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DISTURBANCE DECOUPLING FOR DESCRIPTOR SYSTEMS
BY MEASUREMENT FEEDBACK*
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Abstract. In this paper, the disturbance decoupling problem for descriptor systems via feed-
backs that are based on measurements is discussed. Necessary and sufficient conditions are derived
for the existence of feedbacks so that the disturbances do not influence the input/output behav-
ior. At the same time, the closed-loop system becomes regular, of index at most one, and possibly
also stable. The construction is based on a transformation to condensed form under orthogonal
equivalence transformations that can be directly implemented as a numerically stable method.
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1. Introduction. In this paper, we study the disturbance decoupling problem
for descriptor systems by measurement feedback using methods that were developed
recently in [6, 7, 8]. Consider a descriptor system of the form

Ei = Ax+ Bu+ Gd,
(1) y = Cu,
z = Hz,

where z € R" is the state, u € R™ is the control input, y € R? is a measurement,
z € R is the output, and d € RY is a disturbance that may represent modeling
or measuring errors, noise, higher-order terms in a linearization, or just an unknown
input to the system. The system matrices satisfy £, A € R**", B ¢ R™™, G € R™*¢,
C € RP*™ and H € R¥*".

The topic of this paper is to design a feedback compensator for system (1), based
on measurements, which has the form

E,w = Apw+ Ly,

(2) u Mw + Ny,

where w € R¥ is the state of the compensator and k is the order of the compensator.
The closed-loop system obtained with this compensator is
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with

£ E A= A+ BNC BM
T E, |’ T LC Anm |’
Apart from the requirement that the disturbances should not occur in the in-
put/output relationship, i.e., that we have

sE—A—BNC -BM 17'[@
) +LH 0][ e sEm—Am] [0]20’

further properties are desirable for the closed-loop system. First of all, the pencil of the
closed-loop system (3) should be regular, i.e., det(s€ — A) does not vanish identically
for all s. This condition guarantees that the closed-loop system has a unique solution
for all sufficiently smooth d and appropriate initial conditions. Secondly, we would like
the closed-loop system to have indez at most one, i.e., all the Jordan blocks associated
with infinite eigenvalues of the matrix pencil A — A are of size at most one. This
condition guarantees that no impulsive modes occur in the response of the system if
piecewise-constant input functions are used; see [4, 5] for a dicussion of these issues.
Finally, for obvious reasons, we would like the closed-loop system to be stable, i.e.,
all finite eigenvalues of the closed-loop system are in the open left half-plane.

Disturbance decoupling via state and output feedback has been discussed widely
in the literature [2, 6, 7, 12, 14]. The use of measurement feedback, however, is
more practical and has (to our knowledge) not been discussed so far. We will present
necessary and sufficient conditions for the solution of these problems.

The basis for our results is a condensed form under orthogonal equivalence trans-
formations, which is a variation of the generalized upper-triangular (GUPTRI) form
for matrix pencils [10, 11]. Numerical methods for the computation of this form are
available in LAPACK [1]. The GUPTRI form displays all the invariants, in particular
the left and right Kronecker indices, but it is not the complete canonical form.

LEMMA 1.1. [10] Given a matriz pencil (E,A), E,A € R™ !, there exist or-
thogonal matrices P € R™*", Q € R™! such that (PEQ, PAQ) are in the following
GUPTRI form:

ll l2 l3 l4
ni [ sEir — Ain sEix— A1p sEi3— Az sEig — Auy
Mo 0 8Fay — Ass  sEpz — Aaz  8Fay — Aoy
(5) P(sE—-A)Q = ns 0 0 sF33 — Ass  sEza — Ass
N4 0 0 0 8E1 — Asa

Here no = la,n3 = I3, and sEy1 — A1 and sEyq — Agq contain all left- and right-
singular Kronecker blocks of sE — A, respectively. Furthermore, sEss — Asa and
sE33 — Ass are regular and contain the regular finite and infinite structures of sE— A,
respectively.

We use the following notation: S, (M) denotes a matrix with orthogonal columns
spanning the right nullspace of a matrix M, T, (M) denotes a matrix with orthogonal
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columns spanning the right nullspace of a matrix M7, deg(f(s)) denotes the degree
of the polynomial f(s), rank,[-](s) denotes the generic rank of a rational matrix
function, C* denotes the closed right half complex plane; and C~ denotes the open
left half complex plane.

Our necessary and sufficient conditions will depend on the quantities that can be
read off from the condensed form that we determine in Section 2.

We will also formulate these conditions in terms of the original data of the system
as well as geometric conditions related to dimensions of subspaces. This allows a
coordinate-free statement of our results and control theoretic interpretations.

We recall three useful and well-known lemmas that we need in the proofs of the
main theorems in the following section and that characterize separately the conditions
that are needed to fulfill the requirements for the closed-loop system.

The first lemma characterizes when we can do the disturbance decoupling at all.

