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BICYCLIC DIGRAPHS WITH EXTREMAL SKEW ENERGY*

XIAOLING SHEN', YAOPING HOUT, AND CHONGYAN ZHANGT

Abstract. Let 8 be a digraph and S (8) be the skew-adjacency matrix of 8 The skew energy
of 8 is the sum of the absolute values of eigenvalues of 5(8) In this paper, the bicyclic digraphs
with minimal and maximal skew energy are determined.
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1. Introduction. Let G be a simple undirected graph of order n with vertex set
V(G)={1,...,n} and G be an orientation of G. The skew-adjacency matrix of
is the n x n matrix S(G) = [s; ], s;; =1l and s;; = —1if i — j is an arc of G, and
si; = s;,; = 0 otherwise. Since S(G) is a real skew symmetric matrix, all eigenvalues
{M, .., Ap}of S (8) are pure imaginary numbers, the singular values of S (8) are
just the absolute Valuesé|)\1|, .« |Anl}. So the energy of S(a) defined as the sum
of singular values of S(
For 8convenience, the energy of S(G) is called skew energy of G ([1]), and denoted by
E(G).

Energy has close links to chemistry (see, for instance, [6]). Since the concept
of the energy of simple undirected graphs was introduced by Gutman in [5], there

) [12] is the sum of the absolute values of its eigenvalues.

has been lots of research papers on this topic. For a survey, we refer to Section 7 in
[3] and references therein. Denote, as usual, the n-vertex path and cycle by P, and
C,, respectively. For the extremal energy of bicyclic graphs, let G(n) be the class
of bicyclic graphs with n vertices and containing no disjoint odd cycles of lengths k&
and ¢ with k& + ¢ = 2 (mod 4). Let S’ be the graph obtained by connecting n — ¢
pendant vertices to a vertex of Cy, S3:3 be the graph formed by joining n —4 pendant
vertices to a vertex of degree three of the K — e (see Fig. 1.1), and S be the graph
formed by joining n — 5 pendant vertices to a vertex of degree three of the complete
bipartite graph K 3. Let B, be the class of all bipartite bicyclic graphs of order n
that are not the graph obtained from two cycles C, and C}, (a,b > 10 and a = b =2
(mod 4)) joined by an edge. Zhang and Zhou [14] showed that S3 is the graph with

*Received by the editors on June 14, 2011. Accepted for publication on December 18, 2011.
Handling Editor: Xingzhi Zhan. This project is supported by NSF of China.

fDepartment of Mathematics, Hunan Normal University, Changsha, Hunan 410081, China
(x1shen20032003@yahoo.com.cn, yphou@hunnu.edu.cn).

340



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 23, pp. 340-355, April 2012

Bicyclic Digraphs With Extremal Skew Energy 341

minimal energy in G(n). In [I0], Li et al. showed that P$ is the graph with maximal
energy in B,. Additional results on the energy of bicyclic graphs can be found in
[4, [7, 11, 13]. The skew energy was first introduced by C. Adiga et al. in [I]. Some
properties of the skew energy of a digraph are given in [I]. A connected graph with
n vertices and n + 1 edges is called a bicyclic graph. In this paper, we are interested
in studying the bicyclic graphs with extremal skew energy.

R N
N N

4,4
PTL

g3 pii
n n

Fic. 1.1. Graphs 5731,3’ Pﬁ’4 and their orientations.

The rest of this paper is organized as follows. In Section 2, the bicyclic digraphs
of each order n with minimal skew energy are determined. In Section 3, the bicyclic
digraphs of each order n with maximal skew energy are determined.

2. Bicyclic graphs with minimal skew energy. Let G be a graph. A linear
subgraph L of G is a disjoint union of some edges and some cycles in G ([2]). A
k-matching M in G is a disjoint union of k-edges. If 2k is the order of GG, then a k-
matching of G is called a perfect matching of G. The number of k-matchings of graph
G is denoted by m(G, k). If C is an even cycle of G, then we say C is evenly oriented
relative to an orientation 8 of G if it has an even number of edges oriented in the
direction of the routing. Otherwise C' is oddly oriented. We call a linear subgraph L
of G evenly linear if L contains no cycle with odd length and denote by ££;(G) (or
EL; for short) the set of all evenly linear subgraphs of G with ¢ vertices. For a linear
subgraph L € £L;, denote by p.(L) (resp., po(L)) the number of evenly (resp., oddly)
oriented cycles in L relative to 8 Denote the characteristic polynomial of S(G) by

Ps(Gia) = det(a] — S(C)) = zn: bz,

=0

Then by = 1, by is the number of edges of G, all b; > 0 and b; = 0 for all odd 1.
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We have the following results.

