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Abstract. Let
−→

G be a digraph and S(
−→

G) be the skew-adjacency matrix of
−→

G . The skew energy

of
−→

G is the sum of the absolute values of eigenvalues of S(
−→

G). In this paper, the bicyclic digraphs

with minimal and maximal skew energy are determined.
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1. Introduction. Let G be a simple undirected graph of order n with vertex set

V (G) = {1, . . . , n} and
−→
G be an orientation of G. The skew-adjacency matrix of

−→
G

is the n× n matrix S(
−→
G) = [si,j ], si,j = 1 and sj,i = −1 if i → j is an arc of

−→
G , and

si,j = sj,i = 0 otherwise. Since S(
−→
G) is a real skew symmetric matrix, all eigenvalues

{λ1, . . ., λn} of S(
−→
G) are pure imaginary numbers, the singular values of S(

−→
G) are

just the absolute values {|λ1|, . . ., |λn|}. So the energy of S(
−→
G) defined as the sum

of singular values of S(
−→
G) [12] is the sum of the absolute values of its eigenvalues.

For convenience, the energy of S(
−→
G) is called skew energy of G ([1]), and denoted by

Es(
−→
G ).

Energy has close links to chemistry (see, for instance, [6]). Since the concept

of the energy of simple undirected graphs was introduced by Gutman in [5], there

has been lots of research papers on this topic. For a survey, we refer to Section 7 in

[3] and references therein. Denote, as usual, the n-vertex path and cycle by Pn and

Cn, respectively. For the extremal energy of bicyclic graphs, let G(n) be the class

of bicyclic graphs with n vertices and containing no disjoint odd cycles of lengths k

and ℓ with k + ℓ = 2 (mod 4). Let Sℓ
n be the graph obtained by connecting n − ℓ

pendant vertices to a vertex of Cℓ, S
3,3
n be the graph formed by joining n− 4 pendant

vertices to a vertex of degree three of the K4− e (see Fig. 1.1), and S4,4
n be the graph

formed by joining n− 5 pendant vertices to a vertex of degree three of the complete

bipartite graph K2,3. Let Bn be the class of all bipartite bicyclic graphs of order n

that are not the graph obtained from two cycles Ca and Cb (a, b ≥ 10 and a = b = 2

(mod 4)) joined by an edge. Zhang and Zhou [14] showed that S3,3
n is the graph with
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minimal energy in G(n). In [10], Li et al. showed that P 6,6
n is the graph with maximal

energy in Bn. Additional results on the energy of bicyclic graphs can be found in

[4, 7, 11, 13]. The skew energy was first introduced by C. Adiga et al. in [1]. Some

properties of the skew energy of a digraph are given in [1]. A connected graph with

n vertices and n+ 1 edges is called a bicyclic graph. In this paper, we are interested

in studying the bicyclic graphs with extremal skew energy.
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Fig. 1.1. Graphs S
3,3
n , P

4,4
n and their orientations.

The rest of this paper is organized as follows. In Section 2, the bicyclic digraphs

of each order n with minimal skew energy are determined. In Section 3, the bicyclic

digraphs of each order n with maximal skew energy are determined.

2. Bicyclic graphs with minimal skew energy. Let G be a graph. A linear

subgraph L of G is a disjoint union of some edges and some cycles in G ([2]). A

k-matching M in G is a disjoint union of k-edges. If 2k is the order of G, then a k-

matching of G is called a perfect matching of G. The number of k-matchings of graph

G is denoted by m(G, k). If C is an even cycle of G, then we say C is evenly oriented

relative to an orientation
−→
G of G if it has an even number of edges oriented in the

direction of the routing. Otherwise C is oddly oriented. We call a linear subgraph L

of G evenly linear if L contains no cycle with odd length and denote by ELi(G) (or

ELi for short) the set of all evenly linear subgraphs of G with i vertices. For a linear

subgraph L ∈ ELi, denote by pe(L) (resp., po(L)) the number of evenly (resp., oddly)

oriented cycles in L relative to
−→
G . Denote the characteristic polynomial of S(

−→
G) by

PS(
−→
G ;x) = det(xI − S(

−→
G)) =

n
∑

i=0

bix
n−i.

Then b0 = 1, b2 is the number of edges of G, all bi ≥ 0 and bi = 0 for all odd i.
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We have the following results.

Lemma 2.1. ([8]) Let
−→
G be an orientation of a graph G. Then

bi(
−→
G) =

∑

L∈ELi

(−2)pe(L)2po(L).