LEMMA 1.2. [7] Consider matrices E,A € R™" B € R"™,C € RP*" and
assume that (E, A) is reqular. Then C(sE — A)™1B = 0 if and only if

rank sE—-A B _ n
9 c 0|
Our second result is the characterization of when a system is regular and of index
at most one.
LEMMA 1.3. [4, 9] Let E, A € R™". The following statements are equivalent:

(a) (E,A) is regular and of index at most one.
(b) rank [ E AS(E) | =n.
(c) ra.nk[ Tm(g)TA ] =n.
(d) deg(det(sE — A)) = rank(E).
Finally, we have the characterization of when a system can be regularized to have
index at most one and also when it can be made stable by feedback.
LEMMA 1.4. [4,9] Let E,A € R"*", B € R™"™.
(a) There exists a matriz F' € R™*"™ such that (E, A+ BF) is regular if and only
if

(6) rank, [ sSE—A B | =n.

(b) There exists a matriz F € R™*™ such that (E, A+ BF) is reqular and stable
if and only if

(1) rank [ sSE—A B ]=n vse C*.

(c) There exists a matriz I € R™*™ such that (E, A + BF) is regular and of
index at most one if and only if (6) holds and

(8) rank [ E AS(E) B |=n.

(d) There exists a matriz F € R™*™ such that (E, A + BF) is regular, stable,
and of index at most one if and only if (7) and (8) hold.
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If the matrix [ sE— A B | has full rank for all s € C, then the associated
sE o A ] has full rank for all s € C then the
associated system is called R-observable; see [9, 4].

Condition (8) is often called controllability at infinity or impulse controllability,
while the dual condition that

system is called R-controllable and if [

T
rank | Too(E)TA
B

is full is called observability at infinity or impulse observability; see [3, 4, 5, 9].

Note that the feedback matrices in Lemma 1.4 can be explicitly computed using
numerically stable methods as suggested in [4, 15]. Hence, in the following, if we make
use of this lemma, it always implies that we have a numerical method that explicitly
computes this feedback.

The paper is organized as follows. The basic tool that we use is a condensed form
under orthogonal equivalence transformations. This condensed form is introduced in
Section 2. In Section 3 we present our main results on the disturbance decoupling
problem by measurement feedback. Some conclusions will be given in Section 4.

2. A condensed form. In this section we will derive a condensed form under
orthogonal equivalence transformations. The proof is constructive and can be directly
implemented as a numerically stable algorithm. This condensed form will then be used
in the following sections to prove our main results and will also provide explicit design
methods for the desired feedbacks. The algorithm is based on row compressions and
column compressions which can be obtained via singular value decompositions or
other rank-revealing factorizations, e.g., [1, 13]. Furthermore, the transformation of
a matrix pencil to its GUPTRI form is used, which is implemented as the routine
DGGBAK in LAPACK [1].

THEOREM 2.1. Consider a system of the form (1) with coefficient matrices E,
A, B, C, G, and H. Then there exist orthogonal matrices P,Q € R™*" such that

M1 M2 M3 Ha
T1 —8911 — @1 $O12— P12 sO13— P13 5O — Piy
T2 5021 — P21 502 — Py 5023 — Pz 5O — Poy
P(SE - A)Q = U3 0 —‘1)32 8@33 - ‘1333 8@34 - ‘1334 ,
T4 0 —®y9 —®y3 5044 — Pyy
T5 | 0 0 0 8(“)54 - (1)54
o [¥ n | Gi
T2 \IJQ T2 0
9) PB=ps | Y3 |, PG=ps; | 0],
T4 \114 T4 0
T5 | 0 75 0
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M1 p2 g3 g M1 p2 M3 g
CQZ [0 Cz 03 04], HQ: [0 0 0 H4]

such that the following properties hold.
The matrices G1, V4, and

©21 O O3 Yy
0 0 B33 T3
0 0 0 Uy

are of full row rank, ©33 is nonsingular, Cs is of full column rank, and, furthermore,

5021 — @91 5029 — Doy 5093 — Py Ty ]
rank 0 -3, 8033 — B33 U4 =n+us+mn VseC,
0 — By =43 vy |
—®35 5033 — B33 |
rank | —®yo —&y3 = M2 + U3 Vs € (C,

Cy Cs |

(10) rankg (8921 — (1321) = T2,
5054 — P54 |

(11) rank, L, _ = [i4.

Proof. We prove Theorem 2.1 constructively by the following algorithm.
Algorithm
Input: System matrices E, A, B,G,C, H as in system (1).
Output: Orthogonal matrices P, @, and the condensed form (9).
Step 1. Perform a row compression of [ B d ] and a column compression of H
and then compute the GUPTRI form of T2 ([ B G ])(sE — A)Soo(H) to determine
orthogonal matrices P;, ()1 such that

= [q 4
n [s0) —a) 50, -,

(1) (1) (1) (1) (1)
T. s05, — & 05, — &
P(E-A)Qu= ") | 0 _ 0 o _ g |
T3 5037 — B3 Oz — Py,
T5 0 8954 - <I>54
n— g 4

