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A NEW EIGENVALUE BOUND FOR THE HADAMARD PRODUCT

OF AN M-MATRIX AND AN INVERSE M-MATRIX∗

FUBIN CHEN† , YAOTANG LI‡ , AND DEFENG WANG§

Abstract. If A and B are n× n nonsingular M -matrices, a new lower bound for the minimum

eigenvalue τ(A◦B−1) for the Hadamard product of A and B−1 is derived. This bound improves the

result of [R. Huang. Some inequalities for the Hadamard product and the Fan product of matrices.

Linear Algebra Appl., 428:1551–1559, 2008.].
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1. Introduction. For a positive integer n, N denotes the set {1, 2, . . . , n}. The

set of all n×n complex matrices is denoted by C
n×n and R

n×n denotes the set of all

n× n real matrices.

Let A = (aij) ∈ Rn×n and B = (bij) ∈ Rn×n. We write A ≥ B (> B) if aij ≥ bij

(> bij) for all i, j ∈ {1, 2, . . . , n}. If 0 is the null matrix and A ≥ 0 (> 0), we say that

A is a nonnegative (positive) matrix. The spectral radius of A is denoted by ρ(A). If

A is a nonnegative matrix, the Perron-Frobenius theorem guarantees that ρ(A) is an

eigenvalue of A.

We let Zn denote the class of all n × n real matrices all of whose off-diagonal

entries are nonpositive. An n × n matrix A is called an M -matrix if there exists an

n× n nonnegative matrix B and a nonnegative real number λ such that A = λI −B

and λ ≥ ρ(B), I is the identity matrix; if λ > ρ(B), we call A a nonsingularM -matrix;

if λ = ρ(B), we call A a singular M -matrix. Denote by Mn the set of nonsingular

M -matrices.
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Let A ∈ Zn and let τ(A) = min{Re(λ) : λ ∈ σ(A)}. Basic for our purpose are

the following simple facts (see Problems 16, 19 and 28 in Section 2.5 of [4]):

(1) τ(A) ∈ σ(A); τ(A) is called the minimum eigenvalue of A.

(2) If A,B ∈ Mn, and A ≥ B, then τ(A) ≥ τ(B).

(3) If A ∈ Mn, then ρ(A−1) is the Perron eigenvalue of the nonnegative matrix

A−1, and τ(A) = 1
ρ(A−1) is a positive real eigenvalue of A.

Let A be an irreducible nonsingular M -matrix. It is known that there exist

positive vectors u and v such that Au = τ(A)u and vTA = τ(A)vT , u and v being

called right and left Perron eigenvectors of A, respectively.

For two real matrices A = (aij) and B = (bij) of the same size, the Hadamard

product of A and B is A ◦B = (aijbij). If A and B are two nonsingular M -matrices,

then it is proved in [2] that A ◦B−1 is a nonsingular M -matrix.

If A = (aij) is a nonsingular M -matrix, we write N = D−A, where D =diag(aii).

Note that aii > 0 for all i if A ∈ Mn. Thus, we define JA = D−1N ; JA is nonnegative.

Let A,B ∈ Mn and B−1 = (βij), in [4, Theorem 5.7.31] the following classical

result is given:

τ(A ◦B−1) ≥ τ(A) min
1≤i≤n

βii.

Recently, Huang [5, Theorem 9] improved this result and gave a new lower bound

for τ(A ◦B−1), that is

τ(A ◦B−1) ≥
1− ρ(JA)ρ(JB)

1 + ρ2(JB)
min

1≤i≤n

aii

bii
.

In this paper, for two nonsingular M -matrices A and B, we give a new lower

bound for τ(A ◦B−1); some examples are given to illustrate our result.

2. Some lemmas and the main result. In order to prove our result, we first

give some lemmas.

Lemma 2.1. [4, Lemma 5.1.2] Let A,B ∈ Cn×n and suppose that D ∈ Cn×n and

E ∈ Cn×n are diagonal matrices, then

D(A ◦B)E = (DAE) ◦B = (DA) ◦ (BE) = (AE) ◦ (DB) = A ◦ (DBE).
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Lemma 2.2. [5, Lemma 8] Let B = (bij) ∈ Mn be irreducible, and let y = (yi) be

a positive vector such that JBy = ρ(JB)y. Then for B−1 = (βij), we have

|βji| ≤ ρ(JB)βii

yj

yi
, i 6= j,

and

βii ≥
1

bii(1 + ρ2(JB))
.

Lemma 2.3. [3, Theorem 6.4.7] Let A = (aij) ∈ C
n×n. Then all the eigenvalues

of A lie in the region:

n
⋃

i,j=1

i6=j







z ∈ C : |z − aii||z − ajj | ≤
∑

k 6=i

|aki|
∑

k 6=j

|akj |







.

By the definition of JA, we have

ρ(JAT ) = ρ(D−1NT ) = ρ(ND−1) = ρ(D−1(ND−1)D) = ρ(D−1N) = ρ(JA).