Lemma 2.2. ([8]) Let e = uv be an edge of G that is on no even cycle of G. Then

(2.1) PS(
−→
G ;x) = PS(

−→
G − e;x) + PS(

−→
G − u− v;x).

By equating the coefficients of polynomials in Eq. (2.1), we have

(2.2) b2k(
−→
G ) = b2k(

−→
G − e) + b2k−2(

−→
G − u− v).

Furthermore, if e = uv is a pendant edge with pendant vertex v, then

(2.3) b2k(
−→
G) = b2k(

−→
G − v) + b2k−2(

−→
G − u− v).

For any orientation of a graph that does not contain any even cycle (in particular,

a tree or a unicyclic non-bipartite graph), b2k(
−→
G ) = m(

−→
G, k) by Lemma 2.1.

In [9], the skew energy of
−→
G is expressed as the following integral formula:

ES(
−→
G) =

1

π

∫ ∞

−∞

1

t2
ln(1 +

⌊n

2
⌋

∑

k=1

b2kt
2k)dt.

Thus Es(
−→
G ) is an increasing function of b2k(

−→
G), k = 0, 1, . . . , ⌊n

2 ⌋. Consequently,

if
−→
G1 and

−→
G2 are oriented graphs of G1 and G2, respectively, for which

(2.4) b2k(
−→
G1) ≥ b2k(

−→
G2)

for all ⌊n
2 ⌋ ≥ k ≥ 0, then

(2.5) Es(
−→
G1) ≥ Es(

−→
G2).

Equality in (2.5) is attained only if (2.4) is an equality for all ⌊n
2 ⌋ ≥ k ≥ 0. If the

inequalities (2.4) hold for all k, then we write G1 � G2 or G2 � G1. If G1 � G2, but

not G2 � G1, then we write G1 ≻ G2.

Let
−→
G be an orientation of a graph G. Let W be a subset of V (G) and W =

V (G) \ W . The orientation
−→
G′ of G obtained from

−→
G by reversing the orientations
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of all arcs between W and W is said to be obtained from
−→
G by a switching with

respect to W . Moreover, two orientations
−→
G and

−→
G′ of a graph G are said to be

switching-equivalent if
−→
G′ can be obtained from

−→
G by a sequence of switchings. As

noted in [1], since the skew adjacency matrices obtained by a switching are similar,

their spectra and hence skew energies are equal.

It is easy to verify that up to switching equivalence there are just two orientations

of a cycle C: (1) Just one edge on the cycle has the opposite orientation to that of

others, we call it orientation +. (2) All edges on the cycle C have the same orientation,

we denote this orientation by −. So if a cycle is of even length and oddly oriented,

then it is equivalent to the orientation +; if a cycle is of even length and evenly

oriented, then it is equivalent to the orientation −. The skew energy of a directed

tree is the same as the energy of its underlying tree ([1]). So by switching equivalence,

for a unicyclic digraph or bicyclic digraph, we only need to consider the orientations

of cycles.

Let Cx, Cy be two cycles in bicyclic graph G with t (t ≥ 0) common vertices. If

t ≤ 1, then G contains exactly two cycles. If t ≥ 2, then G contains exactly three

cycles. The third cycle is denoted by Gz, where z = x + y − 2t+ 2. Without loss of

generality, assume that x ≤ y ≤ z.

For convenience, we denote by G+ (resp., G−) the unicyclic graph on which the

orientation of a cycle is of orientation + (resp., −), and denote by G∗ the unicyclic

graph on which the orientation of a cycle is of arbitrary orientation ∗. If t ≤ 1, we

denote by Ga,b the bicyclic graph on which cycle Cx is of orientation a and cycle Cy

is of orientation b, where a, b ∈ {+,−, ∗}. If t ≥ 2, we denote by Ga,b,c the bicyclic

graph on which Cx is of orientation a, Cy is of orientation b, Cz is of orientation c,

where a, b, c ∈ {+,−, ∗}. See examples in Fig. 2.2.

For the k-matching number of a graph G, we have the following.

Lemma 2.3. Let e = uv be an edge of G. Then

(i) m(G, k) = m(G− e, k) +m(G− u− v, k − 1).

(ii) If G is a forest, then m(G, k) ≤ m(Pn, k), k ≥ 1.

(iii) If H is a subgraph of G, then m(H, k) ≤ m(G, k), k ≥ 1. Moreover, if H is

a proper subgraph of G, then the inequality is strict.

We define m(G, 0) = 1 and m(G, k) = 0 for k > n
2 .