HQ:= [ 0 I ],

W | g Ty [
T. ¥ T 0

PB=% 21 pPG="7 ,
1 Tél) 0 1 7_?El) 0
T5 0 T5 0
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§O54 — @ . -
where rank, [ 541'[4 3 | = u4 (i.e., condition (11) holds), 7y +72( )—|—T3(1) +75 =m,

rank(G1) = 11, rank(¥ (1)) ( ) rank(@%ll)) = T?El) and, furthermore,
rank(s®(1) <I>§11)) = 7'3(1) Vs € C.
Partition the matrix CQ; as

n—ps g
coi= [ c al

Step 2. Perform a column compression of Cfl) to get an orthogonal matrix Q2 such
that

where rank(Céz)) =n—pg —t;. Set

t1 n—ps—1t

G)(l) (1) 2 2 2 2
l 9(1) <I>(1) Q2 = [5951) - ‘1’51) 3952) - ‘I’gz) ]a
31
t1 n—ps—1t
(o)~ ¥ = [s0f) - o) 50l a2,

Step 3. Compute the GUPTRI form of s@ézl) - <I>g21) to determine orthogonal matrices
P53, ()3 such that

p1 t1 — 1

lsgzl — (1321 86(3) (3)]
0

P;(s082 — 3@, =: (1)+T(1) 6(3) 3®
32 32

T2
where rank(@&‘?) =11 — p1, ranky(sO21 — ®21) = 7 (i.e., condition (10) holds), and
rank(s@?z) - <I>g32)) =t —u; VseC.

Set
0® _aB®
P.(s0® _ 3@ [8 23— o ]
3(5@ 55 57) = (1) + 7_( ) . 9(3) qé?

J! t1 —
(8(“)(2) (I)ﬁ))Q?, =: [8911 — <I>11 S@§32) — (I)§32) } 5
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s@%lz) — o

P 22
| soll —al}

. T21 ) 89234 — ‘I‘gé;
'7'2( ) +7'3( ) — Ty s@éﬁ —<I>g4) ’

oV ] _ T,
Py [ 0 _'Tzl) +T3(1) — Ty \I!g3) )

Step 4. Perform a simultaneous row and column compression of [ @é‘? G)g? ] to
get orthogonal matrices Py and @4 such that

2 %
3 3 3 3 _p3 | —P32 5033 — P33
Py [ 59;2) h <I>§2) 89&3) B <I>§3) ] @ = T4 [_‘1’42 —Py3 ],

where ©33 is nonsingular and

po=(n—pg—t1) 4+ (br — p1) — p3 =n — py — pi3 — fua, T4=T2(1)+T351)—7'2—,u3-

Set
w2 i3
s0) — a3 502 — 0, =T [5012 =i 5015 g
s@ég) @gi) 6)(33) <I>(33) YT [8020 — Bay 5023 — Bog |
H2 o p3
[0 ¢ = [C: G,
(3) _ 53\ _. M3 | O34 — P34
Py (5034 ‘1’34)—-7_4 [5644—<I>44]’
3 _.p3 |3
P =1 [\h]
and
IT1+T2 ITI
P = P4 P3 Pla
I I,
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Note that

8021 — a1 5093 — Pyy  $O23 — Paz ¥y

rank 0 —P39 5033 — ®33 U3
0 -y —®y3 U,
(1) (1) (1)
s05, — @ v 1) (1)
= rank 2 2 2 =+ =m+us+m VseC
B R R

and

—®35 5033 — P33 3 _ 53 3 _ 53

rank | —®4 — By = rankl $05 — 85, 5035 (2){)33
02 03 0 02
=n-—ps—t)+ 1 —m)=n—p1 —ps=pr+p3 VseC

Hence, the rank conditions hold and PEQ, PAQ, PB, PG, CQ, and HQ are in the
condensed form (9). O

In the following section, we will use condensed form (9) to derive solvability
conditions for the disturbance decoupling problem by measurement feedback. In order
to formulate our solvability conditions in terms of the original data of the system (1),
we need some notation.

DEFINITION 2.2. [10] Given a matriz pencil (E, A), E, A € R™*!, and orthogonal
matrices P,Q such that P(sE — A)Q is of the form (5), then

1. The minimal left-reducing subspace V,,_[E, A] of (E, A) is the space spanned
by the leading ny columns of PT.

2. The minimal right-reducing subspace Vi, [E, A] of (E, A) is the space span-
ned by the leading Iy columns of Q.

3. The left-reducing subspace corresponding to the finite spectrum of (E, A), de-
noted by Vy_i[E, A], is the space spanned by the leading ni + na columns of
pPT.

4. The right-reducing subspace corresponding to the finite spectrum of (E,A),
denoted by Vy_,[E, A], is the space spanned by the leading l1 + 1o columns of
Q.

Introduce, furthermore, the following spaces:
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Moreover, let

n=tZ@| | se=ze | 4],
II:= Vf_l[A5AT,A6Ar],
By = (MHTAs5, Z5:= [TH)TAs, Z3 = (TH)TAsA,.

Here + denotes the orthogonal complement of a space.

Using this notation we can read off the following dimensions of subspaces from
the condensed form (1).

