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SOME RESULTS ON THE SPECTRAL RADII OF TREES,

UNICYCLIC, AND BICYCLIC GRAPHS∗

MUHUO LIU† AND BOLIAN LIU‡

Abstract. Let ∆(G), ∆ for short, be the maximum degree of a graph G. In this paper, trees

(resp., unicyclic graphs and bicyclic graphs), which attain the first and the second largest spectral

radius with respect to the adjacency matrix in the class of trees (resp., unicyclic graphs and bicyclic

graphs) with n vertices and the maximum degree ∆, where ∆ ≥ n+1

2
(resp., ∆ ≥ n

2
+1 and ∆ ≥ n+3

2
)

are determined. Moreover, it is shown that the spectral radius of a unicyclic graph U (resp., a bicyclic

graph B) on n vertices strictly increases with its maximum degree when ∆(U) ≥ 1

9

(

1 +
√
6n+ 10

)2

(resp., ∆(B) ≥ 1

9

(

2 +
√
6n+ 28

)2
).
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1. Introduction. Throughout the paper, G = (V,E) is a connected undirected

simple graph with |V | = n and |E| = m. If m = n+ c− 1, then G is called a c-cyclic

graph. In particular, if c = 0, 1 or 2, then G is called a tree, a unicyclic graph or a

bicyclic graph, respectively.

Let N(v) indicate the set of neighbors of vertex v. Then, d(v) = |N(v)| is called
the degree of v. Let ∆(G), ∆ for short, be the maximum degree of G. We use the

notations T∆
n , U

∆
n and B∆

n to denote the class of trees, unicyclic graphs and bicyclic

graphs with n vertices and the maximum degree ∆, respectively.

If di = d(vi) for i = 1, 2, . . . , n, then we call the sequence π(G) = (d1, d2, . . . , dn)

the degree sequence of G. In the following discussion, we enumerate the degrees in

non-increasing order, i.e., d1 ≥ d2 ≥ · · · ≥ dn. When more than one graph is under

discussion, we may write di(G) instead of di. We use Γ(π) to denote the class of

connected graphs with the degree sequence π, where π = (d1, d2, . . . , dn).
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Let A(G) be the adjacency matrix of G. By the Perron-Frobenius Theorem of

non-negative matrices, the largest eigenvalue of A(G) is equal to the spectral radius

of A(G). We simply call the latter the spectral radius of G and denote it by ρ(G). The

characteristic polynomial det(xI −A(G)) of A(G) is referred to as the characteristic

polynomial of G and is denoted by Φ(G, x). Thus, ρ(G) equals to the maximum root

of Φ(G, x) = 0.

When G is connected, by the Perron-Frobenius Theorem of non-negative matri-

ces, there exists a unique positive unit eigenvector corresponding to ρ(G). In the

following, we use f = (f(v1), . . . , f(vn))
T to be the unique positive unit eigenvector

corresponding to ρ(G), and we call f the Perron vector of G. Moreover, f(vi) is also

called the ρ-weight of the ith vertex (with respect to f).

In 1981, Cvetković [3] indicated 12 directions in further investigations of graph

spectra, one of which is classifying and ordering graphs. Hence, ordering graphs with

various properties by their spectra, becomes an attractive topic (see [5, 8, 9, 10]). In

this line, Lin and Guo [5] had proved that:

Theorem 1.1. [5] Let ∆ and n be two fixed positive integers.

(i) If ∆ ≥ ⌈n
2 ⌉, then H1(n,∆) (see Fig. 2.1) is the unique tree with the largest

spectral radius among the trees in T∆
n .

(ii) For any two trees T and T ′ on n ≥ 4 vertices, if ∆(T ) ≥ ⌈ 2n
3 ⌉ − 1 and

∆(T ) > ∆(T ′), then ρ(T ) > ρ(T ′).

Recently, a similar result was obtained for unicyclic graphs, that is:

Theorem 1.2. [10] Let ∆ and n be two fixed positive integers.

(i) If ∆ ≥ n
2 +1, then F1(n,∆) (see Fig. 3.1) is the unique unicyclic graph with

the largest spectral radius among the unicyclic graphs in U∆
n .