In [9], the authors discussed the unicyclic digraph with extremal skew energy and

established the following.

Lemma 2.4. ([9]) (1) Among all unicyclic digraphs on n vertices,
−→
S3
n has the
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Fig. 2.1. Examples for orientation representations of bicyclic digraphs.

minimal skew energy and
−→
S4
n

−

has the second minimal skew energy for n ≥ 6; both
−→
S3
5 and

−→
S4
5

−

have the minimal skew energy,
−→
S4
5

+

has the second minimal skew energy

for n = 5;
−→
C4

−

has the minimal skew energy,
−→
S3
4 has the second minimal skew energy

for n = 4.

(2) Among all orientations of unicyclic graphs,
−→
P 4
n

+

is the unique directed graph

with maximal skew energy.

For bicyclic digraphs, we have the following.

Lemma 2.5. Let
−→
G be a bicyclic digraph of order n ≥ 8, G 6= S3,3

n . Then
−→
G ≻ (S3,3

n )∗,∗,−.

Proof. We prove the statement by induction on n. By Lemma 2.1, the character-

istic polynomials of S((S3,3
n )∗,∗,−), S(

−→
S3
n) and S(

−→
S4
n

−

) are:

PS((S
3,3
n )∗,∗,−) = xn−4(x4 + (n+ 1)x2 + 2(n− 4)),

PS(
−→
S3
n) = xn−4(x4 + nx2 + (n− 3)),

PS(
−→
S4
n

−

) = xn−4(x4 + nx2 + 2(n− 4)).

It suffices to prove that b4(
−→
G ) > 2(n− 4) for

−→
G 6= (S3,3

n )∗,∗,−.

Let n = 8.
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Case 1.1. t ≤ 1.

Subcase 1.1.1. x = y = 4. Then we can choose an edge e = uv on some C4 such

that G− u− v is connected. By Lemma 2.1, we have

b4(G
∗,∗) ≥ m(G, 2)− 4

= m(G− e, 2) +m(G− u− v, 1)− 4

≥ m(G− e, 2) + 6− 4

> m(P6, 2) + 2 (P6 is a proper subgraph of G− e)

= 8 = b4((S
3,3
8 )∗,∗,−).

Subcase 1.1.2. Either x or y is 4. Without loss of generality, suppose that x = 4.

Chose an edge e = uv on Cy such that G−u− v has at least 4 edges. By Lemma 2.1,

b4(G
∗,∗) ≥ m(G, 2)− 2

= m(G− e, 2) +m(G− u− v, 1)− 2

≥ m(G− e, 2) + 4− 2

> m(S4
6 , 2) + 2 (S4

6 is a proper subgraph of G− e)

> 8 = b4((S
3,3
8 )∗,∗,−).

Subcase 1.1.3. Neither x nor y is 4. Then x = y = 3 or x = 3, y = 5. We can

chose an edge e = uv on any cycle such that G− u− v contains at least 3 edges. By

Lemma 2.1, we get

b4(G
∗,∗) = m(G, 2)

= m(G− e, 2) +m(G− u− v, 1)

≥ m(G− e, 2) + 3

= b4(G− e) + 3 (G− e is a unicyclic graph without cycle of length 4)

> b4(
−→
S3
8) + 3 (by Lemma 2.4)

= 8 = b4((S
3,3
8 )∗,∗,−).

Case 1.2. t ≥ 2.

Subcase 1.2.1. Each cycle is of length 4. Then t = 3 and there are 3 vertices

outside of those cycles, say v1, v2, v3. Let v1 be a pendant vertex of G and u1 be the

adjacent vertex of v1, v2 be a pendant vertex of G− v1 and u2 be the adjacent vertex

of v2, v3 be a pendant vertex of G− v1 − v2 and u3 be the adjacent vertex of v3. By

Eq. (2.3), we have

b4(G
∗,∗) = b4(G

∗,∗ − v1) + b2(G
∗,∗ − u1 − v1)
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≥ b4(G
∗,∗ − v1) + 3

≥ b4(G
∗,∗ − v1 − v2) + 6

≥ b4(G
∗,∗ − v1 − v2 − v3) + 9

> 8 = b4((S
3,3
8 )∗,∗,−).

Subcase 1.2.2. There are two cycles of length 4 in G, say, Cx, Cy , then t = 2 and

z = x + y − 2t+ 2 = 6. There are two vertices outside of G. Similar to the proof of

subcase 1.2.1, we can obtain b4(G
∗,∗) > b4((S

3,3
8 )∗,∗,−).

