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Abstract. Rotations are essential transformations in many parts of numerical linear algebra.

In this paper, it is shown that there exists a family of matrices unitary with respect to an orthosym-

metric scalar product J , that can be decomposed into the product of two J-unitary matrices—a

block diagonal matrix and an orthosymmetric block rotation. This decomposition can be used for

computing various one-sided and two-sided matrix transformations by divide-and-conquer or tree-

like algorithms. As an illustration, a blocked version of the QR-like factorization of a given matrix

is considered.
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1. Introduction. Orthosymmetric scalar products, introduced in [9] by Mackey,

Mackey and Tisseur, still do not belong to the standard vocabulary of numerical

linear algebra, even though they provide a unified setting for many modern structure

preserving matrix tools (see for example [2, 8, 9, 10]).

Let F denote the field of real or complex numbers, and let J ∈ Cn×n be a given

nonsingular matrix that satisfies

(1.1) J∗ = τJ, |τ | = 1,

for some τ ∈ C. If J ∈ Rn×n, then τ = ±1. An orthosymmetric scalar product

generated by J is defined by

(1.2) [x, y] := 〈Jx, y〉 = y∗Jx, ∀x, y ∈ F
n.

Obviously, this is not a scalar product in the usual sense, since J need not be Hermi-

tian, let alone positive definite. For example, any J = diag(±1) satisfies (1.1), but if

J 6= ±I, there exist nonzero vectors x, usually called the isotropic vectors, such that

x∗Jx = 0.

For both theory and practice, the most notable members of the class of orthosym-

metric scalar products are:
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(a) the Euclidean scalar product, generated by J = ±I (apart from the sign, the

underlying structures are identical);

(b) the hyperbolic scalar products, generated by J = diag(±1), with J 6= ±I. These

matrices are permutationally similar to the standard partitioned form

J = diag(Im,−In−m),

where 0 < m < n;

(c) the symplectic scalar product, generated by

(1.3) Ĵ =

[
0 Ip

−Ip 0

]
.

The symplectic scalar product can also be defined by a block-diagonal matrix

(1.4) J = diag(J0, J0, . . . , J0), J0 =

[
0 1

−1 0

]
.

The matrices Ĵ from (1.3) and J from (1.4) of the same order n = 2p are permu-

tationally similar, i.e.,

(1.5) PT ĴP = J, P = [e1, ep+1, e2, ep+2, . . . , ep, e2p],

where e1, . . . , e2p is the canonical basis in Fn.

Orthosymmetric scalar products are the broadest class of scalar products with

the important property that the left- and the right-handed J-adjoint matrices are the

same for all matrices A (see [15, Section 2.1.]), and can be expressed as J−1A∗J , where

A∗ denotes the standard conjugate transpose of A. Then, a matrix S is J-selfadjoint

or J-Hermitian, if

(1.6) S = J−1S∗J.

Similarly to the Euclidean case, we can define matrices Q that are unitary with

respect to a given orthosymmetric J , as matrices that preserve the scalar product,

i.e., [Qx,Qy] = [x, y], for all x, y ∈ Fn. In other words, Q is a J-unitary matrix if it

satisfies

(1.7) Q∗JQ = J.

Due to the defining preservation property, J-unitary matrices are essential tools

in structure preserving algorithms. It is easy to see that J-unitary matrices form

a multiplicative group. Therefore, they are usually represented and computed as

a product of a sequence of J-unitary matrices with a simpler structure, resembling

ordinary rotations and reflectors.
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A hierarchical design of memory (frequently in multiple cache levels) in modern

computing machinery enables programmers to write faster programs if the algorithms

are properly blocked. Besides rotations and reflectors, such algorithms also require

their blocked counterparts—block rotations and block reflectors. Moreover, some

algorithms, like the symplectic QR factorization [14], cannot be constructed without

the use of block transformations.

The mathematical background of ordinary block reflectors and the methods for

their computation are given by Schreiber and Parlett in [12]. The construction of

orthosymmetric block reflectors, with their mapping and annihilation properties, is

given in [15]. The same construction, but restricted to the symplectic scalar product

generated by (1.3) is given in [11], with an application to the symplectic block QR

factorization.

For unknown reasons, the block rotations have been investigated far less than the

block reflectors. The first traces of the representation of block rotations can be found

in an unpublished manuscript attributed to Zakraǰsek and Vidav [20]. Elementary

matrices introduced by Veselić [19] can also be viewed as the indefinite block rotations.

They are useful tools in the construction of the hyperbolic QR factorization [13].

Here, we extend the results of Zakraǰsek and Vidav to matrices that are J-unitary

with respect to an orthosymmetric scalar product. The main decomposition results

are given in Section 2, while Section 3 deals with some computational aspects of block

rotations, including possible applications in computing the QR-like factorization of a

matrix, for some orthosymmetric scalar products.

2. Decomposition of J–unitary block matrices. In this section, we will

decompose a J-unitary block matrix into a product of two simple J-unitary matrices.

To this end, we need a few preparatory results, already known in the literature, but

we state them here for completeness.

Lemma 2.1. Let A ∈ Cm×n and B ∈ Cn×m be given matrices, and let f be a

function defined on the spectra of both AB and BA. Then

Af(BA) = f(AB)A.

The proof can be found in [5, Corollary 1.34.].

In what follows, this lemma will mostly be used with the function f equal to the

principal square root of a matrix, or its inverse. Let A ∈ Cn×n be a matrix that

(a) has no negative real eigenvalues, or

(b) if zero is an eigenvalue of A, then it is semisimple.

Then there is a unique square root Z of A, whose nonzero eigenvalues lie in the open

right half-plane [5, Section 1.7]. This unique square root is called the principal square
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root of A and will be denoted by A1/2. Its inverse is well-defined if A is nonsingular.