COROLLARY 2.3. Consider a system of the form (1) and let P and Q be orthogonal
matrices P such that PEQ, PAQ, PB, PG, CQ, and HQ) are in the condensed form
(9). Introduce submatrices in the condensed form (9) as follows:

[ $011 — @11 8012 — Py 5013 — P13 | Uy
= T 5 5021 — Po1 5023 — Poy  5O93 — Pz | ¥y
E —A B = I
[ sk 1 | ] 0 — P39 5033 — @33 | U3
| 0 Py —Py3 Uy
o [ —®35 5033 — P33 O34 — Pay
sEy — Ay | | =Py —®y3 5044 — Py
C h 0 0 5054 — P54
| (O Cs Cy

Then,

rank [ sA; — Ay Az | =rank| s, — A, B ] VseC,
By — A,
C
1+ p2 + pg =rank(A,), 7T+ 72+ pg + 74 = rank(Ay),
po + p3 + pa = n —rank(Vy_ [As Ay, AgAr]),
7 =rank(G), 7 =rank(Il), w3 = rank(E;).

rank(sZ; — Ey) = rank [

] Vs € C,

Using Corollary 2.3, we can relate subspaces in terms of the original data to subspaces
in terms of the transformed data in the condensed form (9). We will make use of this
in our main theorems in the next section.

3. Main results. In this section, we present our two main theorems. The first
theorem gives necessary and the second sufficient conditions for the existence of feed-
backs that make a system regular, of index at most one, and stable using measurement,
feedback.

THEOREM 3.1. Consider a system of the form (1) and assume that orthogonal
matrices P are given such that PEQ, PAQ, PB, PG, CQ, and HQ are in the
condensed form (9). Let Ey, Ey, Ay, A, B, C, A;, i = 1,...,6, A,, Ay, II, 5,
7 =1,2,3, be as in Corollary 2.3.
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(a) If there exists a compensator of the form (2), with (En, An) regular and
of index at most one, such that the pencil of the closed-loop system (3) is
reqular and the disturbance decoupling relation (4) holds, then the following
conditions hold:

12 rank, [ sE—A B

|
sE—A
C

(12)
(13)
(14) rank(G) + rank(II) + rank(=3) < rank(A,),
(15)
(16)

rank, [

15

16 rank, (sZ; — E3) = n — rank(Vy_,[As5A,, AgA;)).

(b) If the closed-loop system (3) is regular, stable, and satisfies (4), then the
following conditions hold:

(17) rank[ sE—A B]=n VseC",

(18) rank[ SEgA ] =n VseCF,

(19) ra.nk[ sAi — Ay Az ] =rank(A;) Vse€ @+,

(20) rank(sZ; — Z2) = n —rank(Vy_,[AsAr, AgA;]) Vs € ct.

(c¢) If the closed-loop system (3) is regular and of index at most one and satisfies
(4), then the following conditions hold:

(21) rank [ E AS.(E) B | =n,
E
(22) rank [ TL(E)A | =n,
C
(23) rank(E; ) + rank(E,) = rank(E) + rank(Z3),

(24) rank[ A1 A2S.o(A1) As | =rank(A),
Si

(25) rank [ TT(21)E,

:| =n — rank(Vf_T[A;)Ar, AGAT])

(d) If the closed-loop system (3) is regular, of index at most one, stable, and
satisfies (4), then conditions (17)—(25) hold.
Proof. Using Corollary 2.3, we can reformulate the conditions (14), (15), (16),
(19), (20), (23), (24), and (25) as

(26) T+ T2 <+ ope,
(27) ranky [ sE1 -4, Bl=mn+n+ups+mn,

E,— A
(28) rankg[s 2(:' 2]:u2+,u3+u4,
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(29) rank [ sFy —A; B l=m+ntus+m Vse CT,
(30) rank [ SEzé_, Azl pi2 +pz +ps VseCF,
O O Ous | _
(31) rank [ Oy Ouy ] + rank [ Osi | ~ rank(E) — s,
(32) rank |: El AISOO (El) B :I =T + T2 + p3 + 734,
E, i
(33) rank | TL(E2)As | = po + p3 + pra,
¢

respectively. Recall that

E A B N M c
R E e R B RS | P | R
(a) Conditions (12) and (13) follow directly from Lemma 1.4 (a).

Since @33 is nonsingular and (E,,, A,,) is regular and of index at most one, it
follows that the pencil

O33 P33+ U3NC3 U3M
E, |’ LCs A

is regular and of index at most one. By Lemma 1.2, we have

sE— A— BNC —BM G
n + k = rank, -LC sE,— A, O
H 0 0
—@32 — ‘I’3N02 8933 — @33 — ‘I’3NC3 —\I’3M
=T1+ T2 + pa + rankg —Pyp — I4NCo —®y3 — U4NCs -V, M
—LC2 —ch SEm bt Am
8933 — <I)33 — \P3NC3 —\I/gM
Zn+7’z+u4+rank9[ _LCs sE, — A, ]

=T +To+ ps+pus+k
=71+ 7+ (n—p — p2) + k.