(ii) For any two unicyclic graphs U and U ′ on n ≥ 30 vertices, if ∆(U) ≥ ⌈ 7n
9 ⌉+1

and ∆(U) > ∆(U ′), then ρ(U) > ρ(U ′).

Moreover, Yuan et al. also considered the corresponding problem for bicyclic

graphs and proved the following:

Theorem 1.3. [9] Let ∆ and n be two fixed positive integers.

(i) If ∆ ≥ n+3
2 , then W1(n,∆) (see Fig. 4.1) is the unique bicyclic graph with

the largest spectral radius among the bicyclic graphs in B∆
n .

(ii) For any two bicyclic graphs B and B′ on n vertices, if ∆(B) ≥ ⌈ 7n
9 ⌉+9 and

∆(B) > ∆(B′), then ρ(B) > ρ(B′).
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In this paper, we shall establish the following results.

Theorem 1.4. Let ∆ and n be two fixed positive integers. If n+1
2 ≤ ∆ ≤

n− 3 and T ∈ T∆
n \ {H1(n,∆), H2(n,∆)} (see Fig 2.1), then ρ(T ) < ρ(H2(n,∆)) <

ρ(H1(n,∆)).

Theorem 1.5. Let ∆ and n be two fixed positive integers.

(i) If n
2 +1 ≤ ∆ ≤ n− 3 and U ∈ U∆

n \ {F1(n,∆), F2(n,∆)} (see Fig. 3.1), then

ρ(U) < ρ(F2(n,∆)) < ρ(F1(n,∆)).

(ii) For any two unicyclic graphs U and U ′ on n vertices, if ∆(U) ≥
1
9

(

1 +
√
6n+ 10

)2
and ∆(U) > ∆(U ′), then ρ(U) > ρ(U ′).

Theorem 1.6. Let ∆ and n be two fixed positive integers.

(i) If n+3
2 ≤ ∆ ≤ n − 2, and B ∈ B∆

n \ {W1(n,∆), W2(n,∆)} (see Fig. 4.1),

then ρ(B) < ρ(W2(n,∆)) < ρ(W1(n,∆)).

(ii) For any two bicyclic graphs B and B′ on n vertices, if ∆(B) ≥
1
9

(

2 +
√
6n+ 28

)2
and ∆(B) > ∆(B′), then ρ(B) > ρ(B′).

If n ≥ 30, then 1
9

(

1 +
√
6n+ 10

)2
< ⌈ 7n

9 ⌉+1. Moreover, it is easily checked that
1
9

(

2 +
√
6n+ 28

)2
< ⌈ 7n

9 ⌉+ 9. Thus, we can conclude that

Remark 1.7. Theorem 1.4 extends the result of Theorem 1.1 (i), Theorem 1.5

improves the result of Theorem 1.2, and Theorem 1.6 improves the result of Theorem

1.3.

2. The proof of Theorem 1.4. Let G−u (resp., G−uv) be the graph obtained

from G by deleting the vertex u ∈ V (G) (respectively, the edge uv ∈ E(G)). Similarly,

denote by G+ uv the graph obtained from G by adding an edge uv 6∈ E(G).

Lemma 2.1. [8] Let u, v be two vertices of the connected graph G, and w1, w2,

. . . , wk (1 ≤ k ≤ d(v)) be some vertices of N(v) \ N(u). Let G′ = G + uw1 + · · · +
uwk − vw1 − · · · − vwk. Suppose that f is the Perron vector of G. If f(u) ≥ f(v),

then ρ(G′) > ρ(G).

Lemma 2.2. [2] Let G = (V,E) be a connected graph such that u1v1 ∈ E, u2v2 ∈
E, v1v2 6∈ E, and u1u2 6∈ E. Let G′ = G + v1v2 + u1u2 − u1v1 − u2v2. Suppose that

f is the Perron vector of G. If f(v1) ≥ f(u2) and f(v2) ≥ f(u1), then ρ(G′) ≥ ρ(G),

where the equality holds if and only if f(v1) = f(u2) and f(v2) = f(u1).

Let G be a connected graph, and uv ∈ E(G). The graph Gu,v is obtained from G

by subdividing the edge uv, i.e., adding a new vertex w and edges wu, wv in G− uv.