We will also need the notion of the generalized polar decomposition from [6]. In

our terms, it is defined as follows.

Definition 2.2. Given a scalar product generated by J on Fn as in (1.2), a

generalized polar decomposition of A ∈ Fn×n is a decomposition A = WS, where W

is J-unitary, and S is J-Hermitian whose nonzero eigenvalues are contained in the

open right half-plane.

If the underlying scalar product is orthosymmetric, i.e., J satisfies (1.1), then the

following theorem [6, Theorem 2.7] holds.

Theorem 2.3 (Generalized polar decomposition with unique selfadjoint factor).

Given an orthosymmetric scalar product defined by J ∈ Fn×n, a matrix A ∈ Fn×n

has a generalized polar decomposition A = WS with a unique J-Hermitian factor S,

if and only if the following three conditions are simultaneously satisfied

(a) J−1A∗JA has no negative real eigenvalues;

(b) if zero is an eigenvalue of J−1A∗JA, then it is semisimple; and

(c) N (J−1A∗JA) = N (A), where N (A) denotes the nullspace of A, or equivalently,

A is nondegenerate with respect to J (see [15, Proposition 2.2.]).

Now, suppose that a given matrix J of the orthosymmetric scalar product from

(1.1) is block-diagonal, partitioned as

(2.1) J = diag(J1, J2),

where J1 ∈ Fm×m and J2 ∈ F(n−m)×(n−m), for some m such that 0 < m < n.

The main result of this section states that, under mild conditions, a J-unitary

matrix Q can be decomposed as a product of two simple J-unitary matrices, a block-

diagonal matrix W and a block rotation U .

Theorem 2.4. Let J be a matrix of the orthosymmetric scalar product partitioned

as in (2.1), and let Q be a J-unitary matrix with respect to J , partitioned in the same

way as J ,

(2.2) Q =

[
Q11 Q12

Q21 Q22

]
, Q11 ∈ F

m×m, Q22 ∈ F
(n−m)×(n−m).

If the diagonal blocks Q11 and Q22 are nonsingular matrices that have the generalized

polar decomposition (with regard to J1 and J2, respectively), then Q from (2.2) can

be factored as Q = WU , where W and U are J-unitary matrices, and

(2.3) W =

[
W11 0

0 W22

]
, U =

[
(I − J−1

1 X∗J2X)1/2 −J−1
1 X∗J2

X (I −XJ−1
1 X∗J2)

1/2

]
,
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with W11 ∈ Fm×m, W22 ∈ F(n−m)×(n−m), and X ∈ F(n−m)×m. Moreover, if the

decomposition (2.3) exists, the diagonal blocks Q11 and Q22 have the generalized polar

decomposition, with regard to J1 and J2, respectively.

Proof. Suppose that, for i = 1, 2, the matrices Qii permit the generalized polar

decomposition, i.e., there exist Ji-unitary matrices Wii, and unique Ji-Hermitian

matrices Uii, such that

Qii = WiiUii.

Then, Q from (2.2) can be written as

[
Q11 Q12

Q21 Q22

]
:= WU =

[
W11 0

0 W22

] [
U11 U12

U21 U22

]
.

From the block-diagonal structure of J and W , it is obvious that W is a J-unitary

matrix. Since J-unitary matrices form a multiplicative group, and U = W−1Q, it

follows that U is also J-unitary and, thus nonsingular. From (1.7), the blocks of U

satisfy the following set of equations

U∗

11J1U11 + U∗

21J2U21 = J1(2.4)

U∗

11J1U12 + U∗

21J2U22 = 0(2.5)

U∗

12J1U12 + U∗

22J2U22 = J2.(2.6)

Moreover, by inversion of U∗JU = J , we obtain UJ−1U∗ = J−1, which means that

U∗ is J−1-unitary, and the corresponding three block-equations are

U11J
−1
1 U∗

11 + U12J
−1
2 U∗

12 = J−1
1(2.7)

U11J
−1
1 U∗

21 + U12J
−1
2 U∗

22 = 0(2.8)

U21J
−1
1 U∗

21 + U22J
−1
2 U∗

22 = J−1
2 .(2.9)

We will show that the equations (2.4)–(2.9) can be solved in terms of a single matrix

X , where X = U21.

By multiplication of (2.4) from the left by J−1
1 we obtain

J−1
1 U∗

11J1U11 = I − J−1
1 X∗J2X.

Since U11 is J1-Hermitian, from (1.6) we get U∗

11J1 = J1U11, and the previous equality

becomes

U2
11 = I − J−1

1 X∗J2X.

By assumption, the block Q11 has the generalized polar decomposition Q11 = W11U11

with a unique J-Hermitian factor U11, so J−1
1 Q∗

11J1Q11 can be written as

J−1
1 Q∗

11J1Q11 = J−1
1 U∗

11(W
∗

11J1W11)U11 = (J−1
1 U∗

11J1)U11 = U2
11.
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Then the three conditions that guarantee the existence of the generalized polar fac-

tor, yield that U2
11 has a unique principal square root whose nonzero eigenvalues are

contained in the open right half-plane. Since U11 satisfies this spectrum condition,

we conclude that

(2.10) U11 = (I − J−1
1 X∗J2X)1/2.

If the equation (2.9) is multiplied from the right by J2, a similar argument gives the

principal square root

(2.11) U22 = (I −XJ−1
1 X∗J2)

1/2.