LEMMA 2.1. ([8]) Let C be an orientation of a graph G. Then
bl(a) = Z (—2)Pe(L)gpo(L)

LeEL;

LEMMA 2.2. ([8]) Let e = wv be an edge of G that is on no even cycle of G. Then

(2.1) Ps(Gia) = Ps(C — e;2) + Ps(C —u —v: ).

By equating the coefficients of polynomials in Eq. (21]), we have

(2.2) b%(a) = bgk(a —e)+ bgk_g(a —u— U).

Furthermore, if e = uv is a pendant edge with pendant vertex v, then

(2.3) boie(G) = bar (G — 0) + bo—2(G — u — ).

For any orientation of a graph that does not contain any even cycle (in particular,
a tree or a unicyclic non-bipartite graph), bgk(a) =m(G, k) by Lemma 211

In [9], the skew energy of 8 is expressed as the following integral formula:

13
1 [ 1
£5(C) =1 / (1Y bt )
—o° k=1

™

Thus 55(8) is an increasing function of bog (8), k=0,1,...,[%]. Consequently,
— —
if G1 and G2 are oriented graphs of G; and G5, respectively, for which

(2.4) bor(G1) > bar(G3)

for all [§] > k>0, then

(2.5) £.(Gh) > £.(G3).

Equality in (23] is attained only if ([Z4) is an equality for all [Z] > k& > 0. If the
inequalities (24) hold for all k, then we write Gy = G5 or G2 X G1. If G1 = G3, but
not G5 > (1, then we write G1 > Gs.

Let & be an orientation_(;f a graph G. Let W be a subset of V(G) and W =
V(G)\ W. The orientation G’ of G obtained from fel by reversing the orientations
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of all arcs between W and W is said to be obtained from 8 by a switching with
respect to W. Moreover, two orientations 8 and (7 of a graph G are said to be
switching-equivalent if G’ can be obtained from G by a sequence of switchings. As
noted in [I]], since the skew adjacency matrices obtained by a switching are similar,
their spectra and hence skew energies are equal.

It is easy to verify that up to switching equivalence there are just two orientations
of a cycle C: (1) Just one edge on the cycle has the opposite orientation to that of
others, we call it orientation +. (2) All edges on the cycle C' have the same orientation,
we denote this orientation by —. So if a cycle is of even length and oddly oriented,
then it is equivalent to the orientation +; if a cycle is of even length and evenly
oriented, then it is equivalent to the orientation —. The skew energy of a directed
tree is the same as the energy of its underlying tree ([I]). So by switching equivalence,
for a unicyclic digraph or bicyclic digraph, we only need to consider the orientations
of cycles.

Let Cy, Cy be two cycles in bicyclic graph G with ¢ (¢ > 0) common vertices. If
t < 1, then G contains exactly two cycles. If ¢ > 2, then G contains exactly three
cycles. The third cycle is denoted by G, where z = = + y — 2t 4+ 2. Without loss of
generality, assume that x <y < z.

For convenience, we denote by G* (resp., G~) the unicyclic graph on which the
orientation of a cycle is of orientation + (resp., —), and denote by G* the unicyclic
graph on which the orientation of a cycle is of arbitrary orientation x. If £ < 1, we
denote by G*? the bicyclic graph on which cycle C, is of orientation a and cycle C,
is of orientation b, where a, b € {+,—,*}. If t > 2, we denote by G¥¢ the bicyclic
graph on which C is of orientation a, Cy is of orientation b, C; is of orientation c,
where a, b, ¢ € {+, —, x}. See examples in Fig. 2.2.

For the k-matching number of a graph G, we have the following.
LEMMA 2.3. Let e = uv be an edge of G. Then

(i) m(G,k) =m(G —e, k) +m(G—u—uv,k—1).
(i) If G is a forest, then m(G,k) < m(P,, k), k > 1.
(i) If H is a subgraph of G, then m(H, k) < m(G,k), k > 1. Moreover, if H is
a proper subgraph of G, then the inequality is strict.