An internal path, say v1v2 · · · vs+1 (s ≥ 1), is a path joining v1 and vs+1 (which need

not be distinct) such that v1 and vs+1 have degree greater than 2, while all other
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vertices v2, . . . , vs are of degree 2. Let Wn be the tree obtained from a path Pn−4 by

attaching two pendant vertices to each pendant vertex of Pn−4, respectively.

Lemma 2.3. [4] Let uv be an edge of the connected graph G on n vertices. If uv

belongs to an internal path of G, and G 6∼= Wn, then ρ(G) > ρ(Gu,v).

Lemma 2.4. Let G be a graph with the largest spectral radius in Γ(π), where

π = π(G), and u, v ∈ V (G). Suppose that f is the Perron vector of G. If d(u) > d(v),

then f(u) > f(v).

Proof. Suppose to the contrary, there exist u, v ∈ V (G) such that d(u) > d(v),

but f(u) ≤ f(v). Let d(u) − d(v) = k. Let Puv be the shortest path from u to v.

Then, there must exist k vertices, say w1, . . . , wk, such that w1, . . . , wk ∈ N(u)\N(v)

and w1, . . . , wk 6∈ V (Puv). Let G1 = G − uw1 − · · · − uwk + vw1 + · · · + vwk. By

Lemma 2.1, ρ(G) < ρ(G1). But G1 ∈ Γ(π), so we arrive at a contradiction. Thus,

f(u) > f(v).

Denote by S(n, c; ∆) the set of connected c-cyclic graphs on n vertices with the

maximum degree ∆.

Lemma 2.5. [7] If ∆ ≤ n− 2, then

max{ρ(G) : G ∈ S(n, c; ∆)} < max{ρ(G) : G ∈ S(n, c; ∆ + 1)}.

Lemma 2.6. [7] Let G = (V,E) be a graph of S(n, c; ∆), where ∆ ≥ n+c+1
2 . If

d(u) = ∆, then u is the unique vertex with degree ∆.

Let T(n,∆, d) be the set of trees on n vertices with the maximum degree ∆ and

the second maximum degree d.

Lemma 2.7. If ∆− d ≥ 2 and d ≤ n−∆− 1, then

max{ρ(T ) : T ∈ T(n,∆, d)} < max{ρ(T ) : T ∈ T(n,∆, d+ 1)}.

Proof. Let T1 be a tree with the largest spectral radius in T(n,∆, d). Then, T1

also has the largest spectral radius in Γ(π), where π = π(T1). Since ∆− d ≥ 2, there

exists a unique vertex, say u, such that d(u) = ∆. Let f be the Perron vector of T1.

Let v be a vertex of T1 such that f(v) = max{f(w) : d(w) = d}. There are two cases

to be considered.

Case 1. uv 6∈ E(T1).

Let Puv be the shortest path of T1 from u to v, and let x be the vertex in Puv
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adjacent to u. Let T ′ = T1 + uv− ux. Then, T ′ ∈ T(n,∆, d+1). By Lemma 2.4 and

the choice of v, f(v) ≥ f(x). By Lemma 2.1, it follows that ρ(T ′) > ρ(T1).

Case 2. uv ∈ E(T1).

Since T1 ∈ T(n,∆, d), d ≤ n − ∆ − 1 and u, v are adjacent, we have V (T ) 6=
N(u)∪N(v)∪{u, v} = N(u)∪N(v). So there exists a vertex z, different from u, v and

not adjacent to v, which is adjacent to x where x ∈ N(u)∪N(v). By Lemma 2.4 and

the choice of v, we have f(v) ≥ f(x). Let T ′ = T1+vz−xz. Then, T ′ ∈ T(n,∆, d+1)

and by Lemma 2.1 we have ρ(T ′) > ρ(T1).

Remark 2.8. The condition “d ≤ n −∆ − 1” of Lemma 2.7 is necessary. Oth-

erwise, if d ≥ n−∆, then ∆ + d+ 1 ≥ n+ 1, that is, there are two vertices u and v

such that |N(u) ∩ N(v)| ≥ 1 if they are adjacent and |N(u) ∩ N(v)| ≥ 2 otherwise.

In both cases we obtain at least one cycle.
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Fig. 2.1. The trees H1(n,∆), H2(n,∆), I1(n,∆), I2(n,∆).