Now we use the fact that the matrix J in (2.1) is orthosymmetric, and (1.1) implies

J−∗

1 = τ−1J−1
1 and J∗

2 = τJ2. By substitution of (2.10) and (2.11) into (2.5), we

obtain

(I −X∗J2XJ−1
1 )1/2J1U12 +X∗J2(I −XJ−1

1 X∗J2)
1/2 = 0.

Finally, if we take A = X∗J2, B = XJ−1
1 and f as the principal square root in

Lemma 2.1, we obtain

(I −X∗J2XJ−1
1 )1/2J1U12 = −(I −X∗J2XJ−1

1 )1/2X∗J2,

or, by using (2.10),

(2.12) U∗

11J1(U12 + J−1
11 X∗J2) = 0.

If U∗

11 is nonsingular, U12 = −J−1
1 X∗J2 is a unique solution of (2.12).

Now suppose that the decomposition Q = WU , where W and U are defined

by (2.3), is given. Since Uii for i = 1, 2, is the principal square root, then U2
ii has

no negative real eigenvalues, and if zero is an eigenvalue, it is semisimple. We have

already shown that

U2
ii = J−1

i Q∗

iiJiQii, i = 1, 2,

i.e., we have proved the first two requirements for existence of the generalized polar

decomposition of Qii. Finally, since the principal square root is a primary matrix

function, we have N (U2
ii) = N (Uii), and thus

N (J−1
i Q∗

iiJiQii) = N (U2
ii) = N (Uii) = N (WiiUii) = N (Qii),

that is the last requirement needed in Theorem 2.3 for the existence of the generalized

polar decomposition with a unique J-Hermitian factor.
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The equations (2.4)–(2.9) can also be solved in terms of Y = U12, and then the

blocks of U in (2.3) are all expressed in terms of Y . Since X and Y are simply con-

nected by Y = −J−1
1 X∗J2 (as noticed by Veselić [19] in the Euclidean and hyperbolic

cases), the form of U in terms of Y follows easily.

Note that if Q and J are real matrices, then W and U are also real, because the

same is valid for the principal square root and the generalized polar decomposition.

If Q11 in Theorem 2.4 is singular, a difficulty occurs in (2.12), since U11 is singular.

In some special cases, Theorem 2.4 holds even for singular Q11 and Q22.

Proposition 2.5. Let J be a matrix of the orthosymmetric scalar product par-

titioned as in (2.1), and let Q be a J-unitary matrix with respect to J , partitioned in

the same way as J ,

(2.13) Q =

[
0 Q12

Q21 0

]
, Q12, Q21 ∈ F

m×m.

then Q from (2.13) can be factored as Q = WU , where W and U are J-unitary

matrices, and

W =

[
W11 0

0 W22

]
, U =

[
0 −J−1

1 X∗J2
X 0

]
,

with W11,W22, X ∈ Fm×m.

Proof. First note that the diagonal blocks should be of the same size, and the

off-diagonal blocks should be nonsingular. Otherwise, Q is singular, and thus cannot

be J-orthogonal.

Note that Qii = 0, for i = 1, 2 have the generalized polar decomposition with the

unique Uii = 0. Since Q is J-unitary, the off-diagonal blocks satisfy

(2.14) Q∗

12J1Q12 = J2, Q∗

21J2Q21 = J1.

Let W22 = I, U21 = X and U12 = −J−1
1 X∗J2. It rests to prove that W11, which

satisfies

(2.15) Q12 = W11U12 = −W11J
−1
1 X∗J2,

is J1-unitary. From (2.15) it follows W11 = −Q12J
−1
2 X∗J1, which, together with

(2.14) gives

(2.16) W ∗

1 J1W1 = J1X
−1J−1

2 (Q12J1Q
∗

12)J
−1
2 X−∗J1 = J1X

−1J−1
2 X−∗J1.

Since Q21 = X is nonsingular, inversion of the second equation in (2.14) yields

X−1J−1
2 X−∗ = J−1

1 . Insertion into (2.16) gives W ∗

1 J1W1 = J1, which completes

the proof.
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If Qii, i = 1, 2, are singular, but not identically equal to zero, factorization (2.3)

may still exist.

Example 2.6. Suppose that

Q =

[
Q11 Q12

Q21 Q22

]
, Q11 = Q22 =

[
0 0

0 1

]
, Q12 = Q21 =

[
1 0

0 0

]
,

while J = diag(J1, J2), with J1 = J2 = diag(−1, 1).

The matrices Qii have the generalized polar decompositions with unique Uii,

Qii = Wii

[
0 0

0 1

]
, Wii = diag(±1, 0).

For chosen W22 = I, we obtain X = U21 = Q21, and

U12 = −J−1
1 X∗J2 =

[−1 0

0 0

]
.

It is easy to show that W11 = diag(−1, 1) is J1-unitary and satisfies Q1j = W11U1j ,

for j = 1, 2, so Q can be written as in (2.3).

In practice, the inverse and/or the conjugate transpose of Q is frequently required,

as well. From (1.7) it follows that

Q−1 = J−1Q∗J.

In the product representation Q = WU from Theorem 2.4, the inverses and the

conjugate transposes of both factors are easy to compute.

Proposition 2.7. Let W and U be the J-unitary factors of Q from (2.3). Then

W ∗ = diag(W ∗

11,W
∗

11), W−1 = diag(J−1
1 W ∗

11J1, J
−1
2 W ∗

22J2),

the conjugate transpose of U is given by

U∗ =

[
(I −X∗J2XJ−1

1 )1/2 X∗

−J2XJ−1
1 (I − J2XJ−1

1 X∗)1/2

]
,

while the inverse of U is given by

(2.17) U−1 =

[
(I − J−1

1 X∗J2X)1/2 J−1
1 X∗J2

−X (I −XJ−1
1 X∗J2)

1/2

]
.