Theorem 2.4. Let A = (aij), B ∈ Rn×n be two nonsingular M -matrices and let

B−1 = (βij). Then

τ(A ◦B−1) ≥ min
i6=j

1

2

{

aiiβii + ajjβjj −
[

(aiiβii − ajjβjj)
2

+4aiiajjβiiβjjρ
2(JA)ρ

2(JB)
]

1

2

}

.(2.1)

Proof. It is evident that (2.1) is an equality for n = 1.

We next assume that n ≥ 2.

If A ◦ B−1 is irreducible, then A and B are irreducible. Then JA and JB are

also irreducible and nonnegative, so there exists a positive vector u = (ui) such that

JAT u = ρ(JAT )u. Note that ρ(JAT ) = ρ(JA), so we have

∑

j 6=i

|aji|uj

ui

= aiiρ(JA).
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Let Â = (âij) = ÛAÛ−1 and B̂−1 = (β̂ij) = V̂ B−1V̂ −1 in which Û and V̂ are the

nonsingular diagonal matrices Û =diag(u1, u2, . . . , un) and V̂ =diag
(

1
v1
, 1
v2
, . . . , 1

vn

)

.

Then, we have

Â = (âij) = ÛAÛ−1

=











u1

u2

. . .

un





















a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann























1
u1

1
u2

. . .
1
un













=













a11
a12u1

u2

· · · a1nu1

un
a21u2

u1

a22 · · · a2nu2

un

...
...

. . .
...

an1un

u1

an2un

u2

· · · ann













.

and

B̂−1 = (β̂ij) = V̂ B−1V̂ −1

=













1
v1

1
v2

. . .
1
vn























β11 β12 · · · β1n

β21 β22 · · · β2n

...
...

. . .
...

βn1 βn2 · · · βnn





















v1

v2
. . .

vn











=













β11
β12v2
v1

· · · β1nvn
v1

β21v1
v2

β22 · · · β2nvn
v2

...
...

. . .
...

βn1v1
vn

βn2v2
vn

· · · βnn













.

Also let W = V̂ Û . Then, W is nonsingular. From Lemma 2.1, we have

(V U)(A◦B−1)(V U)−1 = V U(A◦B−1)U−1V −1 = (UAU−1)◦(V B−1V −1) = Â◦B̂−1.

Thus, we have τ(A ◦B−1) = τ(Â ◦ B̂−1) and

Â ◦ B̂−1 = (cij) =













a11β11
a12β12u1v2

u2v1
· · · a1nβ1nu1vn

unv1
a21β21u2v1

u1v2
a22β22 · · · a2nβ2nu2vn

unv2
...

...
. . .

...
an1βn1unv1

u1vn

an2βn2unv2
u2vn

· · · annβnn













.
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We next consider the minimum eigenvalue of Â ◦ B̂−1. Let τ(Â ◦ B̂−1) = λ, so

that 0 < λ < aiiβii, ∀i ∈ N . Thus, by Lemma 2.3, there is a pair (i, j) of positive

integers with i 6= j such that

|λ− aiiβii| |λ− ajjβjj | ≤
∑

k 6=i

|cki|
∑

k 6=j

|ckj |.

Observe that

∑

k 6=i

|cki|
∑

k 6=j

|ckj | =





∑

k 6=i

∣

∣

∣

∣

akiβkiukvi

uivk

∣

∣

∣

∣









∑

k 6=j

∣

∣

∣

∣

akjβkjukvj

ujvk

∣

∣

∣

∣





≤





∑

k 6=i

∣

∣

∣

∣

akiuk

ui

∣

∣

∣

∣

ρ(JB)βii









∑

k 6=i

∣

∣

∣

∣

akjuk

uj

∣

∣

∣

∣

ρ(JB)βjj





= aiiajjβiiβjjρ
2(JA)ρ

2(JB).

Thus, we have

|λ− aiiβii| |λ− ajjβjj | ≤ aiiajjβiiβjjρ
2(JA)ρ

2(JB).

Then, we have

λ ≥
1

2

{

aiiβii + ajjβjj −
[

(aiiβii − ajjβjj)
2
+ 4aiiajjβiiβjjρ

2(JA)ρ
2(JB)

]
1

2

}

.

That is,

τ(A ◦B−1) ≥
1

2

{

aiiβii + ajjβjj −
[

(aiiβii − ajjβjj)
2

+4aiiajjβiiβjjρ
2(JA)ρ

2(JB)
]

1

2

}

≥ min
i6=j

1

2

{

aiiβii + ajjβjj −
[

(aiiβii − ajjβjj)
2

+4aiiajjβiiβjjρ
2(JA)ρ

2(JB)
]

1

2

}

.

Now, assume that A ◦ B−1 is reducible. It is known that a matrix in Zn is

a nonsingular M -matrix if and only if all its leading principal minors are positive

(see condition (E17) of Theorem 6.2.3 of [1]). If we denote by D = (dij) the n × n

permutation matrix with d12 = d23 = · · · = dn−1,n = dn1 = 1, then both A− tD and

B − tD are irreducible nonsingular M -matrices for any chosen positive real number

t, sufficiently small such that all the leading principal minors of both A − tD and

B− tD are positive. Now we substitute A− tD and B− tD for A and B, respectively

in the previous case, and then letting t −→ 0, the result follows by continuity.
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Theorem 2.5. Let A = (aij), B ∈ Rn×n be two nonsingular M -matrices and let

B−1 = (βij). Then

min
i6=j

1

2

{

aiiβii + ajjβjj −
[

(aiiβii − ajjβjj)
2 + 4aiiajjβiiβjjρ

2(JA)ρ
2(JB)

]
1

2

}

≥
1− ρ(JA)ρ(JB)

1 + ρ2(JB)
min

1≤i≤n

aii

bii
.