In the following, let H1(n,∆), H2(n,∆), I1(n,∆) and I2(n,∆) be the trees with

n vertices and the maximum degree ∆ ≥ n+1
2 as shown in Fig. 2.1.

Proof of Theorem 1.4. It is easily checked that H1(n,∆) is the unique tree in

T(n,∆, n −∆). Note that d2(H2(n,∆)) = n −∆ − 1 < n −∆ = d2(H1(n,∆)), and

∆ − (n −∆ − 1) = 2∆ + 1 − n ≥ 2. Then, ρ(H2(n,∆)) < ρ(H1(n,∆)) follows from

Lemma 2.7. Suppose that the degree sequence of T is (a) = (d1, d2, d3, . . . , dn). Since

T ∈ T
∆
n , d1 = ∆. There are two cases to be considered.

Case 1. d2 = n−∆− 1.

Note that T 6∼= H2(n,∆). Then, T is isomorphic with I1(n,∆) or I2(n,∆). Let u,

v, w be the vertices of I2(n,∆) as shown in Fig. 2.1. Let T ′ = I2(n,∆)−uw−vw+uv.

Since ∆ ≥ n+1
2 , I2(n,∆) 6∼= Wn. By Lemma 2.3, ρ(I2(n,∆)) < ρ(T ′ − w) = ρ(T ′).

Note that T ′ is a proper subgraph of I1(n,∆). Thus, ρ(T ′) < ρ(I1(n,∆)), and hence,

ρ(I2(n,∆)) < ρ(I1(n,∆)).
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Now we shall prove that ρ(I1(n,∆)) < ρ(H2(n,∆)). Assume to the contrary that

ρ(H2(n,∆)) ≤ ρ(I1(n,∆)). Then, I1(n,∆) has the largest spectral radius in T(n,∆, n

−∆−1) because I1(n,∆), I2(n,∆) andH2(n,∆) are precisely all the trees in T(n,∆, n

−∆− 1). Then, I1(n,∆) also has the largest spectral radius in Γ(a). Since ∆ ≥ n+1
2 ,

by Lemma 2.6 there exists a unique vertex in I1(n,∆), say u, such that d(u) = ∆.

Let f be the Perron vector of I1(n,∆), and u, x, y, z be the vertices of I1(n,∆) as

shown in Fig. 2.1. By Lemma 2.4, f(u) > f(x) and f(y) > f(z) because d(u) > d(x)

and d(y) > d(z). Let T ∗ = I1(n,∆) + uy + xz − uz − xy. Then, ρ(I1(n,∆)) < ρ(T ∗)

by Lemma 2.2. Note that T ∗ = H2(n,∆). It is a contradiction to the hypothesis.

Thus, ρ(I1(n,∆)) < ρ(H2(n,∆)).

Case 2. d2 ≤ n−∆− 2.

Note that ∆− d2 ≥ ∆− (n−∆− 2) = 2∆ + 2 − n > 2. By Lemma 2.7 and the

proof of Case 1, it easily follows that ρ(T ) < ρ(H2(n,∆)).

Combining the above arguments, we complete the proof.

3. The proof of Theorem 1.5. To characterize the graphs that have greatest

spectral radii among all graphs in Γ(π), Bıyıkoğlu and Leydold [2] introduced an or-

dering of the vertices v0, . . . , vn−1 of a graph G on n vertices by means of breadth-first

search as follows: Select a vertex v0 ∈ G and create a sorted list of vertices beginning

with v0; append all neighbors v1, . . . , vd(v0) of v0 sorted by decreasing degrees; then

append all neighbors of v1 that are not already in this list; continue recursively with

v2, v3, . . . until all vertices of G are processed. Such an ordering is called a spiral like

ordering [2], or spiral like disposition [1, 6].

Lemma 3.1. [1] Let π = (d1, d2, . . . , dn) be a non-increasing degree sequence

and UM be a unicyclic graph with the largest spectral radius in Γ(π). Suppose that

{v1, . . . , vn} are the vertices of UM with d(vi) = di, then v1, v2 and v3 are mutually ad-

jacent, and form C3, the unique cycle of UM . The remaining vertices appear in spiral

like disposition with respect to C3 starting from v4 that is adjacent to v1. Moreover,

v1, v2 and v3 are the vertices having the first three largest ρ-weight in UM .