When F = R and n = 2 (then m = 1), the only orthosymmetric scalar product

matrices J satisfying (2.1) are

JT = ± diag(1, 1), JH = ± diag(1,−1).
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The corresponding matrices U from (2.3) can be written as

UT =

[
(1− x2)1/2 −x

x (1 − x2)1/2

]
, UH =

[
(1 + x2)1/2 x

x (1 + x2)1/2

]
.

By putting x = sinϕ in UT (since, obviously, |x| ≤ 1), and x = sinhϕ in UH , we get

the standard form of trigonometric and hyperbolic plane rotations

UT =

[
cosϕ − sinϕ

sinϕ cosϕ

]
, UH =

[
coshϕ sinhϕ

sinhϕ coshϕ

]
.

If the order of U is greater than 2, the blocks of U in (2.3) can be interpreted as block

cosines and block sines by the following definition

(2.18) U :=

[
C1 −S2

S1 C2

]
=

[
(I − J−1

1 X∗J2X)1/2 −J−1
1 X∗J2

X (I −XJ−1
1 X∗J2)

1/2

]
.

Then it easy to verify that C2
1 + S2S1 = Im and C2

2 + S1S2 = In−m. Together with

S2 = J−1
1 S∗

1J2, this structure of U justifies the term block rotation.

Proposition 2.8. Matrices C1 and C2 are either simultaneously singular, or

simultaneously nonsingular.

Proof. The Jordan structure associated with nonzero eigenvalues of S1S2 and

S2S1 is identical (for the proof of this fact see [4, 18]). Especially, the Jordan structure

for the eigenvalue 1 is identical. Therefore,

C2
1 = Im − S2S1, C2

2 = In−m − S1S2,

are either simultaneously singular, or simultaneously nonsingular. The same holds

for their principal square roots C1 and C2.

Since C1 and C2 can have different dimensions, we define four matrices that could

serve as block tangents. As in the pointwise case, the tangents are undefined if C1 and

C2 are singular. From now on, unless stated otherwise, we assume that the diagonal

blocks C1, C2 of U are nonsingular.

Definition 2.9. Let U be defined by (2.18) with nonsingular diagonal blocks.

The corresponding four matrix tangent functions (of X) are defined by

T := S1C
−1
1 = X(I − J−1

1 X∗J2X)−1/2,(2.19)

T̂ := S2C
−1
2 = J−1

1 X∗J2(I −XJ−1
1 X∗J2)

−1/2,(2.20)

T̂0 := C−1
1 S2 = (I − J−1

1 X∗J2X)−1/2J−1
1 X∗J2,(2.21)

T0 := C−1
2 S1 = (I −XJ−1

1 X∗J2)
−1/2X.(2.22)
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As can be expected, these four tangents are not independent. In fact, they are

related in exactly the same way as the corresponding sines used in their definition.

Proposition 2.10. The matrix tangents defined by (2.19)–(2.22) are pairwise

mutually equal, T = T0, and T̂ = T̂0. Moreover, these pairs are connected by

(2.23) T̂ = J−1
1 T ∗J2,

in accordance with S2 = J−1
1 S∗

1J2.

Proof. Consider the matrix T defined by (2.19). By using A = X , B = J−1
1 X∗J2,

and f as the inverse of the principal square root in Lemma 2.1, we have

T = X(I − J−1
1 X∗J2X)−1/2 = (I −XJ−1

1 X∗J2)
−1/2X = T0.

The proof of the second equality is similar. By using Lemma 2.1 with A = J2 and

B = XJ−1
1 X∗, we have

T̂ = J−1
1 X∗J2(I −XJ−1

1 X∗J2)
−1/2 = J−1

1 X∗(I − J2XJ−1
1 X∗)−1/2J2 = J−1

1 T ∗J2,

which completes the proof.

The ordinary plane rotations are frequently used in one-sided and two-sided ma-

trix algorithms to annihilate a certain element of a given working matrix. In most

cases, it is the tangent of an angle that is the easiest to calculate from the annihilation

equation. The elements of the rotation matrix (i.e., the cosines and the sines) are then

computed from the tangent.

The same is true for the block rotations, as will be demonstrated in the next

section. We already know how to compute all the blocks of U once we have X

(provided that the diagonal blocks are nonsingular and the principal square roots

exist), so only X will have to be computed from the block tangent.

Proposition 2.11. If the tangent functions (2.19)–(2.22) exist, the matrix X

from (2.3) can be expressed in terms of the tangent functions in several ways

X = (I + T T̂ )−1/2T = (I + TJ−1
1 T ∗J2)

−1/2T(2.24)

= T (I + T̂ T )−1/2 = T (I + J−1
1 T ∗J2T )

−1/2.

Proof. From (2.22) for T = T0 and (2.20) for T̂ , it follows

I + T T̂ = I + (I −XJ−1
1 X∗J2)

−1/2XJ−1
1 X∗J2(I −XJ−1

1 X∗J2)
−1/2.

If we substitute Z = XJ−1
1 X∗J2, this can be written as

I + T T̂ = I + (I − Z)−1/2Z(I − Z)−1/2

= (I − Z)−1/2
(
(I − Z) + Z

)
(I − Z)−1/2 = (I − Z)−1.
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From (2.11) we see that I − Z = U2
22 = C2

2 , so I − Z has the principal square root,

(I − Z)1/2 = (I + T T̂ )−1/2 = (I −XJ1X
∗J2)

1/2.

A multiplication from the right by T = T0 from (2.22) gives

(I + T T̂ )−1/2T = (I −XJ1X
∗J2)

1/2(I −XJ−1
1 X∗J2)

−1/2X = X.

This proves the first equality in (2.24). The second one follows by substitution of T̂

from (2.23). Finally, the last two equalities are obtained from the first row in (2.24)

by an obvious application of Lemma 2.1.