We define m(G,0) = 1 and m(G, k) =0 for k& > &.

In [9], the authors discussed the unicyclic digraph with extremal skew energy and
established the following.

Lemma 2.4. ([9]) (1) Among all unicyclic digraphs on n vertices, S?n has the
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Fic. 2.1. Ezamples for orientation representations of bicyclic digraphs.

%7
minimal skew energy and S,  has the second minimal skew energy for n > 6; both
—- —+
5?5 and S5 have the minimal skew energy, Sz has the second minimal skew energy

—- =
forn=5; C* has the minimal skew energy, S3 has the second minimal skew energy

forn=4.

—+
(2) Among all orientations of unicyclic graphs, Pi is the unique directed graph

with mazimal skew energy.

For bicyclic digraphs, we have the following.

LEMMA 2.5. Let G be a bicyclic digraph of order n > 8, G # S33. Then

G - (S3:3)**—,

Proof. We prove the statement by induction on n. By Lemma 2.1l the character-

-
istic polynomials of S((S23)** ™), S(S?n) and S(S; ) are:

Ps((Sp°)"7) = a"Ha® + (n+ D)a® + 2(n — 4)),

PS(S?) =" (2t 4 na? + (n - 3)),

n

—
Ps(S3 ) = 2" *(a* +na® +2(n —4)).
It suffices to prove that b4(8) > 2(n —4) for fel # (S23) ",

Let n = 8.
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Case 1.1. t < 1.

Subcase 1.1.1. x = y = 4. Then we can choose an edge e = uv on some Cy such
that G — u — v is connected. By Lemma 2.1} we have

ba(G*) > m(G,2) — 4

(
=m(G—-¢2)+m(G—-u—v1)—4
>m(G—e?2)+6—4
> m(FPs,2) + 2 (Ps is a proper subgraph of G —e)

=8 = by((S37)).

Subcase 1.1.2. Either x or y is 4. Without loss of generality, suppose that = = 4.
Chose an edge e = uv on Cy, such that G —u — v has at least 4 edges. By Lemma [2.T]

ba(G™7) =2 m(G,2) —
:m(G762) m(G—u—wv,1)—2
>m(G—e2)+4-2
> m(Sg,2) + (S§ is a proper subgraph of G — e)

:mwfw“»

Subcase 1.1.3. Neither z nor y is 4. Then z =y =3 or z = 3, y = 5. We can
chose an edge e = uv on any cycle such that G — u — v contains at least 3 edges. By
Lemma 2.1 we get

ba(G™") = m(G, )
=m(G — m(G—u—wv,1)
>m(G—e 2) +3
=by(G — ) (G — e is a unicyclic graph without cycle of length 4)
> by (S? (by Lemma [24)
I
Case 1.2. t > 2.

Subcase 1.2.1. Each cycle is of length 4. Then ¢ = 3 and there are 3 vertices
outside of those cycles, say v1, va, v3. Let v be a pendant vertex of G and u; be the
adjacent vertex of v1, v be a pendant vertex of G — vy and us be the adjacent vertex
of v, v3 be a pendant vertex of G — v; — v2 and ug be the adjacent vertex of vs. By
Eq. [Z3), we have

b4(G*’*) = b4(G*’* — ’Ul) + bQ(G*7* — Uy — ’Ul)
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0
I

Subcase 1.2.2. There are two cycles of length 4 in G, say, C, Cy, then t = 2 and
z=x+y—2t+ 2 =06. There are two vertices outside of G. Similar to the proof of
subcase 1.2.1, we can obtain ba(G**) > by((S5)** ™).

Subcase 1.2.3. There is just one cycle of length 4 in G, say, C,. If C, = C3, then
t = 2 and there are 3 vertices outside of G. Similar to the proof of subcase 1.2.1, we
get by(G**) > by((Se*)**~). If y > 5, we can chose an edge e = uv on Cy such
that m(G —u — v,1) > 6. Then similar to the proof of subcase 1.1.2, we get that
ba(G**) > ba((S3%) ).

Subcase 1.2.4. G contains no cycle of length 4. Similar to the proof of subcase
1.1.3, the result holds for n = 8.