Let F1(n,∆), F2(n,∆), and J1(n,∆) be the unicyclic graphs with n vertices and

the maximum degree ∆ ≥ n
2 + 1 as shown in Fig. 3.1. Let U(n,∆, d) be the set of

unicyclic graphs on n vertices with the maximum degree ∆ and the second maximum

degree d. Let Cn be the cycle of order n.

Lemma 3.2. If ∆− d ≥ 2 and d ≤ n−∆, then

max{ρ(U) : U ∈ U(n,∆, d)} < max{ρ(U) : U ∈ U(n,∆, d+ 1)}.
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Fig. 3.1. The unicyclic graphs F1(n,∆), F2(n,∆), and J1(n,∆).

Proof. Let U1 be a unicyclic graph with the largest spectral radius in U(n,∆, d).

Suppose that the degree sequence of U1 is (a) = (∆, d, d3, . . . , dn). Then, U1 also has

the largest spectral radius in Γ(a). Since ∆− d ≥ 2, there exists a unique vertex, say

u, such that d(u) = ∆. Let f be the Perron vector of U1. Let v be a vertex of U1

such that f(v) = max{f(w) : d(w) = d}. By Lemmas 2.4 and 3.1 and the choice of

v, uv ∈ E(C3), where C3 is the unique cycle of UM . Suppose V (C3) = {u, v, x}.

If d(x) ≥ 3, i.e., there exists some vertex y different from u, v such that xy ∈
E(U1), then y 6∈ N(v). By the choice of v and Lemma 2.4, it follows that f(v) ≥ f(x).

Let U ′ = U1 + vy− xy. Then, U ′ ∈ U(n,∆, d+ 1). Moreover, by Lemma 2.1 we have

ρ(U ′) > ρ(U1).

If d(x) = 2, since d ≤ n−∆, Lemma 3.1 implies that there exist vertices y ∈ N(u)

(y 6∈ {u, v, x}) and w (w 6∈ {u, v, x, y}) such that w ∈ N(y). Then, w 6∈ N(v). It can

be proved similarly with the case of d(x) ≥ 3.

Remark 3.3. The condition “d ≤ n−∆” of Lemma 3.2 is necessary. Otherwise,

if d ≥ n − ∆ + 1, then ∆ + d + 1 ≥ n + 2. Assume that U is a unicyclic graph

of U(n,∆, d + 1) with π(U) = (d1, d2, . . . , dn). Then, d3 ≥ 2 and hence
∑n

i=1 di ≥
n+2+2+n−3 = 2n+1. So, we arrive at a contradiction because the sum of degrees

of vertices pertaining to a unicyclic graph is equal to 2n.

Proof of Theorem 1.5 (i). Let (a) = (∆, n−∆, 3, 1, 1, . . . , 1). It is easily checked

that F2(n,∆) is the unique unicyclic graph in Γ(a), and F1(n,∆) is the unique uni-

cyclic graph inU(n,∆, n−∆+1). Since d2(F2(n,∆)) < d2(F1(n,∆)) and ∆−(n−∆) =

2∆− n ≥ 2, we have ρ(F2(n,∆)) < ρ(F1(n,∆)) by Lemma 3.2. Suppose that the de-

gree sequence of U is (b) = (d1, d2, d3, . . . , dn). Since U ∈ U∆
n \ {F1(n,∆), F2(n,∆)},

it follows that d1 = ∆, d2 ≤ n − ∆, and ∆ ≤ n − 3. There are two cases to be

considered.
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Case 1. d2 = n−∆.

Since U 6= F2(n,∆), we have (b) = (c), where (c) = (∆, n − ∆, 2, 2, 1, . . . , 1).

Thus, ρ(U) ≤ ρ(J1(n,∆)) by Lemma 3.1. Let f be the Perron vector of J1(n,∆). Let

v, x, y, z be the vertices of J1(n,∆) as shown in Fig. 3.1.

If f(x) ≥ f(y), let U∗ = J1(n,∆) + xz − yz. Then, U∗ ∼= F2(n,∆). By Lemma

2.1, we have ρ(J1(n,∆)) < ρ(F2(n,∆)).