Hence, we have (26).
Consider the GUPTRI form

—(}32 - l:[’3]\76’2 8(")33 - (1)33 - \I’3NC3 —lIJ3M
U| —®4 — U4NCs —®45 — UyN(Cs UM
—LCQ —LC3 SEm — Am
v (2 +ps +k)—v
w 5032 — @32 5033 — @33
(s +m+k)—w [ 0 5043 — Py3 ]

v
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with U,V orthogonal, @3> of full row rank, rank, (5043 — ®43) = (u2 + ps + k) — v,
and rank(s@3s — ®35) = w for all s € C. Set

(O 0] =y, [T 0]=1i, [04]:64,

0
8934 — @34 — ‘I’3NC4 ~ = ‘I’3 0 4
U 8944 — @44 — ‘I’4NC4 =: [ 8834 B §34 :| ) U ‘I’4 0 =: [ %3 :| )
LC4 SY44 — P34 0 I 4

8@12 - ‘1)12 - \IllNCQ 8@13 - ‘1313 - \IJINC;; \IJlM v
8@22 - ‘1)22 - \IIQNCQ 8@23 - ‘1323 - \I/QNC;; \I»’QM

_. [ 8@12 - <?12 8@13 - ‘;’13 ]
5022 — Pgp 5023 — Poz |’

Co C3 0 A
[02 0 I]v::[o2 Cs ].

Then, by Lemma 1.2, we have

4
Zui-l-k:n—}-k‘

i=1
=T +7'2+,u4+w+[(u2+,u3+k)—v],
and then

prt+v=m+ 7 +w.

Moreover, we have that

5011 — @13 8@12 - @’12
5021 — Pa1 5Oz — Doy
0 5030 — P39

is square. Since

A+BNC BM
LC K

is regular, we then have the following identities for at least one s € C:

5011 — @11 3612 - ‘i’m

(34) rank 8621 — &y S(E)zz - {?22 =7 +7t+w,
0 5032 — P35
8(:)43 - ‘i>43 8644 - ‘i‘44 _ _
(35) rank 0 8654 _ @54 = M4 + (:U’Z + M3 + k) .
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On the other hand, from Theorem 2.1, we have that for all s € C,

rank[ 50,3 — By Ty ] =(us+7m+k)—w,
8632—‘i’32 _
(474 ]-»

Therefore, for at least one s € C, we have

5011 — @11 5012 — P12 5013 — P13 ¥y 0
5021 — g1 5Oz — Paa 5023 — Doz Wy 0
rank 0 —@32 8@33 - ‘1’33 lI’3 0
0 —®y9 —&y5 ¥, 0
0 0 0 0 I
(36) [ 5011 — @11 012 — @12 5013 — P13 Uy
— rank 5021 — @y 8(:)22 - ‘?22 S(:)23 - ‘?23 ‘;’2
0 5032 — P32 5033 — P33 U3
i 0 0 5043 — P43 Uy
= n+ntw+(us+n+k)—w
= n+ntus+mt+k
and
[ —®3, 5033 — P33 O34 — B34 O
—Py2 —®y3 5044 — P44 0O
rank 0 0 8@54 - ‘1)54 0
Cy Cs Cy 0
0 0 0 I
(37) [ 5032 — @32 5033 — P33 5034 — P34
_ 0 5043 — @43 504 — Py
= rank 0 0 8@54 - @54
L Cy Cs Cy
v+ [(p2 + p3 + k) —v] + pa
Z?:Q Mi + k)

and conditions (27) and (28) follow.

(b) If the pencil (£,.4) is stable, then conditions (17) and (18) follow directly
from Lemma 1.4 (b). Moreover, (34) and (35) hold for all s € C" and hence (36) and
(37) hold for all s € C*. This implies that (29) and (30) hold.

(c) If the pencil (£,.4) is of index at most one, then conditions (21) and (22)
follow directly from Lemma 1.4 (c). In order to prove conditions (32) and (33), we
introduce the submatrices

5011 — @13 8(5)12 - ‘?12
5021 — &9 8@22 - ‘?22 ’
0 503y — P39

S(:)l — qA)l =
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[ 5011 — ®11 8@12 - %’12 3@13 - ‘?13 Uy
= = 5021 — P21 5022 — oy 5023 — Pa3 = Uy
S@ - @ = ~ ~ ~ ~ s \IJ = ~ ,
! ! 0 5032 — B3z 5033 — Pg3 LE
| 0 0 8643 - <I>43 lI14
A = [ 8(:)43 - <i>43 S(:)44 - ‘i’44
— Py :=
50 2 I 0 5045 — Bys |’
B B [ S(:)32 - ‘i’32 8@33 - ‘?33 8@34 - ‘21?34
50y — @y 1= 0 5043 — P43 5044 — Pus |,
| 0 0 S(“)45 - @45

H::[éz C~’3 C~’4 ]
Note that ©33 is nonsingular, ¥, is of full row rank, and Cs is of full column rank,