Suppose n > 8 and 8’ 52}3)*’*’* for any bicyclic digraph G’ of order n/,

n’ < n. Denote by p the number of pendant vertices in G.

If p = 0, then 8 has no pendant vertex. Three cases are considered in the
following.

Case 2.1. t = 1. Let e = uv be an edge on C, and u is the common vertex of C,,
and Cy. By Lemmas 2 and 23 and m(P,,2) = W, we have

(G,2) -

(G—e,2 m(G—u—v,1)—4
(PY,2) +m(Py2| JPua1)—4
m(Py,2) + m(Py— QUPn vw1)+n—38

n—2)(n—3)
2

b4(G*’*)

Y

|
SSS

n—44+n—-8>2(n—4)

>0 forn>T7.

sincewle:w

2

Case 2.2. t > 2. Suppose e = uv is an edge on C, and u is the common vertex of
C, and Cy. By Lemmas 2]l and 2.3

(G-—¢€,2)+m(G—-u—v,1)—6
=m(PY,2)+n—-3-6
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m(Py, 2) + m(Py—2 UPn,y, +n-9

—9(n —
—w+n—4+n—9>2(n—4)

(n—=2)(n—=3) 5 — (n—6)(n+1)+2
2 2

since >0 forn>"7.

Case 2.3. t = 0. Suppose that C, and C, are joined by a path of length a, n—8 >
a > 0. Let e = uv be an edge on C,, where u is the vertex of degree 3. Similar to the
proof of case 2.1, we obtain by(G**) > 2(n —4). Therefore, by(G**) > by((S33)**7)
for p=0.

Let p > 1 and v be a pendant vertex of G with corresponding unique edge uv.
Since G** — u — v has at least 3 edges, by Eq. (2:2) and the induction hypothesis,

ba(G**) = by(G™* — v) + by(G** — u — v)
> by((S33)7"*) + 3

n—

=2(n—1-4)+3>2(n—4) =by((S>*)**7). O

For n = 7, similar to the proof of Lemma for n = 8, both (S?A)_’_’_ and
(83:3)**~ have the minimal skew energy. Since

Ps((Sp )7 7) =" at + (n+ 1)a” + 3(n - 5)),

bs((Sg®)~ ) = 3 and by((S2*)~~) = 0. In a similar way to the proof of Lemma

for n = 8 , we can get that (Sg'*)™ >~ has the minimal skew energy for n = 6
and (Sa*)™ 7~ has the minimal skew energy for n = 5.

By Lemma and the above statements, we obtain the following.

THEOREM 2.6. Among all bicyclic digraphs of order n, (S33)**~ has the min-
imal skew energy for n > 8; both (S2*)**~ and (S+*)™ have the minimal skew

——

energy for n = 7; (S&4)==~ has the minimal skew energy for n =5, 6.

3. Bicyclic digraphs with maximal skew energy. For the path, by Lemmas
2.1l and 23] we can easily get the following statements.

LEMMA 3.1. Let ?n be a forest of order n. Then Fn = ?n FEquality holds if
and only if F,, = P,.

Since the skew energy of a directed forest is the same as the energy of its under-
lying forest, by [6], we have the following.



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 23, pp. 340-355, April 2012
348 X. Shen, Y. Hou, and C. Zhang
LEMMA 3.2.

ﬁn - ?2 U ?n72 - ?4 U ?7%4 e ?Qk U ?n72k - ?2k+1 U ?n&kq
- P U?n,gkﬂ -~ = Py U?"* ~ P, U?n,l.

LEMMA 3.3. For any bicyclic graph G witht <1, G** < G,

Pm%/. If two cycles are of odd length, then by Lemma [2.1] for any orientation of
G, bai(G) = m(G,k), for all 0 < k < [2]. Thus G** = G If there is exactly one
cycle of even length in G, say, C, then

bow(G—) = m(G, k) —2m(G—Cy, kfg) < bop(GH) = m(GL k) +2m(G—C, kfg).
If both = and y are even, then

bor (G ) = m(G, k) — 2m(G — Cy, k — g) —2m(G — Cy ki — g)
r+y

+4m(G — Cyp — Cy, k — ) < boir(GFF) = m(G, k)

izm(G—cl.,k—g)zpzm(c—cy,k—%)

T+y

—4m(G = Cp — Cy ke — ) < boe(GTH) = m(G, k)

+2m(G—Cx,k—%)—i—Qm(G—Cy,k—%)

Tty
2

+4m(G — Cp — Cy, k — ). O

LEMMA 3.4. Let G be a bicyclic digraph of order n with t < 1, Il # (PA4)y++,
Then G < (PEHTF forn > 8.