Subcase 1.2.3. There is just one cycle of length 4 in G, say, Cx. If Cy = C3, then

t = 2 and there are 3 vertices outside of G. Similar to the proof of subcase 1.2.1, we

get b4(G
∗,∗) > b4((S

3,3
8 )∗,∗,−). If y ≥ 5, we can chose an edge e = uv on Cy such

that m(G − u − v, 1) ≥ 6. Then similar to the proof of subcase 1.1.2, we get that

b4(G
∗,∗) > b4((S

3,3
8 )∗,∗,−).

Subcase 1.2.4. G contains no cycle of length 4. Similar to the proof of subcase

1.1.3, the result holds for n = 8.

Suppose n > 8 and
−→
G ′ ≻ (S3,3

n′ )∗,∗,− for any bicyclic digraph G′ of order n′,

n′ < n. Denote by p the number of pendant vertices in G.

If p = 0, then
−→
G has no pendant vertex. Three cases are considered in the

following.

Case 2.1. t = 1. Let e = uv be an edge on Cx and u is the common vertex of Cx

and Cy . By Lemmas 2.1 and 2.3, and m(Pn, 2) =
(n−2)(n−3)

2 , we have

b4(G
∗,∗) ≥ m(G, 2)− 4

= m(G− e, 2) +m(G− u− v, 1)− 4

= m(P y
n , 2) +m(Px−2

⋃

Pn−x, 1)− 4

= m(Pn, 2) +m(Py−2

⋃

Pn−y, 1) + n− 8

=
(n− 2)(n− 3)

2
+ n− 4 + n− 8 > 2(n− 4)

since (n−2)(n−3)
2 − 4 = (n−6)(n+1)+4

2 > 0 for n > 7.

Case 2.2. t ≥ 2. Suppose e = uv is an edge on Cx and u is the common vertex of

Cx and Cy. By Lemmas 2.1 and 2.3

b4(G
∗,∗) ≥ m(G, 2)− 6

= m(G− e, 2) +m(G− u− v, 1)− 6

= m(P y
n , 2) + n− 3− 6
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= m(Pn, 2) +m(Py−2

⋃

Pn−y, 1) + n− 9

=
(n− 2)(n− 3)

2
+ n− 4 + n− 9 > 2(n− 4)

since (n−2)(n−3)
2 − 5 = (n−6)(n+1)+2

2 > 0 for n > 7.

Case 2.3. t = 0. Suppose that Cx and Cy are joined by a path of length a, n−8 ≥

a ≥ 0. Let e = uv be an edge on Cx, where u is the vertex of degree 3. Similar to the

proof of case 2.1, we obtain b4(G
∗,∗) > 2(n− 4). Therefore, b4(G

∗,∗) ≥ b4((S
3,3
n )∗,∗,−)

for p = 0.

Let p ≥ 1 and v be a pendant vertex of G with corresponding unique edge uv.

Since G∗,∗ − u− v has at least 3 edges, by Eq. (2.2) and the induction hypothesis,

b4(G
∗,∗) = b4(G

∗,∗ − v) + b2(G
∗,∗ − u− v)

> b4((S
3,3
n−1)

−,∗,∗) + 3

= 2(n− 1− 4) + 3 > 2(n− 4) = b4((S
3,3
n )∗,∗,−).

For n = 7, similar to the proof of Lemma 2.5 for n = 8, both (S4,4
7 )−,−,− and

(S3,3
n )∗,∗,− have the minimal skew energy. Since

PS((S
4,4
n )−,−,−) = xn−4(x4 + (n+ 1)x2 + 3(n− 5)),

b4((S
4,4
6 )−,−,−) = 3 and b4((S

4,4
5 )−,−,−) = 0. In a similar way to the proof of Lemma

2.5 for n = 8 , we can get that (S4,4
6 )−,−,− has the minimal skew energy for n = 6

and (S4,4
5 )−,−,− has the minimal skew energy for n = 5.

By Lemma 2.5 and the above statements, we obtain the following.

Theorem 2.6. Among all bicyclic digraphs of order n, (S3,3
n )∗,∗,− has the min-

imal skew energy for n ≥ 8; both (S3,3
7 )∗,∗,− and (S4,4

7 )−,−,− have the minimal skew

energy for n = 7; (S4,4
n )−,−,− has the minimal skew energy for n = 5, 6.

3. Bicyclic digraphs with maximal skew energy. For the path, by Lemmas

2.1 and 2.3, we can easily get the following statements.

Lemma 3.1. Let
−→
F n be a forest of order n. Then

−→
F n �

−→
P n. Equality holds if

and only if Fn = Pn.