S0 [ Ou Uy ] is of full row rank and [ %32 ] is of full column rank, i.e.,
2

(38) rank[ (:)43 ‘i’4 ] =(us+7+k)—w, rank [ %32 ] = .
2

Since the pencil (£,.A) is regular and of index at most one, the same also holds for
the pencils (01, ®1) and (O2, ®2). Thus, Lemma 1.3 implies that

rank [ ©; #,5,(01) =7 +m +w
and
rank[ TQQ . ] = (2 + p3z + k —v) + pa.
TL(02)P
Therefore, using (38), we have that
rank[ ©1 915,(01) ¥ ]|=Ti+mtust+mtk
and
©:
rank T£(Q2)<I>2 =po+pus+ps+k

or, in other words,

rank | Bt 0 AiSee(B1) g =n+Tt+pst+ 1tk

0
I

and

= p2 + p3 + pa + k,
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i.e., conditions (32) and (33) follow.
To prove condition (31), note that ©33 is nonsingular and Os; is of full row rank,
so we have

rank(©3z3) + rank(E,,) + rank { Ous ]

Os4

[ @33 0 Oz
_ 0 0 Ou
= rank 0O E, 0

| O 0 Oz

[ O3 @33 (:934
=rank | 0 ©Ou Oy

| 0 0 Oz
. é32 (:)33 T£((:)43)(:)44
= rank 0 (:)43 ] + rank [ Ous

T A &
= rank(©s3) + rank(E,,) + rank [ Too((2)43)@44 ]
54

and hence

944 _ Tg;((:)43)(:)44
rank [ Oss ] = rank [ Oss .

Moreover, since (€,.A) is regular and of index at most one, by Lemma 1.3 (d) we
obtain that

[ ©11 @12 o 6
rank(E) + rank(Em) =rank [ Oy O + rank [ 613 @44 ]
| 0 O 54
[ O11 @12 0 T
@21 On 0 [ TL(043)0u ]
= rank = +rank | %
ran 0 O 0 ran P
L 0 0 O3 |
[ O11 (E)IZ @13 i
©21 O O3 Oy
< ~ <
< rank 0 O (:)33 + rank [ O ]
L 0 0 O3 |
[ ©11 ©12 O13 0
©21 Oz O3 0 6
=rank | 0 0 ©3 0 | +rank [ @44 ] ,
0 0 0 0 54
0 0 0 E,
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i.e., we have that

011 O1 Ou4
rank(E) < ps + rank [ Oy O ] + rank [ Oss ] .
Since the other direction of this inequality is obvious, condition (31) follows. (d)
follows from (b) and (c). O

The following result gives sufficient conditions. In the course of the proof we
explicitly construct the desired feedbacks.

THEOREM 3.2. Consider a system of the form (1) and assume that orthogonal
matrices P are given such that PEQ, PAQ, PB, PG, CQ, and HQ are in the
condensed form (9). Let Ey, Ey, Ay, Ay, B, C, A“ i=1,...,6, A,, Ay, I
j=1,2,3, be as in Corollary 2.3.

(a) If the conditions (12)—(16) hold, then there exists a compensator of the form

(2) such that the pencil of the closed-loop system (3) is regular and the dis-
turbance decoupling relation (4) holds.

(b) If conditions (14) and (17)—(20) hold, then there exists a compensator of the
form (2) such that the pencil of the closed-loop system (3) is regular, stable,
and (4) holds.

(¢) If conditions (14) and (21)—(25) hold, then there exists a compensator of the
form (2) such that the pencil of the closed-loop system (3) is reqular, of index
at most one, and (4) holds.

(d) If conditions (14) and (17)—(25) hold, then there exists a compensator of the
form (2) such that the pencil of the closed-loop system (3) is regular, stable,
of index at most one, and (4) holds.

Proof. We prove Theorem 3.2 constructively. Since conditions (12) and (13) yield

that

) ‘—‘J;

rank,(sOs4 — $54) = 75, rank, [ Ou — &y ] = M1,

5091 — ®9

5011 — @1y
5091 — By
(26) holds, we can find orthogonal matrices U1 R(“+TZ)X(”+TZ) Vi e RHrXm
Vz € RH2XH2, U € R™%™ U € R™*7 and VZ; € RH#+*H4 guch that

by computing the GUPTRI forms of s054 — ®54 and [ ] and using that

[7 5011 — @11 5012 — P12 ] [ ‘71 ~ ]
5021 — ®o1 509 — Pao Vs

M1 M2 M3 4 s
fa | sEi —Ann sEix — A1z sEiz — A1z sEiy— A sEis — Ais
=: fl 0 sEyy — Ayy  sEys — Ays sEpy — Ayy  sEps — Ays

T3 0 — Az, sE33 — Ass —Aszy —Ass
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and
fa fs
T4 —Au sEy5 — Ags
N T —A sEss — A
o sOus — B R 75 —Ass 55 — Ass
[ ! o ] { S@:i _ @22 ] Vi=:7¢ |sEes— Aes sEes — Ass
® s —Azy sErs — Ay
fe 0 0

~

A HG ~
sEy6 — Age
sEse — Ase
sEge — Aso
5Ere — Arg
sEge — Ase

where ~E22 and E75 are nonsingular, Ejss is of full column rank, E64 is of full row rank,
and sFEj; — A1 and sFgg — Agg are nonsingular for any s € C. Furthermore,