To conclude this section, note that the transformations X 7→ T and T 7→ X are

the same, except for the sign under the square root

X 7→ T = (I −XJ−1
1 X∗J2)

−1/2X, T 7→ X = (I + TJ−1
1 T ∗J2)

−1/2T,

which greatly simplifies the computation.

Some caution is necessary before applying these transformations. If we know that

U exists and X is given, then T is always well-defined (computable). On the other

hand, if T is given, this does not automatically imply that X is well-defined by (2.24).

Proposition 2.12. If T ∈ F(n−m)×m is given, and X is well-defined by (2.24),

then C1 and C2 in (2.18) are also well-defined.

Proof. If T is given, then the matrix X is well-defined by (2.24) if and only if both

Z1 := I + J−1
1 T ∗J2T and Z2 := I + TJ−1

1 T ∗J2 have no negative or zero eigenvalues.

To show that C1 is well-defined in (2.16), consider the matrix I − J−1
1 X∗J2X .

By using both equalities from (2.24) and Lemma 2.1 we have

I − J−1
1 X∗J2X = I − J−1

1 T ∗(I + J2TJ
−1
1 T ∗)−1/2J2T (I + J−1

1 T ∗J2T )
−1/2

= I − J−1
1 T ∗J2T (I + J−1

1 T ∗J2T )
−1 = I − (Z1 − I)Z−1

1 = Z−1
1 .

Since Z1 has no negative or zero eigenvalues, the same holds for Z−1
1 , so the principal

square root of Z−1
1 is well-defined and then C1 = Z

−1/2
1 .

The proof for C2 is similar, as we get C2 = Z
−1/2
2 . Finally, note that if T is

square and nonsingular, then Z1 and Z2 are similar, so it is sufficient to verify that

one of the cosine blocks is well-defined. If so, then they are also similar.

Therefore, if T is given, only the existence of the inverse of the principal square

roots in (2.3) has to be checked.

3. Applications. A typical application of the J-unitary block matrices W and

U lies in the systematic annihilation of relatively small block matrices, either for
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(one-sided) Givens-like QR factorization, or for two-sided block diagonalization by

similarity or congruence transformations.

In these algorithms, the inverse or the conjugate transpose of Q is usually applied

from the left -hand side to the working matrix, and (if needed) Q itself is used from the

right-hand side. Since Q = WU , this means that W ∗ or W−1 is first applied from the

left, followed by U∗ or U−1. The purpose of the block-diagonal matrix W ∗ or W−1

is to prepare the chosen blocks of the working matrix for the “actual” transformation

(like annihilation) by the block rotation U∗ or U−1.

For the best part of this section, we will consider one-sided transformations in the

QR-like factorizations with respect to some of the most frequently used orthosymm-

metric scalar products, and two-sided congruence transformations are illustrated in

the last subsection. In all examples below, J will be a unitary matrix.

3.1. Euclidean scalar product. Let J in (2.1) be the Euclidean scalar product,

with J1 = Im and J2 = In−m, or J1 = −Im and J2 = −In−m. In this case, we are

dealing with the ordinary unitary block matrices.

Let Q be a unitary matrix partitioned as in (2.2). Zakraǰsek and Vidav [20]

showed that Q can always be decomposed as in (2.3), even if the diagonal blocks of

Q are singular. This decomposition of Q is

(3.1) Q = WU =

[
W11 0

0 W22

] [
(I −X∗X)1/2 −X∗

X (I −XX∗)1/2

]
,

with unitary W and U . In this case, the relation between X and T from (2.24), if T

exists, simplifies to

(3.2) X = (I + TT ∗)−1/2T = T (I + T ∗T )−1/2.

If X has at least one singular value equal to 1, then U has singular diagonal blocks

and T is nonexistent.

Now we will show that for any given T , the matrix X is well-defined by (3.2).

Then, by Proposition 2.12, C1 and C2 are also well-defined by X , and it is easy to

prove by using the SVD (the Singular Value Decomposition) of X , that they are

Hermitian and positive definite, as well.

Theorem 3.1. If T ∈ F(n−m)×m is given, then X is well-defined by (3.2), and

the matrices I −X∗X and I −XX∗ are Hermitian and positive definite.

For the ordinary plane rotations, this result simply says that for any value of

t = tanϕ, we can compute x = sinϕ. On the other hand, if we start from a given

value of x, and try to compute t, or any other element of UT , then we must ensure

that |x| < 1 (otherwise t is not defined), and the corresponding tangent t must exist.
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An analogue of this fact for block rotations is the following “test matrix gener-

ation” problem: starting from a given matrix X ∈ F(n−m)×m, we want to generate

the block rotation U as in (3.1). To succeed, C1 and C2 have to be well-defined, and

this is so if and only if all singular values of X are strictly less than 1 (see [19]). As

we will see, in the hyperbolic case, the situation between X and T in that respect is

exactly the opposite.

The block rotations U from (3.1) can be used for block annihilation in the com-

putation of the QR factorization in a tree-like manner, by a divide-and-conquer algo-

rithm, suitable for parallel computing.

Example 3.2. Suppose that a matrix G ∈ Fn×k is given, with n ≥ k. Let G(1)

be a submatrix of G that consists of the first m columns of G, where m ≤ k and

m < n. If G(1) has the full column rank, there exists a nonsingular square submatrix

G1 (of order m) of G(1). By row permutations, this square submatrix can be brought

to the top of G(1). The submatrix G2 then contains the remaining rows of G(1).

Our goal is to annihilate the whole block G2, by using the inverse of the block

rotation U from (3.1), partitioned in the same way as G(1). By using (2.17), the

wanted transformation is

U−1G(1) =

[
(I −X∗X)1/2 X∗

−X (I −XX∗)1/2

] [
G1

G2

]
=

[
G′

1

0

]
.

