^{4,4})^{+,+}$ has the the maximal skew energy for n = 7; $(P_6^{4,4})^{+,+,+}$ has the the maximal skew energy for n = 6.

Acknowledgment. The authors would like to thank the referees for some very useful comments and valuable suggestions, which make a number of improvements on this paper.

REFERENCES

- C. Adiga, R. Balakrishnan, and W. So. The skew energy of a digraph. *Linear Algebra Appl.*, 432:1825–1835, 2010.
- [2] D. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs. Academic Press, New York, 1979.
- [3] M. Dehmer and F. Emmert-Streib. Analysis of Complex Networks: From Biology to Linguis-
- tics. WILEY-VCH Verlag GmbH & Co. hGaA, Weinheim, 2009.[4] B. Furtula, S. Radenković, and I. Gutman. Bicyclic molecular graphs with greatest energy. J.
- Serb. Chem. Soc., 73:431–433, 2008.
- [5] I. Gutman. The energy of a graph. Ber. Math.-Statist. Sekt. Forsch. Graz, 103:1–22, 1978.
- [6] I. Gutman and O. Polanski. Mathematical Concepts in Organic Chemistry. Springer-Verlag, Berlin, 1986.
- [7] Y. Hou. Bicyclic graphs with minimum energy. Linear Multilinear Algebra, 49:347–354, 2001.
- [8] Y. Hou and T. Lei. Characteristic polynomials of skew-adjacency matrices of oriented graphs. Electron. J. Combin., 18(1):R156, 2011.
- [9] Y. Hou, X. Shen, and C. Zhang. Oriented unicyclic graphs with extremal skew energy. Available at http://arxiv.org/abs/1108.6229.
- [10] X. Li and J. Zhang. On bicyclic graphs with maximal energy. *Linear Algebra Appl.*, 427:87–98, 2007.
- [11] Z. Liu and B. Zhou. Minimal energies of bipartite bicyclic graphs. MATCH Commun. Math. Comput. Chem., 59:381–396, 2008.
- [12] V. Nikiforov. The energy of graphs and matrices, J. Math. Anal. Appl., 326:1472–1475, 2007.
- [13] Y. Yang and B. Zhou. Minimal energy of bicyclic graphs of a given diameter. MATCH Commun. Math. Comput. Chem., 59:321–342, 2008.
- [14] J. Zhang and B. Zhou. On bicyclic graphs with minimal energies. J. Math. Chem., 37:423–431, 2005.