Since the skew energy of a directed forest is the same as the energy of its under-

lying forest, by [6], we have the following.
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Lemma 3.2.

−→
P n ≻

−→
P 2

⋃−→
P n−2 ≻

−→
P 4

⋃−→
P n−4 ≻ · · · ≻

−→
P 2k

⋃−→
P n−2k ≻

−→
P 2k+1

⋃−→
P n−2k−1

≻
−→
P 2k−1

⋃−→
P n−2k+1 ≻ · · · ≻

−→
P 3

⋃−→
P n−3 ≻

−→
P 1

⋃−→
P n−1.

Lemma 3.3. For any bicyclic graph G with t ≤ 1, G∗,∗ � G+,+.

Proof. If two cycles are of odd length, then by Lemma 2.1, for any orientation of

G, b2k(
−→
G ) = m(G, k), for all 0 ≤ k ≤ ⌊n

2 ⌋. Thus G
∗,∗ = G+,+. If there is exactly one

cycle of even length in G, say, Cx, then

b2k(G
−,∗) = m(G, k)−2m(G−Cx, k−

x

2
) ≤ b2k(G

+,+) = m(G, k)+2m(G−Cx, k−
x

2
).

If both x and y are even, then

b2k(G
−,−) = m(G, k)− 2m(G− Cx, k −

x

2
)− 2m(G− Cy , k −

y

2
)

+ 4m(G− Cx − Cy, k −
x+ y

2
) ≤ b2k(G

±,∓) = m(G, k)

± 2m(G− Cx, k −
x

2
)∓ 2m(G− Cy, k −

y

2
)

− 4m(G− Cx − Cy, k −
x+ y

2
) ≤ b2k(G

+,+) = m(G, k)

+ 2m(G− Cx, k −
x

2
) + 2m(G− Cy, k −

y

2
)

+ 4m(G− Cx − Cy, k −
x+ y

2
).

Lemma 3.4. Let
−→
G be a bicyclic digraph of order n with t ≤ 1,

−→
G 6= (P 4,4

n )+,+.

Then
−→
G ≺ (P 4,4

n )+,+ for n ≥ 8.

Proof. We divide the proof into two cases.

Case 1. There is at least one cycle of length odd, say, Cx.

(i) t = 1, we can choose an edge e = uv on Cx such that u is the common vertex

of two cycles . Obviously,
−→
G − e is a unicyclic graph and

−→
G − u− v is a forest.

By Eq. (2.2), Lemmas 2.3 and 2.4, we have

b2k(
−→
G ) = b2k(

−→
G − e) + b2k−2(

−→
G − u− v)

< b2k(
−→
P 4

n

+
) + b2k−2(

−→
P 2

⋃−→
P n−4) (by Lemmas 2.4 and 3.2)

= m(P 4
n , k) + 3m(Pn−4, k − 2) +m(Pn−4, k − 1)

< m(P 4
n , k) +m(P 4

n−4, k − 1) + 5m(P 4
n−4, k − 2) + 4m(Pn−8, k − 4)
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= b2k((P
4,4
n )+,+).

(ii) t = 0. We can choose an edge e = uv on Cx such that u is a vertex in a path

which connects Cx and Cy . Obviously,
−→
G − e is a unicyclic graph and

−→
G − u − v is

the disjoint union of a forest and a unicyclic graph.

Claim 1. Pa

⋃

−−−→
P b
n−a

+

≺ P2

⋃

−−−→
P 4
n−2

+

, a 6= 2.

Proof. By Lemmas 2.4 and 3.2, we have

b2k(Pa

⋃−−−→
P b
n−a

+

) < b2k(Pa

⋃−−−→
P 4
n−a

+

)

= m(Pa

⋃

P 4
n−a, k) + 2m(Pa

⋃

Pn−a−4, k − 2)

< m(Pa

⋃

Pn−a, k) +m(Pa

⋃

P2

⋃

Pn−a−4, k − 1)

+2m(P2

⋃

Pn−6, k − 2)

< m(P2

⋃

Pn−2, k) +m(P2

⋃

P2

⋃

Pn−6, k − 1)

+2m(P2

⋃

Pn−6, k − 2)

= b2k(P2

⋃−−−→
P 4
n−2

+

).