Proof. We divide the proof into two cases.
Case 1. There is at least one cycle of length odd, say, C,.

(i) t =1, we can choose an edge e = uv on Cy such that u is the common vertex
of two cycles . Obviously, G' — e is a unicyclic graph and 8 —u — v is a forest.

By Eq. (22)), Lemmas 23] and 2.4 we have
b%(a) = bgk(a — 6) + bgk_g(a — U — U)
< bay, (?ff) + b2k72(?2 U ?n,4) (by Lemmas 2.4 and B2)

=m(P! k) +3m(Py_4,k —2) + m(Po_4,k — 1)
<m(PLE)+m(Pr , k—1)+5m(P: , k—2) +4m(P,_g, k —4)
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= bor((Py*)TH).

(i) t = 0. We can choose an edge e = uv on C, such that v is a vertex in a path
which connects C; and C,. Obviously, 8 — e is a unicyclic graph and G — u — v is
the disjoint union of a forest and a unicyclic graph.

st —
Claim 1. PL,UP’ , <PUP:, ,a#2.

Proof. By Lemmas 24 and B2] we have

bgk<PaU1ﬁ+ < b PaUPy‘i_f+
(Pu| P} oo k) +2m(Pa| JPoa-a, k= 2)
PaUPn—a; +m(PaUP2UPn—a—47k_1)

+2m(Py UPn_6,k: -2)
< m(P2 U P, o, k‘) + m(P2 U P U P, ¢,k — 1)
+2m(Py UPn_6,k: -2)

= bar (P, UE:QH)
By Eq. (22)), Lemmas [ZT] 23] and 24] we have
boie(G) = ban (G — €) + bap—o(G — u— v)
<ta(PL ) + b a(P Py ) (by Claim 1)
=m(P}, k) +2m(Po_s,k —2) +m(P| P}, k—1)
+2m(Py | J Po—s, k —2)
<m(Py, k) +m(P| Pl 4k — 1)+ 4m(Py_y k- 2)
<m(P k) + m(Py UPn_4, k—1)+4m(P* , k—2) 4 4m(P,_g, k — 4)
= bar (P ) ™).

Case 2. Two cycles are of even lengths.
By Lemma [3.3] we only need to consider G +.

(1) t = 1. We can choose an edge e = uv in cycle Cy, u is the common vertex of
two cycles. By Lemma 2] we have

bor(GT ) = m(G, k) +2m(G — Cp, k — )+2m(G Cyrk — )

2
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<m(G—ek)+m(G—u—v,k—1)42m(Pp_4,k —2)
+om(G — Cy k — g)

= bop(G — e+) +m(G—u—uvk—1)+2m(P,_4,k — 2)

)J’_
<bow(G—e ) +m(Pe| JPo sk — 1)+ 2m(P, 4k — 2))

< bgk(E‘fﬁ) +m(Py | JPocas k= 1) + 2m(P_y k — 2)

=m(Py, k) +m(Py| JPoa, b — 1)+ 4m(P_s, k — 2)

<m(Py,k) +m(P:| | P} )+ 4m(PE_, k —2) + 4m(P,_g, k — 4)
= bor((Py*) ™).

(ii) ¢ = 0. Choose an edge e = uv on the path which connects Cy and C,. Assume
that one of the two components of G — e is of order j. By Eq. ([22)), we get

bgk(G+’+) = bgk(G+’+ — 6) + bgk 2(G+’+ —Uu— U)

<b2kP4 U +52k2 U —j—1

it P
(or < bar(P; U +b2k 2P3UPn5 )

= b ((PyH)™F). O

LEMMA 3.5. Let 8 be a bicyclic digraph of order n with t > 2. Then 8 =<
(PEHYTF forn > 8.

Proof. We prove statement by dividing three cases.