The matrix X ∈ F(n−m)×m has to be determined from the second block equation,

which is the annihilation equation

−XG1 + (I −XX∗)1/2G2 = 0.

From here we obtain the matrix tangent

T = (I −XX∗)−1/2X = G2G
−1
1 ,

which can be computed as a solution of the linear system G1T = G2, with multiple

right-hand sides G2.

Once we have T , by Theorem 3.1, X and U are well-defined, and the square roots

in U−1 can be computed by one of the methods described in [5, Chapter 6].

After the application of U−1 to the whole G, the new “working” matrix is

G′ = U−1G =

[
G′

1 G′

12

0 G′

22

]
.

In the next step, we can simultaneously transform the matrices G′

1 and G′

22. In each

of the subsequent steps the number of independent transformations is doubled. The

process finishes when all the square diagonal blocks become upper triangular.
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Note that the preprocessing of blocks G1 and G2 by W−1
1 and W−1

2 , respectively,

is not necessary here.

3.2. Hyperbolic scalar products. Now, let J in (2.1) be the hyperbolic scalar

product in the standard partitioned form, with J1 = Im and J2 = −In−m, or J1 =

−Im and J2 = In−m.

Let Q be a J-unitary matrix partitioned as in (2.2). It is easy to see that the

diagonal blocks Qii of Q are always nonsingular, and thus have the generalized polar

decomposition, since Ji = ±I. The decomposition of Q from Theorem 2.4 always

exists, and it is given by

(3.3) Q = WU =

[
W11 0

0 W22

] [
(I +X∗X)1/2 X∗

X (I +XX∗)1/2

]
,

with J-unitary W and U . Since W is block-diagonal, it is also a unitary matrix. By

using the same technique as in [20], Šego [17] showed that this decomposition exists

for a permuted J , i.e., for J = diag(±1), even if the diagonal blocks of Q are singular.

A similar, but not identical decomposition of J-unitary matrix Q as in (3.3), is used

in [16], in the block Cholesky downdating problem.

The relation between X and T from (2.24) now becomes

(3.4) X = (I − TT ∗)−1/2T = T (I − T ∗T )−1/2.

The J-unitary “test matrix generation” problem is always solvable. For any given

X ∈ F(n−m)×m, both matrices I + X∗X and I + XX∗ are Hermitian and positive

definite, their principal square roots exist, so U in (3.3) is well-defined.

On the other hand, if T is given, the square roots in (3.4) need not exist, and

then X cannot be computed from T . By using the SVD of T , it is easy to prove the

following theorem.

Theorem 3.3. Let T ∈ F(n−m)×m be a given matrix. Then X is well-defined by

(3.4) if and only if all singular values of T are strictly less than 1.

When n = 2, we get the well-known fact that the hyperbolic plane rotation UH

is well-defined by t, if and only if the computed value of t = tanhϕ satisfies |t| < 1.

As a consequence of Theorem 3.3, the hyperbolic block rotations U from (3.3)

have a very limited use for block annihilation in the hyperbolic QR factorization.

Example 3.4. Let G ∈ Fn×k be a given matrix, with n ≥ k, and let G(1) be a

submatrix of G that consists of the first m columns of G, where m ≤ k and m < n,

as in Example 3.2.
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If the topmost square submatrixG1 ofG
(1) is nonsingular, we can try to annihilate

the remaining block G2 of G
(1) by using the inverse of the block rotation U from (3.3),

partitioned in the same way as G(1),

U−1G(1) =

[
(I +X∗X)1/2 −X∗

−X (I +XX∗)1/2

] [
G1

G2

]
=

[
G′

1

0

]
.

The annihilation equation that determines X is

−XG1 + (I +XX∗)1/2G2 = 0,

which gives the matrix tangent

T = (I +XX∗)−1/2X = G2G
−1
1 .

By Theorem 3.3, the matrixX can be computed from this T , if and only if the singular

values of T = G2G
−1
1 are strictly less than 1, which is usually not the case.

If, by a stroke of luck, X is well-defined by T , then all subsequent transforma-

tions in a divide-and-conquer algorithm involve only ordinary unitary block rotations.

Unfortunately, this “perfect splitting” rarely succeeds. Therefore, to compute the hy-

perbolic QR factorization, permutations of J have to be allowed, the working blocks

have to be smaller (usually, of order 2), and often preprocessed to ensure the existence

of J-unitary block transformations (see [13] for details).

3.3. Symplectic scalar products. Finally, let J in (2.1) be the symplectic

scalar product of even order n = 2p, in the block-diagonal form (1.4). The matrix J

can be partitioned as J = diag(J1, J2) in several different ways, where the dimensions

of J1 and J2 are also even, m = 2q and n − m = 2(p − q), respectively, but not

necessarily the same. Both J1 and J2 inherit the inner structure from J , with possibly

multiple copies of the block J0 on their diagonal. In addition, since J−1 = −J , the

same holds for the inverses of J1 and J2.

Symplectic scalar products are usually considered over the real field F = R, and

n = 2p reflects the isomorphism of Cp and R2p. In that view, the symplectic scalar

product J on R
2p corresponds to the “imaginary” orthosymmetric scalar product

Jc := iIp on Cp. To stress the fact that all matrices are real, in this subsection, we

will use the ordinary transposes, instead of the conjugate transposes.

The following result for matrices of order 2 will be used subsequently in the

construction of various examples.

Lemma 3.5. Let Z ∈ R
2×2 be a given matrix, and let J0 be the elementary

symplectic scalar product from (1.4). Then

ZTJ0Z = (detZ)J0, J0Z
TJ0Z = ZJ0Z

TJ0 = −(detZ)I2.
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Proof. The first result follows by straightforward multiplication and the second

one follows from J−1
0 = JT

0 = −J0.