By Eq. (2.2), Lemmas 2.1, 2.3 and 2.4, we have

b2k(
−→
G) = b2k(

−→
G − e) + b2k−2(

−→
G − u− v)

< b2k(
−→
P 4
n

+

) + b2k−2(P2

⋃−−−→
P 4
n−4

+

) (by Claim 1)

= m(P 4
n , k) + 2m(Pn−4, k − 2) +m(P2

⋃

P 4
n−4, k − 1)

+2m(P2

⋃

Pn−8, k − 2)

≤ m(P 4
n , k) +m(P2

⋃

P 4
n−4, k − 1) + 4m(Pn−4, k − 2)

≤ m(P 4
n , k) +m(P2

⋃

P 4
n−4, k − 1) + 4m(P 4

n−4, k − 2) + 4m(Pn−8, k − 4)

= b2k((P
4,4
n )+,+).

Case 2. Two cycles are of even lengths.

By Lemma 3.3, we only need to consider G+,+.

(1) t = 1. We can choose an edge e = uv in cycle Cx, u is the common vertex of

two cycles. By Lemma 2.1, we have

b2k(G
+,+) = m(G, k) + 2m(G− Cx, k −

x

2
) + 2m(G− Cy, k −

y

2
)
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≤ m(G− e, k) +m(G− u− v, k − 1) + 2m(Pn−4, k − 2)

+2m(G− Cy , k −
y

2
)

= b2k(
−−−→
G− e

+
) +m(G− u− v, k − 1) + 2m(Pn−4, k − 2)

≤ b2k(
−−−→
G− e

+
) +m(P2

⋃

Pn−4, k − 1) + 2m(Pn−4, k − 2))

< b2k(
−→
P 4
n

+

) +m(P2

⋃

Pn−4, k − 1) + 2m(Pn−4, k − 2)

= m(P 4
n , k) +m(P2

⋃

Pn−4, k − 1) + 4m(Pn−4, k − 2)

≤ m(P 4
n , k) +m(P2

⋃

P 4
n−4, k − 1) + 4m(P 4

n−4, k − 2) + 4m(Pn−8, k − 4)

= b2k((P
4,4
n )+,+).

(ii) t = 0. Choose an edge e = uv on the path which connects Cx and Cy. Assume

that one of the two components of G− e is of order j. By Eq. (2.2), we get

b2k(G
+,+) = b2k(G

+,+ − e) + b2k−2(G
+,+ − u− v)

< b2k(
−→
P 4
j

+
⋃−−−→

P 4
n−j

+

) + b2k−2(
−−→
P 4
j−1

+
⋃−−−−→

P 4
n−j−1

+

)

( or < b2k(
−→
P 4
j

+
⋃−−−→

P 4
n−j

+

) + b2k−2(P3

⋃−−−→
P 4
n−5

+

))

= b2k((P
4,4
n )+,+).

Lemma 3.5. Let
−→
G be a bicyclic digraph of order n with t ≥ 2. Then

−→
G ≺

(P 4,4
n )+,+ for n ≥ 8.

Proof. We prove statement by dividing three cases.

Case 1. x = y = z = 4. Then t = 3. If both Cx and Cy are oddly oriented, then

Cz must be evenly oriented. We can choose an edge e = uv such that G − u − v is

disconnected. Without loss of generality, we assume that e is on Cy.

b2k(G
+,+,−) = m(G, k) + 2m(G− Cx, k − 2) + 2m(G− Cy, k − 2)

−2m(G− Cz, k − 2)

≤ m(G− e, k) +m(G− u− v, k − 1) + 2m(G− Cx, k − 2)

+2m(G− Cy, k − 2)

≤ b2k(
−→
G − e) +m(P2

⋃

Pn−4, k − 1) + 2m(Pn−4, k − 2)

< b2k(
−→
P 4
n

+

) +m(P2

⋃

Pn−4, k − 1) + 2m(Pn−4, k − 2)

= m(P 4
n , k) +m(P2

⋃

Pn−4, k − 1) + 4m(Pn−4, k − 2)

≤ m(P 4
n , k) +m(P2

⋃

P 4
n−4, k − 1) + 4m(P 4

n−4, k − 2)
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+4m(Pn−8, k − 4)

= b2k((P
4,4
n )+,+).

If either Cx or Cy is oddly oriented, then Cz must be oddly oriented. Similarly,

we can prove that b2k(G
+,−,+) < b2k((P

4,4
n )+,+) or b2k(G

−,+,+) < b2k((P
4,4
n )+,+).

If both Cx and Cy are evenly oriented, then Cz is also evenly oriented.

b2k(G
−,−,−) = m(G, k)− 2m(G− Cx, k − 2)− 2m(G− Cy, k − 2)

−2m(G− Cz , k − 2)

≤ m(G, k) + 2m(G− Cx, k − 2) + 2m(G− Cy, k − 2)

−2m(G− Cz , k − 2)

= b2k(G
+,−,+) < b2k((P

4,4
n )+,+).