Case 1. x =y = z=4. Then t = 3. If both C; and Cy are oddly oriented, then
C, must be evenly oriented. We can choose an edge e = uv such that G —u — v is
disconnected. Without loss of generality, we assume that e is on Cj,.
bor (G 7)) = m(G, k) + 2m(G — Cy, k — 2) + 2m(G — Cy, k — 2)
—2m(G — Cy,k—2)
<m(G—ek)+m(G—u—vk—1)42m(G — Cy,k — 2)
+2m(G — Cy, k —2)
< o (G =€)+ m(Pa|J Poask — 1) + 2m(Pos, k — 2)

—+
<bo(Py )+ m(Py|JPaoask — 1) +2m(Po_a, k — 2)
=m(P}, k) +m(Py| JPoa, k= 1)+ 4m(Pp_s,k — 2)
<m(Pp k) +m(P| Py k= 1) +4m(Ph_y k- 2)
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+4m(Pn,g, k— 4)
= bar (P ) ™).

If either C; or Cy is oddly oriented, then C, must be oddly oriented. Similarly,
we can prove that bog (G F) < bog (P34)TF) or bog (G ) < bop (P2 T T).

If both C, and Cy are evenly oriented, then C, is also evenly oriented.

bor(G™ 7)) =m(G, k) = 2m(G — Cy, k — 2) = 2m(G — Cy, k — 2)
—om(G — C, k —2)
<m(G,k)+2m(G — Cy, k—2)+2m(G — Cy, k —2)
—2m(G — Cy, k —2)
= bar (G 7F) < bar (P ) H).

Case 2. t =y =4, 2# 4. Then t = 2 and z = 6. If both C, and C} are oddly
oriented, then C, is oddly oriented. Since n > 8, we can choose an edge e = uv such
that G — u — v is disconnected and wu is one of the common vertices between C, and
Cy. Without loss of generality, we suppose that e is on Cy. Then both G — C} and
G — C, are also disconnected. Note that G — C, = G — e — C,, by Lemma 2.1l we get

bor (G ) = m(G, k) + 2m(G — Cp, k — 2) + 2m(G — Cy, k — 2)

+2m(G — C,, k —3)
<m(G—ek)+m(G—-—u—v,k—1)+2m(G—e—Cy,k—2)
+2m(Py| J P, k — 2) + 2m(Py | | Pas, k — 3)
>+
§ bgk(G — € ) + m(Pg UPn,4, k— ].)
+2m(Py | J P,k — 2) + 2m(Pe | | Pas, k — 3)

< ka(17,§>+) +m(Py| JPoay k= 1)
+2m(Py| J P,k — 2) + 2m(Py | ) Pas, k — 3)
=m(Py, k) +m(Po| JPoa, k= 1)+ 2m(Py s,k — 2)
+2m(Py| J P,k — 2) + 2m(Pa | ) Pas, k — 3)
<m(P,, k) +m(P2UP§74,k— 1) +4m(Py_y k= 2)
+4m(Py_g, k — 4)
= box ((Py*) ™).

If either C; or Cy is oddly oriented, then C, is evenly oriented. By Lemma
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m bgk(G+’7’7) < bgk(GJr’Jr’Jr) < bgk((PéA)Jr’Jr), or bgk(Gi’Jr’*) < bgk(GJr’Jr’Jr) <

bar (P ) ™).

If both C, and Cy are evenly oriented, then C is oddly oriented and

bor(GT ) < bo(GTH) < bgr (PP,

Case 3. There aren’t two cycles with length 4. Since there is at least one cycle of
cycle of minimal

even length in 8, without loss of generality, we assume that C, is a
even length.

Subcase 3.1. t is even.

Subcase 3.1.1. y is even and both C, and C, are oddly oriented. Theny,z > x > 4
and C is oddly oriented. Let e = uv be an edge on C, and u is the common vertex

of Cy and C.

Claim 2. m(P,—2,k—1) > m(Py_g,k —2) > - > m(Pyp_20, k — {).