If f(x) < f(y), let U∗ = J1(n,∆) + vy − vx. Then, U∗ ∼= F2(n,∆). By Lemma

2.1, we have ρ(J1(n,∆)) < ρ(F2(n,∆)).

Thus, we can conclude that ρ(U) ≤ ρ(J1(n,∆)) < ρ(F2(n,∆)).

Case 2. d2 ≤ n−∆− 1.

Note that ∆− d2 ≥ ∆− (n−∆− 1) = 2∆ + 1 − n > 2. By Lemma 3.2 and the

proof of Case 1, the result follows.

Lemma 3.4. If ∆ ≥ 1
9

(

1 +
√
6n+ 10

)2 − 1, then ρ(F1(n,∆)) ≤
√
∆+ 1.

Proof. By an elementary computation, we have

Φ(F1(n,∆), x) = xn−4f1(x),

where f1(x) = x4−nx2−2x+(n−∆+1)∆−n−1. Thus, ρ(F1(n,∆)) is equal to the

maximum root of f1(x) = 0. When x ≥
√
∆+ 1 >

√

n+1
2 , since f ′′

1 (x) = 12x2− 2n >

0, it follows that

f ′

1(x) = 4x3 − 2nx− 2 > 4

(

√

n+ 1

2

)3

− 2n

√

n+ 1

2
− 2 ≥ 0.

Thus, when x ≥
√
∆+ 1 > 0, we have

f1(x) ≥ (∆ + 1)2 − n(∆ + 1)− 2
√
∆+ 1 + (n−∆+ 1)∆− n− 1

≥ 3∆− 2
√
∆+ 1− 2n

≥ 0.

Therefore, ρ(F1(n,∆)) ≤
√
∆+ 1.

Proof of Theorem 1.5 (ii). In the proof of this result, we write ∆(U ′) and ∆(U)

as ∆′ and ∆, respectively. Set a = ⌈ 1
9

(

1 +
√
6n+ 10

)2⌉ − 1. Then, a > n
2 + 1. We

divide the proof into two cases.
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Case 1. ∆′ ≥ a

Then, Theorem 1.5 (i) and Lemma 3.4 imply that ρ(U ′) ≤ ρ(F1(n,∆
′)) ≤√

∆′ + 1. Since ∆ > ∆′ and U has K1,∆ as its proper subgraph, we can conclude

that ρ(U) >
√
∆ ≥

√
∆′ + 1 ≥ ρ(U ′).

Case 2. ∆′ < a.

Then, ρ(U ′) < ρ(F1(n, a)) ≤
√
a+ 1 follows from Lemmas 2.5 and 3.4. Since

∆ ≥ 1
9

(

1 +
√
6n+ 10

)2
, we have ∆ ≥ ⌈ 1

9

(

1 +
√
6n+ 10

)2⌉ = a + 1. Hence, ρ(U) >√
∆ ≥

√
a+ 1 > ρ(U ′).

4. The proof of Theorem 1.6. In the proof of Theorem 1.6, the next lemma

plays a crucial role.

Lemma 4.1. [6] Let π = (d1, d2, . . . , dn) be a non-increasing degree sequence,

where d1 ≥ d2 ≥ 3 and dn = 1. Let BM be a bicyclic graph with the largest spectral

radius in Γ(π), and {v1, v2, . . . , vn} be the vertices of BM with d(vi) = di. Then,

BM contains B∗ as its induced subgraph, which is formed by adding an edge to two

non-incident vertices of C4 such that v1 and v2 are the two vertices of B∗ of degree

3, v3 and v4 are the two vertices of B∗ of degree 2. The remaining vertices appear

in spiral like dispositions with respect to B∗ starting from v5 that is adjacent to v1.

Moreover, v1, v2, v3 and v4 are the vertices having the first four largest ρ-weight in

BM .
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Fig. 4.1. The bicyclic graphs W1(n,∆), W2(n,∆), L1(n,∆), L2(n,∆)n and L3(n,∆).

Let W1(n,∆), W2(n,∆), L1(n,∆), L2(n,∆), and L3(n,∆) be the bicyclic graphs

with n vertices and the maximum degree ∆ ≥ n+3
2 as shown in Fig. 4.1.