Let Q be a J-unitary matrix partitioned as in (2.2). Such a matrix satisfies

QTJQ = J , and it is usually called a symplectic matrix. If the assumptions of

Theorem 2.4 are fulfilled, the decomposition of Q has the following form

(3.5) Q = WU =

[
W11 0

0 W22

] [
(I + J1X

TJ2X)1/2 J1X
TJ2

X (I +XJ1X
TJ2)

1/2

]
,

with symplectic W and U , and the relation between X and T from (2.24) becomes

(3.6) X = (I − TJ1T
TJ2)

−1/2T = T (I − J1T
TJ2T )

−1/2.

In contrast to the previous two subsections, it is easy to construct an example of

a diagonal block Qii that is nonsingular, but does not have the generalized polar

decomposition. For example, let the blocks of Q in (2.2) be given by

Q11 = Q22 = diag(−1, 1), Q12 = Q21 =
√
2I2.

Then it is easy to verify that Q is symplectic, but the diagonal blocks have no general-

ized polar decomposition, since J−1
0 QT

iiJ0Qii = −I2, thus violating the condition (a)

of Theorem 2.3. Therefore, one has to be careful to ensure the existence of (3.5).

Moreover, here it is not easy to determine in advance when the maps X 7→ T and

T 7→ X are well-defined. A sufficient condition is provided by the following argument.

Suppose that Z ∈ R(n−m)×m is given, where Z denotes either X or T . If the singular

values σi of Z are strictly less than 1, the inverses of the principal square roots of the

following four matrices I ± ZJ1Z
TJ2 and I ± J1Z

TJ2Z exist. This follows from

‖ZJ1Z
TJ2‖2 ≤ ‖Z‖2‖J1‖2‖ZT‖2‖J2‖2 = ‖Z‖2‖ZT ‖2 = σ2

max(Z) < 1,

and similarly for J1Z
TJ2Z, since J1 and J2 are unitary matrices. Hence, the spectra

of both ZJ1Z
TJ2 and J1Z

TJ2Z lie in the open unit circle, so I ± ZJ1Z
TJ2 and

I ± J1Z
TJ2Z have no negative or zero eigenvalues.

On the other hand, this condition is certainly not necessary. For example, let

T =

[
2 1

1 2

]
.

The singular values of T are 3 and 1, but, by using Lemma 3.5, I − TJ0T
TJ0 =

I − J0T
TJ0T = 4I2, and the inverse of the principal square roots in (3.6) can be

computed, giving X = 1
2T .
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We see that in the symplectic case, with arbitrary p and q, the “test matrix

generation” problem is not easy to solve. Likewise, the general blocked version of

the symplectic QR factorization encounters a similar problem as in the hyperbolic

case—the required block rotation U does not have to be well-defined by the block

tangent T determined from the annihilation equation, i.e., U may not exist.

From now on, we will consider the symplectic QR factorization (sometimes also

called the SR factorization, as in [1]) only in the “minimal” nontrivial case n = 4 and

m = 2. Then J1 = J2 = J0. All the problems mentioned above will also appear here,

but, as we will show, they can be solved by an adequate preprocessing of blocks.

To begin with, in this “minimal” case, it is easy to characterize when X is well-

defined by T .

Proposition 3.6. Let T ∈ R2×2 be a given matrix, and let J1 = J2 = J0. Then

X is well-defined by (3.6) if and only if det(T ) > −1.

Proof. By using Lemma 3.5, we obtain

I − TJ0T
TJ0 = I − J0T

TJ0T = (1 + detT )I2.

Since det T is real, (1 + det T )I2 has positive eigenvalues if and only if detT > −1.

This means that X is computable from (3.6), and by Proposition 2.12, the whole

block rotation U of order 4 in (3.5) is well-defined.

Example 3.7. Let J1 = J2 = J0 and we would like to obtain the symplectic QR

factorization of a given matrix G ∈ R4×2, with a nonsingular topmost block G1 of

order 2. The problem is to solve the following block equation in terms of X

U−1G =

[
(I + J0X

TJ0X)1/2 −J0X
TJ0

−X (I +XJ0X
TJ0)

1/2

] [
G1

G2

]
=

[
G′

1

0

]
.

The annihilation equation that determines X is

−XG1 + (I +XJ0X
TJ0)

1/2G2 = 0,

which gives the matrix tangent

T = (I +XJ0X
TJ0)

−1/2X = G2G
−1
1 .

By Proposition 3.6, X is well-defined by T if and only if

−1 < det(T ) = det(G2G
−1
1 ) =

det(G2)

det(G1)
.

If G2 is singular, then the previous inequality is always satisfied. On the other hand,

if det(G2)/ det(G1) < −1, then we can use a row permutation to swap the roles of
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G1 and G2, and obtain det(G1)/ det(G2) > −1. Then T = G1G
−1
2 (in terms of the

original blocks), so X is again well-defined by T .

Unfortunately, this row permutation will not help if det(G1) = − det(G2). Then

I − TJ0T
TJ0 = I − J0T

TJ0T = 0,

and X is not computable.

Now suppose that G ∈ R4×2 is preprocessed by a suitably chosen W−1, where

W is the block-diagonal factor from (3.5). It is easy to show that the ordinary

unitary plane rotations are also J0-unitary matrices, and we can compute the QR

factorization in each block Gi, i.e., we factorize Gi = WiiRi. This preprocessing gives

a new working matrix R ∈ R4×2 such that

R :=

[
W−1

11 0

0 W−1
22

] [
G1

G2

]
=

[
R1

R2

]
, R1 =

[
r11 r12
0 r22

]
, R2 =

[
r31 r32
0 r42

]
,

with positive diagonal elements in R1, and nonnegative in R2. The block rotation U

from (3.5) is now used to annihilate the block R2

U−1R =

[
(I + J0X

TJ0X)1/2 −J0X
TJ0

−X (I +XJ0X
TJ0)

1/2

] [
R1

R2

]
=

[
R′

1

0

]
,

which gives the upper triangular matrix tangent T

T = R2R
−1
1 =




r31
r11

r11r32 − r12r31
r11r22

0
r42
r22


 .