Case 2. x = y = 4, z 6= 4. Then t = 2 and z = 6. If both Cx and Cy are oddly

oriented, then Cz is oddly oriented. Since n ≥ 8, we can choose an edge e = uv such

that G− u − v is disconnected and u is one of the common vertices between Cx and

Cy. Without loss of generality, we suppose that e is on Cy. Then both G − Cy and

G−Cz are also disconnected. Note that G−Cx = G− e−Cx, by Lemma 2.1, we get

b2k(G
+,+,+) = m(G, k) + 2m(G− Cx, k − 2) + 2m(G− Cy , k − 2)

+2m(G− Cz , k − 3)

≤ m(G− e, k) +m(G− u− v, k − 1) + 2m(G− e− Cx, k − 2)

+2m(P2

⋃

Pn−6, k − 2) + 2m(P2

⋃

Pn−8, k − 3)

≤ b2k(
−−−→
G− e

+
) +m(P2

⋃

Pn−4, k − 1)

+2m(P2

⋃

Pn−6, k − 2) + 2m(P2

⋃

Pn−8, k − 3)

< b2k(
−→
P 4
n

+

) +m(P2

⋃

Pn−4, k − 1)

+2m(P2

⋃

Pn−6, k − 2) + 2m(P2

⋃

Pn−8, k − 3)

= m(P 4
n , k) +m(P2

⋃

Pn−4, k − 1) + 2m(Pn−4, k − 2)

+2m(P2

⋃

Pn−6, k − 2) + 2m(P2

⋃

Pn−8, k − 3)

≤ m(P 4
n , k) +m(P2

⋃

P 4
n−4, k − 1) + 4m(P 4

n−4, k − 2)

+4m(Pn−8, k − 4)

= b2k((P
4,4
n )+,+).

If either Cx or Cy is oddly oriented, then Cz is evenly oriented. By Lemma
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2.1, b2k(G
+,−,−) ≤ b2k(G

+,+,+) < b2k((P
4,4
n )+,+), or b2k(G

−,+,−) ≤ b2k(G
+,+,+) <

b2k((P
4,4
n )+,+).

If both Cx and Cy are evenly oriented, then Cz is oddly oriented and

b2k(G
−,−,+) ≤ b2k(G

+,+,+) < b2k((P
4,4
n )+,+).

Case 3. There aren’t two cycles with length 4. Since there is at least one cycle of

even length in
−→
G , without loss of generality, we assume that Cx is a cycle of minimal

even length.

Subcase 3.1. t is even.

Subcase 3.1.1. y is even and both Cx and Cy are oddly oriented. Then y, z > x ≥ 4

and Cz is oddly oriented. Let e = uv be an edge on Cy and u is the common vertex

of Cx and Cy.

Claim 2. m(Pn−2, k − 1) ≥ m(Pn−4, k − 2) ≥ · · · ≥ m(Pn−2ℓ, k − ℓ).

Proof. By Lemma 2.3, we get

m(Pn−2, k − 1) = m(Pn−3, k − 1) +m(Pn−4, k − 2)

= m(Pn−3, k − 1) +m(Pn−5, k − 2) +m(Pn−6, k − 3)

=

ℓ−1
∑

i=1

m(Pn−(2i+1), k − i) +m(Pn−2ℓ, k − ℓ).

Claim 2 follows immediately.

By Lemma 2.1 and Claim 2, we get

b2k(G
+,+,+) = m(G, k) + 2m(G− Cx, k − 2) + 2m(G− Cy, k −

y

2
)

+2m(G− Cz , k −
z

2
)

≤ m(G− e, k) +m(G− u− v, k − 1) + 2m(G− e− Cx, k − 2)

+4m(Pn−6, k − 3)

≤ b2k(
−−−→
G− e

+
) +m(Pn−2, k − 1) + 4m(Pn−6, k − 3)

< b2k(
−→
P 4
n

+

) +m(Pn−2, k − 1) + 4m(Pn−8

⋃

P2, k − 3)

+4m(Pn−9, k − 4)

= m(P 4
n , k) + 2m(Pn−4, k − 2) +m(P2

⋃

Pn−4, k − 1) +m(Pn−5, k − 2)

+4m(Pn−8

⋃

P2, k − 3) + 4m(Pn−9, k − 4)

≤ m(P 4
n , k) +m(P2

⋃

P 4
n−4, k − 1) + 4m(Pn−4, k − 2)
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+4m(Pn−8

⋃

P2, k − 3) + 4m(Pn−8, k − 4)

= b2k((P
4,4
n )+,+).