Let B(n,∆, d) be the set of bicyclic graphs on n vertices with the maximum degree
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∆ and the second maximum degree d. If y ∈ N(x) and d(y) = 1, then we call y a

pendant neighbor of x. If d(x) ≥ 2, then we call x a non-pendant vertex.

Lemma 4.2. If ∆− d ≥ 2 and d ≤ n−∆+ 1, then

max{ρ(B) : B ∈ B(n,∆, d)} < max{ρ(B) : B ∈ B(n,∆, d+ 1)}.

Proof. Let B1 be a bicyclic graph with the largest spectral radius in B(n,∆, d).

Then, B1 also has the largest spectral radius in Γ(π), where π = π(B1). Since

∆ − d ≥ 2, there exists a unique vertex, say u, such that d(u) = ∆. Let f be the

Perron vector of B1. Let v be a vertex of B1 such that f(v) = max{f(w) : d(w) = d}.
There are two cases to be considered.

Case 1. uv 6∈ E(B1).

Let Puv be the shortest path of B1 from u to v, and let x be the vertex in Puv

adjacent to u. Let B′ = B1+uv−ux. Then, B′ ∈ B(n,∆, d+1). On the other hand,

by Lemma 2.4 and the choice of v, f(v) ≥ f(x). By Lemma 2.1, we can conclude that

ρ(B′) > ρ(B1).

Case 2. uv ∈ E(B1).

In the following, let x denote a non-pendant vertex different from u, v, and Pvx

be the shortest path of B1 from v to x.

Subcase 2.1. There exist vertices x and y, such that y ∈ N(x)\N(v) and y is not

in Pvx.

By the choice of v and Lemma 2.4, it implies that f(v) ≥ f(x). Let B′ = B1 +

vy−xy. Then, B′ ∈ B(n,∆, d+1). Moreover, by Lemma 2.1 we have ρ(B′) > ρ(B1).

Subcase 2.2. For every non-pendant vertex x, if y ∈ N(x) and y is not in Pvx,

then y ∈ N(v).

Thus, we can conclude that if w is a non-pendant vertex different from u, v, then

w has no pendant neighbors. Next we shall prove that d ≥ 3.

By the hypothesis, B1 has non-pendant vertices x, and y such that y ∈ N(v) ∩
N(x) and y is not in Pvx. If y 6= u, then d ≥ 3 because uv ∈ E(B1). If y = u, since

B1 is a bicyclic graph, there is at least one vertex z (z 6∈ {u, v, x}) such that d(z) ≥ 2.

Let Pvz be the shortest path of B1 from v to z. Then, there is at least one vertex z1

such that z1 is not in Pvz and z1 ∈ N(v)∩N(z). Note that d is the second maximum

degree of B1. Then, d ≥ 3.
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Since ∆ − d ≥ 2 and d ≥ 3, B1 has at least a pendant vertex because the sum

of degrees of vertices of B1 is equal to 2n+ 2. By Lemma 4.1, we can conclude that

B1
∼= W1(n,∆). It is a contradiction to d ≤ n − ∆ + 1. Thus, Subcase 2.2 cannot

appear.

Remark 4.3. The condition “d ≤ n −∆+ 1” of Lemma 4.2 is necessary. Oth-

erwise, if d ≥ n − ∆ + 2, then ∆ + d + 1 ≥ n + 3. Assume that B is a bicyclic

graph of B(n,∆, d + 1) with π(B) = (d1, d2, . . . , dn). Then, d3 ≥ d4 ≥ 2 and hence
∑n

i=1 di ≥ n + 3 + 4 + n − 4 = 2n+ 3. So, we arrive at a contradiction because the

sum of degrees of vertices pertaining to a bicyclic graph is equal to 2n+ 2.

Proof of Theorem 1.6 (i). It is easily checked that W1(n,∆) is the unique bi-

cyclic graph in B(n,∆, n − ∆ + 2). Since d2(W2(n,∆)) < d2(W1(n,∆)) and ∆ −
d2(W2(n,∆)) = ∆−(n−∆+1) = 2∆−1−n ≥ 2, we have ρ(W2(n,∆)) < ρ(W1(n,∆))

by Lemma 4.2. Suppose that the degree sequence of B is (a) = (d1, d2, d3, . . . , dn).