From the signs of the diagonal elements of R1 and R2 it follows that

det(T ) =
det(R2)

det(R1)
=

r31r42
r11r22

≥ 0,

and, by Proposition 3.6, X in (3.6) is always well-defined by T . Then we have

X =
1√

1 + det(T )
T =

√
r11r22

r11r22 + r31r42
T,

and the whole block rotation U is given by

U−1 =

√
r11r22

r11r22 + r31r42




1 0
r42
r22

−r11r32 − r12r31
r11r22

0 1 0
r31
r11

−r31
r11

−r11r32 − r12r31
r11r22

1 0

0 −r42
r22

0 1




.
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The result of this transformation is

U−1R =

[
R′

1

0

]
, R′

1 =
√
1 + det(T )R1 =

√
1 +

r31r42
r11r22

[
r11 r12
0 r22

]
.

Note that the annihilation of R2 preserves the upper triangular form of R1.

A systematic application of this procedure (annihilation of blocks of order 2, with

preprocessing of blocks) gives a “non-blocked” version of the Givens-like algorithm

for computing the symplectic QR factorization of a given matrix G ∈ R2p×2r in the

general case. The only condition is that in each step of the algorithm, there exists a

nonsingular submatrix of order 2, corresponding to a block J0 in J ,

[
g2i−1,2i−1 g2i−1,2i

g2i,2i−1 g2i,2i

]

in the working part of the matrix. A similar algorithm for computing the symplectic

QR factorization is given in [14]. The transformations used in that algorithm (see

Lemma 2.2 therein) are given by

(3.7) S1 = UT ⊗ I2 =

[
cosϕ I2 − sinϕ I2
sinϕ I2 cosϕ I2

]
, S2 =

[
I2 X2

X2 I2

]
, X2 =

[
0 a

0 0

]
,

and it is easy to verify that they are also symplectic block rotations.

In some applications, the symplectic QR factorization of G with symplectic and

orthogonal Q̂ has to be computed. Kressner [7] uses the Givens rotations and the

orthogonal symplectic reflectors. If J = PT ĴP , as in (1.5), and Q = PT Q̂P , the

same factorization can be achieved by using W and U from (3.5). The final R is the

same as in [1, Corollary 4.5 (iii)] if G ∈ R2n×2n, or as in [7, Lemma 1.1] if G ∈ R2m×2n,

m ≥ n. A similar algorithm based on block rotations is essentially described in [14,

Section 2.2.], if the applications of the nonunitary transformations S2 from (3.7) are

omitted in Step 5 of the algorithm.

3.4. Unitary block transformations of scalar products. An essential as-

sumption in Theorem 2.4 and the whole construction of J-unitary block rotations

is that a given orthosymmetric scalar product J satisfies (2.1), i.e., that it is block-

diagonal.

Suppose that we have an orthosymmetric matrix Ĵ that is not block-diagonal.

From (1.1) it is obvious that Ĵ is a normal matrix, so it can always be brought into a

diagonal form by a unitary similarity (or congruence) transformation, i.e., there exists

a unitary matrix Û such that

Û∗Ĵ Û = diag(j1, . . . , jn).
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It is easy to verify that J := diag(j1, . . . , jn) generates an orthosymmetric scalar

product, with the same τ in (1.1) as Ĵ . Now we can choose how to split J as in (2.1).

But, such a “drastic” diagonalization of Ĵ is not really necessary. It is quite

sufficient to find a unitary similarity that transforms Ĵ into a block-diagonal J with

only two diagonal blocks, as in (2.1). In some cases, this transformation can be

accomplished easily by using unitary block rotations.

As an example, consider a Hermitian unitary matrix Ĵ with a block-antidiagonal

structure. By using the SVD of J0 (see for example [3, Theorem 3.3]) it is easy to

prove the following result.

Proposition 3.8. Suppose that Ĵ has the following block structure

Ĵ =

[
0 Ĵ0
Ĵ∗

0 0

]

where Ĵ0 is a unitary matrix. There exists a unitary block rotation U ,

U =
1√
2

[
I −Ĵ0
Ĵ∗

0 I

]
,

such that

U∗ĴU = J =

[
J1 0

0 J2

]
.

Moreover, J1 = I and J2 = −I, so we get the hyperbolic scalar product.

Subsequently, we may use J-unitary matrices (including block rotations) in a

structure preserving algorithm. If, for any reason, we need to reconstruct the trans-

formations in the original scalar product Ĵ , it is easy to do so by using U .

If Q is a J-unitary matrix, and J = U∗ĴU , where U is a unitary matrix, then

(UQ∗U∗)Ĵ(UQU∗) = UQ∗JQU∗ = UJU∗ = Ĵ ,

which shows that Q̂ := UQU∗ is a Ĵ-unitary matrix.

4. Conclusion. In this paper, the orthosymmetric block rotations are intro-

duced, and the potential applications are illustrated. Many QR-like factorization

algorithms rely on orthosymmetric block rotations (or orthosymmetric block reflec-

tors). The main application of block rotations given here, lies in the construction of

relatively small orthosymmetric block rotations (e.g., of order 4), which—after pre-

processing by W—do the annihilation job. The role of preprocessing by W is given

only as a demonstration. Definitive answer how to preprocess a “big” block (of order
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64, or even bigger) to ensure the existence of a block rotation that annihilates such a

“big” block is a point for future research.
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