If either Cx or Cy is oddly oriented, then Cz is evenly oriented. By Lemma

2.1, b2k(G
+,−,−) ≤ b2k(G

+,+,+) < b2k((P
4,4
n )+,+), or b2k(G

−,+,−) ≤ b2k(G
+,+,+) <

b2k((P
4,4
n )+,+).

If both Cx and Cy are evenly oriented, then Cz is oddly oriented and

b2k(G
−,−,+) ≤ b2k(G

+,+,+) < b2k((P
4,4
n )+,+).

Subcase 3.1.2. y is odd. Then z is also odd. We can choose an edge e = uv on

Cy such that u is the common vertex and v is not the common vertex. By Lemma

2.1, we get

b2k(G
−,∗,∗) ≤ b2k(G

+,∗,∗) = b2k(
−−−→
G− e

+
) + b2k−2(

−→
G − u− v)

< b2k(
−→
P 4
n

+

) + b2k−2(
−→
P n−2)

= m(P 4
n , k) + 2m(Pn−4, k − 2) +m(Pn−2, k − 1)

< m(P 4
n , k) +m(P2

⋃

Pn−4, k − 1) +m(Pn−5, k − 2) + 2m(Pn−4, k − 2)

≤ m(P 4
n , k) +m(P2

⋃

P 4
n−4, k − 1) + 4m(P 4

n−4, k − 2)

+4m(Pn−8, k − 4)

= b2k((P
4,4
n )+,+).

Subcase 3.2. t is odd.

Subcase 3.2.1. y is even. Then y > 4. If both Cx and Cy are oddly oriented ,

then z is even and Cz is evenly oriented. Let e = uv be an edge on Cy and u is the

common vertex between Cx and Cy . Then

b2k(G
+,+,−) = m(G, k) + 2m(G− Cx, k − 2) + 2m(G− Cy , k −

y

2
)

−2m(G− Cz, k −
z

2
)

≤ m(G− e, k) +m(G− u− v, k − 1) + 2m(G− Cx, k − 2)

+2m(Pn−6, k − 3)

≤ b2k(
−−−→
G− e

+
) +m(Pn−2, k − 1) + 2m(Pn−6, k − 3)

< b2k(
−→
P 4
n

+

) +m(Pn−2, k − 1) + 2m(Pn−6, k − 3)

= m(P 4
n , k) + 2m(Pn−4, k − 2) +m(P2

⋃

Pn−4, k − 1) +m(Pn−5, k − 2)

+2m(Pn−6, k − 3)
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≤ m(P 4
n , k) +m(P2

⋃

P 4
n−4, k − 1) + 4m(P 4

n−4, k − 2)

+4m(Pn−8, k − 4)

= b2k((P
4,4
n )+,+).

If either Cx or Cy is oddly oriented, then Cz is oddly oriented. Similar to the

above proof, b2k(G
+,−,+) < b2k((P

4,4
n )+,+) or b2k(G

−,+,+) < b2k((P
4,4
n )+,+).

If both Cx and Cy are evenly oriented, then Cz is evenly oriented, so

b2k(G
−,−,−) ≤ b2k(G

+,+,−) < b2k((P
4,4
n )+,+).

Subcase 3.2.2. y is odd. Then z is odd too. Similar to the proof of subcase 3.1.2,

we obtain b2k(G
−,∗,∗) ≤ b2k(G

+,∗,∗) < b2k((P
4,4
n )+,+).

Combining all those cases above, we complete the proof.

By identifying two vertices of two cycles with length 4, we get a graph G
4,4
7 . For

n = 6, 7, similar to the proofs of Lemmas 3.4, 3.5, we obtain that the following graphs

have the maximal skew energy.

6
-

?-

? -

6

�

I �
R 	 R

	

I

Fig. 3.1. The maximal skew energy graph (P 4,4

6
)+,+,+ for n = 6 and (G4,4

7
)+,+ for n = 7.

By Lemmas 3.4 and 3.5, we obtain the following statement.

Theorem 3.6. Among all bicyclic digraphs with order n ≥ 8, (P 4,4
n )+,+ has

the maximal skew energy; (G4,4
7 )+,+ has the the maximal skew energy for n = 7;

(P 4,4
6 )+,+,+ has the the maximal skew energy for n = 6.
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