Proof. By Lemma 2.3 we get

m(Py—2,k—1)=m

—~

P, 3, k— ].) + m(Pn,4, k — 2)

m

~
L=

m(Py—(2i1), k — 1) +m(Pp_20, k — £).
1

<.
Il

Claim 2 follows immediately. O

By Lemma 2] and Claim 2, we get

bor(GH ) = m(G, k) + 2m(G — Co, k — 2) + 2m(G — Cy, k — %)

+2m(G — Oy, k — g)

P, 3, k— 1) + m(Pn_5, k — 2) + m(Pn_g, k— 3)

<m(G-ek)+m(G—-—u—v,k—1)+2m(G—e—Cy,k—2)

+4m(Po_g, k — 3)

)JF
< bgk(G — € ) + m(Pn,g, k— ].) + 4m(Pn,6, k— 3)
—+
<bor(Py ) +m(Po_a,k— 1) +4m(Po_s| J P2 k - 3)

+4m(Pn,9, k— 4)

=m(P3, k) +2m(Py_a,k —2) + m(Pe| JPu_a, k= 1) + m(Py_5,k — 2)

+4m(Po_s| P2,k = 3) + 4m(Py g,k — 4)
<m(Pp k) +m(P| Py k= 1) +4m(P, 4, k - 2)
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+4m(Po_g | P2k — 3) + 4m(Py_s, k — 4)
= bar (P ) ™).

If either C, or Cy is oddly oriented, then C, is evenly oriented. By Lemma
BT bo(GH) < bar(GH) < ba (PR ), or bos(G—+7) < boy(GH ) <
ba ((Pyt) 7).

If both C, and Cy are evenly oriented, then C is oddly oriented and

bor(G ) < b (GTHF) < bor (P40 ).

Subcase 3.1.2. y is odd. Then z is also odd. We can choose an edge e = uv on
Cy such that u is the common vertex and v is not the common vertex. By Lemma

21 we get
>+
bop (GT") < b2k(G+’*’*) =by(G—¢e )+ (?21c—2(8 —u—0)

<b2k( )—I—ka 2(?n—2)
=m(PY k) +2m(Py_y4,k — 2) + m(Py_o,k — 1)
<m(Py, k) +m(Pe| JPooak— 1) + m(Pas, k — 2) + 2m(Po_s, k — 2)
<m(Py. k) +m(P| Pl 4 k—1)+4m(P}_, k—2)
+4m(Po_g, k — 4)
= bar((Py*) ™).

Subcase 3.2. t is odd.

Subcase 3.2.1. y is even. Then y > 4. If both C, and C, are oddly oriented ,
then z is even and C, is evenly oriented. Let e = uv be an edge on Cy and u is the
common vertex between C; and Cy. Then

bor(GTH7) = m(GL k) + 2m(G — Cp ke — 2) + 2m(G — Cy, ke — %)
—om(G — Cu k — g)
<m(G—e k) +m(G—u—vk—1)+2m(G— Cy,, k—2)
+2m(Py—g, k — 3)
< bo(G— )+ m(Paz,k— 1)+ 2m(Py g,k — 3)

—+
< bor(PY )+ m(Pu_a,k — 1)+ 2m(P,_s,k — 3)
=m(Py, k) + 2m(Po_a,k — 2) + m(Po| JPaa, k= 1) + m(Py 5,k — 2)
+2m(Pn_6, k— 3)
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<m(Py, k) +m(Py | JPi_y k= 1) +4m(Py_y, k —2)
+Am(Po_g, k — 4)
= bar (P ) ™).

If either C; or Cy is oddly oriented, then C, is oddly oriented. Similar to the
above proof, bar (GT 7 F) < ba ((P21)T1) or bop (G H) < bop (P4 ).

If both C, and Cy, are evenly oriented, then C, is evenly oriented, so

bok (G 77) < bar(GHH7) < bar((Py*) ™).

Subcase 3.2.2. y is odd. Then z is odd too. Similar to the proof of subcase 3.1.2,
we obtain bgk(Gf’*’*) < b2k(G+,*,*) < bgk((PéA)Jr’Jr).

Combining all those cases above, we complete the proof. O

By identifying two vertices of two cycles with length 4, we get a graph G‘;A. For
n = 6, 7, similar to the proofs of Lemmas [3.4], 3.5, we obtain that the following graphs
have the maximal skew energy.

==
SR

FiG. 3.1. The mazimal skew energy graph (]3(;1’4)7L’7L’7L forn =6 and (G‘;’ZI)J“Jr forn="T.

By Lemmas [3.4] and [B.5] we obtain the following statement.

THEOREM 3.6. Among all bicyclic digraphs with order n > 8, (P*")*™* has
the mazimal skew energy; (G$’4)+’+ has the the mazimal skew energy for n = 7;
(P&t has the the mazimal skew energy for n = 6.
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