T3 = (11 +72) — (fn + fi2), fis =Ta+T5 — g,

P = po — iz — fis,  fla + fl2 = pa,
fla = pa — fis — o, Ta = (u1 + p2) — (11 + 72),
T5 =Te— T4 — 76, fl5+ fle = T5.
Set
M2 p3
A T4 | A Ass
Us[ @12 Pu3 | =75 | As2 Ass |,
76 | Ae2 Ases
1:13 ,1:14 l}s
@3 ¥, = 13 Az Ass Ags
Dy T4 | Asz Ass Ass |’
and, furthermore,
) fs  fla fis ) 71 [Wy
CoVa=: [Co1 Cor Chs], Us¥y=:75 | Uyp
76 | Wa3

T1 Ff
p1 B2 M3 4 T | Fy
(39) F'Q=: [F} F} F F}], PF'=pu |Fj|,
T4 Ff
T5 Fsc
with
R fla fis fis [ e i [ Fo
RV [Fh Fh Fh) O 5 | =i | B
2 Ts | F5
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If N is a solution of the linear system

(40)
then set

Em
L

Il

(41)

Then, for all s € C, we have

U,N = F¥,

E, A,, .= A+ BF® + F°C — BNC,
BN — F¢, M := F* — NC.

sE— A— BNC —-BM G

rank -LC sEn—A, O

(42) H 0 0
sE—A—BF* BF'-BNC G
= rank 0 sE—A—-FC G
H 0 0

169

(a) Since conditions (27) and (28) hold, by Lemma 1.4 (a), we can compute F? F?,

FY) Fs, Ff, and F¥ such that

Wy b b b 0 As
FY F? F. A
(43) [ l1143 :| [ 1 2 3 ] + 0 A62
Fs /:143
(44) sz [ C21 C22 :I + A53
Fe 0

and, for at least one s € C,

8611 — (1)11 — ll'lFlb
8621 — (1)21 — II'QFlb
— R
—Uy FP
—Ays — F5Co3
—Ass — F{Cas
—F5C023

(45)  det

(46) det

8612 — (1)12 — 1.-['1.F2b
8622 — (1)22 — II'QFZb
—Agy — Oy F}
8633 - @33 - F3CC3
—®435 — F{C5
—FeC;

A53 :|
83—,

A63

1‘:144

Asy =0,
0

8913 — (1)13 — ‘I’3Fé)
8923 — (1)23 — ‘I’gFé)
8@33 - @33 - 11’3F3?

—Ays — U3 F?
5034 — @34 — F5Cy
5044 — P4y — F{Cy4
S(“)54 - ‘I>54 - F5CC4

#0,

#0.

Moreover, conditions (12) and (13) hold, [ 542 ] and [ Co1 Oy | are of full row
13

rank and full column rank, respectively, so there exists at least one s € C such that

A _’215‘{ 51?55 - 455 81?56 - /:156 Wy

rank sEgs — Ags  sEes — Ags  sFes — Ags Vs
(47) —Ary sErs — Ars sEqg— Azg 0
0 0 SESG - Age 0

= 75+ T+ fls + fis
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and

8E11 - An 8E12 - 1‘112 $E13 - ;113 S@M - 1‘114

o = - o 4
0 sEyy — Aoy sEa3 — Asg  sEpy — Aoy ~
48) rank ~ - - N = y
(48) 0 — Az sE33 — A3z —Aszy ; Hi
0 0 Can Caa

Hence, using Lemma 1.4 (a) again, we have matrices FY,, Fl,, Fis, Ff;, F5;, and F%
such that, for at least one s € C, we have

A_AEAA_ Uy FYy SE:55 - 455 — Uy FY, 3E:56 - 456 — Uy FYy
sEgq — A64£ — U3 Ff  sEgs _AA65 —A‘I’43Ff2 sEgq _AA66 —A‘I’43Ff3

det —Azs sE75 — Azs sErg — Aze
0 0 SEgG - ASG
£ 0
(49)
and
sEy — A sEp — Ay sEig — Az — FY O By — Ay — FY Oy
det 0 sk — Azs sEnz — Asz — F51Co1 8By — Ay — F51 0
0 —Asy sE33 — Az — F§; Oy —Azs — F5,C2
£0.
(50)

Let Ep,, Am, M, and L be defined by (40) and (41). Then (&, A) is regular. Further-
more, using (42) and Lemma 1.2, it is easy to verify that (4) holds.

(b) Since conditions (29) and (30) hold, by Lemma 1.4 (b) there exist matrices
Fb, F}, FY) F§, Ff, and F¢ such that (43) and (44) are satisfied and (45) and (46)
hold for all s € C*. At the same time, conditions (17) and (18) give that (47) and
(48) hold for all s € C*. Thus, by Lemma 1.4 (b), we can determine matrices F?,,
FYy, Fby, F&, F5,, and F§ such that (49) and (50) hold for all s € C*. With E,,,
A, M, and L defined by (40) and (41), then (£, .A) is regular, stable, and (4) holds.