Proof. Without loss of generality, for i 6= j, assume that

aiiβii − aiiβiiρ(JA)ρ(JB) ≤ ajjβjj − ajjβjjρ(JA)ρ(JB).(2.2)

Thus, (2.2) is equivalent to

ajjβjjρ(JA)ρ(JB) ≤ aiiβiiρ(JA)ρ(JB) + ajjβjj − aiiβii(2.3)

From (2.1) and (2.3), we have

1

2

{

aiiβii + ajjβjj − [(aiiβii − ajjβjj)
2 + 4aiiajjβiiβjjρ

2(JA)ρ
2(JB)]

1

2

}

≥
1

2

{

aiiβii + ajjβjj −
[

(aiiβii − ajjβjj)
2

+4aiiβiiρ(JA)ρ(JB) [aiiβiiρ(JA)ρ(JB) + ajjβjj − aiiβii]]
1

2

}

=
1

2

{

aiiβii + ajjβjj −
[

(aiiβii − ajjβjj)
2

+4a2iiβ
2
iiρ

2(JA)ρ
2(JB) + 4aiiβiiρ(JA)ρ(JB)(ajjβjj − aiiβii)

]
1

2

}

=
1

2

{

aiiβii + ajjβjj −
[

(ajjβjj − aiiβii + 2aiiβiiρ(JA)ρ(JB))
2
]

1

2

}

=
1

2
{aiiβii + ajjβjj − (ajjβjj − aiiβii + 2aiiβiiρ(JA)ρ(JB))}

= aiiβii − aiiβiiρ(JA)ρ(JB)

= aiiβii(1 − ρ(JA)ρ(JB))

≥
1− ρ(JA)ρ(JB)

1 + ρ2(JB)

aii

bii
.

Thus, we have

τ(A ◦B−1) ≥ min
i6=j

1

2

{

aiiβii + ajjβjj −
[

(aiiβii − ajjβjj)
2

+4aiiajjβiiβjjρ
2(JA)ρ

2(JB)
]

1

2

}

≥
1− ρ(JA)ρ(JB)

1 + ρ2(JB)
min

1≤i≤n

aii

bii
.
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Remark 2.6. Theorem 2.5 shows that the result of Theorem 2.4 is better than

the result of Theorem 9 in [5].

3. Examples.

Example 3.1. Let

A =









1 −0.5 0 0

−0.5 1 −0.5 0

0 −0.5 1 −0.5

0 0 −0.5 1









, B =









4 −1 −1 −1

−2 5 −1 −1

0 −2 4 −1

−1 −1 −1 4









.

Then

A ◦B−1 =









0.4 −0.1 0 0

−0.1167 0.3667 −0.1 0

0 −0.1167 0.4 −0.1

0 0 −0.1 0.4









.

By calculating with Matlab 7.0, we have ρ(JA) = 0.809, ρ(JB) = 0.7652, and

τ(A ◦B−1) = 0.2148. By Theorem 9 in [5], we have

τ(A ◦B−1) ≥
1− ρ(JA)ρ(JB)

1 + ρ2(JB)
min

1≤i≤n

aii

bii
= 0.048.

By our Theorem 2.4, we have

τ(A ◦B−1) ≥ min
i6=j

1

2

{

aiiβii + ajjβjj −
[

(aiiβii − ajjβjj)
2

+4aiiajjβiiβjjρ
2(JA)ρ

2(JB)
]

1

2

}

= 0.1524.

which approaches the real value 0.2148. This numerical example shows that the result

in Theorem 2.4 is better than that in Theorem 9 in [5] in some cases.

Example 3.2. Let

A =

[

2 −2

−1 2

]

, B =

[

2 −0.5

−0.5 1

]

.

Then

A ◦B−1 =

[

1.7142 −0.5714

−0.2857 2.2858

]

.
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By calculating with Matlab 7.0, we have ρ(JA) = 0.7071, ρ(JB) = 0.3536, and

τ(A ◦B−1) = 1.0144. By Theorem 9 in [5], we have

τ(A ◦B−1) ≥
1− ρ(JA)ρ(JB)

1 + ρ2(JB)
min

1≤i≤n

aii

bii
= 0.6666.

By our Theorem 2.4, we have

τ(A ◦B−1) ≥ min
i6=j

1

2

{

aiiβii + ajjβjj −
[

(aiiβii − ajjβjj)
2

+4aiiajjβiiβjjρ
2(JA)ρ

2(JB)
]

1

2

}

= 1.0144.

It is a surprise to see that our bound is the minimum eigenvalue of A◦B−1. This

numerical example shows that the bound of Theorem 2.4 is sharp.
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