Since B ∈ B
∆
n , we have d1 = ∆ ≥ d2 ≥ d3 ≥ d4 ≥ 2. Recall that B ∈ B

∆
n \ {W1(n,∆),

W2(n,∆)}. Then, d2 ≤ n −∆ + 1. Let (b) = (∆, n −∆ + 1, 3, 2, 1, 1, . . . , 1). There

are two cases to be considered.

Case 1. d2 = n−∆+ 1.

Subcase 1.1. (a) = (b).

Note that W2(n,∆), L1(n,∆), and L2(n,∆) are precisely all the bicyclic graphs

in Γ(b). Since B 6∼= W2(n,∆), B is isomorphic with L1(n,∆) or L2(n,∆). By Lemma

4.1, ρ(L2(n,∆)) < ρ(W2(n,∆)) and ρ(L1(n,∆)) < ρ(W2(n,∆)).

Subcase 1.2. (a) 6= (b).

Then, (a) = (c), where (c) = (∆, n − ∆ + 1, 2, 2, 2, 1, . . . , 1). By Lemma 4.1,

ρ(B) ≤ ρ(L3(n,∆)). Let v, x, y, and z be the vertices of L3(n,∆) as shown in Fig.

4.1. Let f be the Perron vector of L3(n,∆).

If f(x) ≥ f(y), let B1 = L3(n,∆) + xz − yz. Then, B1
∼= W2(n,∆). By Lemma

2.1, we have ρ(L3(n,∆)) < ρ(B1) = ρ(W2(n,∆)).

If f(x) < f(y), let B1 = L3(n,∆) + vy − vx. Then, B1
∼= W2(n,∆). By Lemma

2.1, we have ρ(L3(n,∆)) < ρ(B1) = ρ(W2(n,∆)).

Case 2. d2 ≤ n−∆.

Note that ∆ − d2 ≥ ∆ − (n −∆) = 2∆ − n > 2. Then, ρ(B) < ρ(W2(n,∆)) by

Lemma 4.2 and the proof of Case 1.
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Lemma 4.4. If ∆ ≥ 1
9

(

2 +
√
6n+ 28

)2 − 1, then ρ(W1(n,∆)) ≤
√
∆+ 1.

Proof. By an elementary computation, we have

Φ(W1(n,∆), x) = xn−4f2(x),

where f2(x) = x4−(n+1)x2−4x+(n−∆+2)∆−n−5.When x ≥
√
∆+ 1 >

√

2n
3 + 3,

since f ′′

2 (x) = 12x2 − 2n− 2 > 0, we have

f ′

2(x) = 4x3 − (2n+ 2)x− 4 > 4

(

√

2n

3
+ 3

)3

− (2n+ 2)

√

2n

3
+ 3− 4 > 0.

Thus, when x ≥
√
∆+ 1 > 0, it follows that

f2(x) ≥ (∆ + 1)2 − (n+ 1)(∆ + 1)− 4
√
∆+ 1 + (n−∆+ 2)∆− n− 5

= 3∆− 5− 2n− 4
√
∆+ 1

≥ 0.

Therefore, ρ(W1(n,∆)) ≤
√
∆+ 1.

Proof of Theorem 1.6 (ii). In the proof of this result, we write ∆(B′) and ∆(B)

as ∆′ and ∆, respectively. Set b = ⌈ 1
9

(

2 +
√
6n+ 28

)2⌉ − 1. Then, b > n+3
2 . We

divide the proof into the following two cases.

Case 1. ∆′ ≥ b.

Then, Theorem 1.6 (i) and Lemma 4.4 imply that ρ(B′) ≤ ρ(W1(n,∆
′)) ≤√

∆′ + 1. Since ∆ > ∆′ and B has K1,∆ as its proper subgraph, we can conclude

that ρ(B) >
√
∆ ≥

√
∆′ + 1 ≥ ρ(B′).

Case 2. ∆′ < b.

Then, ρ(B′) < ρ(W1(n, b)) ≤
√
b+ 1 follows from Lemmas 2.5 and 4.4. Since

∆ ≥ 1
9

(

2 +
√
6n+ 28

)2
, it follows that ∆ ≥ ⌈ 1

9

(

2 +
√
6n+ 28

)2⌉ = b + 1. Thus,

ρ(B) >
√
∆ ≥

√
b+ 1 > ρ(B′).
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