(c) Since conditions (32) and (33) hold, by Lemma 1.4 (c), there exist matrices
Fb, B}, FY) F§, Ff, and F¢ such that (43) and (44) are satisfied, (45) and (46) hold
for at least one s € C, and, furthermore,

8611 - @11 - l:[’1}7111) 8612 - @12 - \I’leb 8613 - @13 - \I’gF??
8621 - @21 - l:[’2}7111) 8622 - @22 - \I’QFQI) 8623 - @23 - lI’QFé)

deg det _lIJBFlb _(1)32 — lII3F2b 8633 - (1)33 - lI’3F:§)
(51) —U F} —Agy = Uy Fy —dis — Vs Fy
O O12 Oi3

=rank | Oy Oz Oq ;
0 0 ©O33
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as well as
—z‘:145 — F§Co3 8033 — ®33 — F5C3  s034 — $34 — F5C4
deg [ det | —As5 — F£Cas —&y3 — F£C3 $044 — Pyq — F{Cy
—F5CCQ3 —F5CC?, 8654 - (1)54 - F5CC4
(52)
O33 O3y
=rank 0 Oy
0 O

On the other hand, since conditions (21) and (22) hold, by Lemma 1.4 (c), there exist
matrices F' and F such that the pencils (E, A + BF) and (E, A + FC) are regular
and of index at most one. By applying Lemma 1.3 (d) to pencils (E, A + BF) and
(E,A + FC), we obtain immediately that

E86 = 0, Ell = 0,
0 0 13755 Eiss
rank |: 622 :| = rank E64 EA‘65 1?66 ;
0 Ers Erg
E12 EIB E14
rank[ gll 812 :| = rank EQQ E23 E24
21 22 0 E33 0

Note that E64 and [ 42
Wys

column rank, and A86, E75, and, furthermore, A;; and E,, are nonsingular. Then,
by Lemma 1.4 (c), there exist matrices Ff;, F5, i = 1,2,3, such that (49) and (50)
hold for at least one s € C and, furthermore,

] are of full row rank, Es3 and [ Cy1 Cao ] are of full

deg
A—A54A— Ty Ffy Sl?ss - z‘:155 — Uy FY, 812756 - 456 — Uy Fly
det sEgy — Ags — Uy3Ff  sEes — Ags —A‘I’43Ff2 sEge — Ags —A‘I’43sz3
—Az sEq5 — Ars skqre — Az
o 0 —Age
0 Ess Ese 0
=rank | Fgy EA65 EA66 = rank [ @i‘; ] ,
0 FErs Ers
(53)
as well as
Ay 812712 - 1‘112 3E13 — A3 — F{COn 8E14 — Ay = FfCos
deg | det 0 sEay — Agy SE23 — Agy — F§,C1 $Ezq — Aoy — F5, 0o
0 —A32 b3 — Azs — F§,Co1 — A3y — F§Cop
Ei» Ei3 Eun
vk | By Ba B | =rak| gl 0% |,
0 Ejs3 0

(54)
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Let F® and F°¢ be determined by (39). Since we have (31), it is easy to verify that the
pencils (E, A+ BF®) and (E, A + F°C) are regular and of index at most one. With
E.., Am, M, and L defined by (40) and (41), we then have that (£, .A) is regular and
of index at most one and (4) holds.

(d) Since conditions (21), (22), (29), and (30) hold, by Lemma 1.4 (d), there
exist matrices F?, FY, FY, FS, Ff, and F¢ such that (43), (44), (51), and (52) hold,
and furthermore (45) and (46) hold for any s € C*. Similarly to parts (b) and (c),
since conditions (21), (22), (17), and (18) hold, by Lemma 1.4 (d) again, there exist
matrices F};, F5, i =1,2,3, such that (53) and (54) hold and, furthermore, (49) and
(50) are satisfied for all s € C*. Let F® and F, be defined by (39). Using (31), we
have that the pencils (E, A+ BF?) and (E, A+ F°C) are regular, stable, and of index
at most one. With E,,, A,,, M, and L given by (40) and (41), we then have that
(€, A) is regular, stable, and of index at most one and (4) holds. O

REMARK 3.3. It should be noted that Theorem 3.1 is established under the
assumption that (E,,, A,,) is regular and of index at most one, while for (E,,;, 4,,)
in Theorem 3.2, we do not need this assumption. Apart from this difference, the
conditions in these theorems present complete necessary and sufficient conditions.

In contrast to the conditions in Lemmas 1.2, 1.3, and 1.4, control theoretic inter-
pretations of the necessary and sufficient conditions are difficult to give, since these
conditions are intertwined to guarantee several properties at once.

4. Conclusions. We have presented necessary and sufficient conditions for the
solution of the disturbance decoupling problem with the extra requirements that the
resulting closed-loop system be regular, of index at most one, and stable.

The explicit construction of the feedbacks is described in the proof of Theorem 3.2
and is based on the condensed form (9), which can be computed via a numerically
backward stable method as well as the explicit construction of regularizing feedbacks
and stabilizing feedbacks described in [4, 15].
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