A NEW EIGENVALUE BOUND FOR THE HADAMARD PRODUCT OF AN M-MATRIX AND AN INVERSE M-MATRIX*

FUBIN CHEN ${ }^{\dagger}$, YAOTANG LI ‡, AND DEFENG WANG ${ }^{\S}$

Abstract

If A and B are $n \times n$ nonsingular M-matrices, a new lower bound for the minimum eigenvalue $\tau\left(A \circ B^{-1}\right)$ for the Hadamard product of A and B^{-1} is derived. This bound improves the result of [R. Huang. Some inequalities for the Hadamard product and the Fan product of matrices. Linear Algebra Appl., 428:1551-1559, 2008.].

Key words. M-matrix, Hadamard product, Spectral radius, Lower bound.

AMS subject classifications. 15A06, 15A15, 15A48.

1. Introduction. For a positive integer n, N denotes the set $\{1,2, \ldots, n\}$. The set of all $n \times n$ complex matrices is denoted by $\mathbb{C}^{n \times n}$ and $\mathbb{R}^{n \times n}$ denotes the set of all $n \times n$ real matrices.

Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ and $B=\left(b_{i j}\right) \in \mathbb{R}^{n \times n}$. We write $A \geq B(>B)$ if $a_{i j} \geq b_{i j}$ ($>b_{i j}$) for all $i, j \in\{1,2, \ldots, n\}$. If 0 is the null matrix and $A \geq 0(>0)$, we say that A is a nonnegative (positive) matrix. The spectral radius of A is denoted by $\rho(A)$. If A is a nonnegative matrix, the Perron-Frobenius theorem guarantees that $\rho(A)$ is an eigenvalue of A.

We let Z_{n} denote the class of all $n \times n$ real matrices all of whose off-diagonal entries are nonpositive. An $n \times n$ matrix A is called an M-matrix if there exists an $n \times n$ nonnegative matrix B and a nonnegative real number λ such that $A=\lambda I-B$ and $\lambda \geq \rho(B), I$ is the identity matrix; if $\lambda>\rho(B)$, we call A a nonsingular M-matrix; if $\lambda=\rho(B)$, we call A a singular M-matrix. Denote by M_{n} the set of nonsingular M-matrices.

[^0]Let $A \in Z_{n}$ and let $\tau(A)=\min \{\operatorname{Re}(\lambda): \lambda \in \sigma(A)\}$. Basic for our purpose are the following simple facts (see Problems 16, 19 and 28 in Section 2.5 of [4]):
(1) $\tau(A) \in \sigma(A) ; \tau(A)$ is called the minimum eigenvalue of A.
(2) If $A, B \in M_{n}$, and $A \geq B$, then $\tau(A) \geq \tau(B)$.
(3) If $A \in M_{n}$, then $\rho\left(A^{-1}\right)$ is the Perron eigenvalue of the nonnegative matrix A^{-1}, and $\tau(A)=\frac{1}{\rho\left(A^{-1}\right)}$ is a positive real eigenvalue of A.

Let A be an irreducible nonsingular M-matrix. It is known that there exist positive vectors u and v such that $A u=\tau(A) u$ and $v^{T} A=\tau(A) v^{T}, u$ and v being called right and left Perron eigenvectors of A, respectively.

For two real matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ of the same size, the Hadamard product of A and B is $A \circ B=\left(a_{i j} b_{i j}\right)$. If A and B are two nonsingular M-matrices, then it is proved in [2] that $A \circ B^{-1}$ is a nonsingular M-matrix.

If $A=\left(a_{i j}\right)$ is a nonsingular M-matrix, we write $N=D-A$, where $D=\operatorname{diag}\left(a_{i i}\right)$. Note that $a_{i i}>0$ for all i if $A \in M_{n}$. Thus, we define $J_{A}=D^{-1} N ; J_{A}$ is nonnegative.

Let $A, B \in M_{n}$ and $B^{-1}=\left(\beta_{i j}\right)$, in [4, Theorem 5.7.31] the following classical result is given:

$$
\tau\left(A \circ B^{-1}\right) \geq \tau(A) \min _{1 \leq i \leq n} \beta_{i i}
$$

Recently, Huang [5. Theorem 9] improved this result and gave a new lower bound for $\tau\left(A \circ B^{-1}\right)$, that is

$$
\tau\left(A \circ B^{-1}\right) \geq \frac{1-\rho\left(J_{A}\right) \rho\left(J_{B}\right)}{1+\rho^{2}\left(J_{B}\right)} \min _{1 \leq i \leq n} \frac{a_{i i}}{b_{i i}}
$$

In this paper, for two nonsingular M-matrices A and B, we give a new lower bound for $\tau\left(A \circ B^{-1}\right)$; some examples are given to illustrate our result.
2. Some lemmas and the main result. In order to prove our result, we first give some lemmas.

Lemma 2.1. [4, Lemma 5.1.2] Let $A, B \in \mathbb{C}^{n \times n}$ and suppose that $D \in \mathbb{C}^{n \times n}$ and $E \in \mathbb{C}^{n \times n}$ are diagonal matrices, then

$$
D(A \circ B) E=(D A E) \circ B=(D A) \circ(B E)=(A E) \circ(D B)=A \circ(D B E) .
$$

ELA

Lemma 2.2. [5, Lemma 8] Let $B=\left(b_{i j}\right) \in M_{n}$ be irreducible, and let $y=\left(y_{i}\right)$ be a positive vector such that $J_{B} y=\rho\left(J_{B}\right) y$. Then for $B^{-1}=\left(\beta_{i j}\right)$, we have

$$
\left|\beta_{j i}\right| \leq \rho\left(J_{B}\right) \beta_{i i} \frac{y_{j}}{y_{i}}, \quad i \neq j
$$

and

$$
\beta_{i i} \geq \frac{1}{b_{i i}\left(1+\rho^{2}\left(J_{B}\right)\right)}
$$

Lemma 2.3. [3, Theorem 6.4.7] Let $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}$. Then all the eigenvalues of A lie in the region:

$$
\bigcup_{\substack{i, j=1 \\ i \neq j}}^{n}\left\{z \in \mathbb{C}:\left|z-a_{i i}\right|\left|z-a_{j j}\right| \leq \sum_{k \neq i}\left|a_{k i}\right| \sum_{k \neq j}\left|a_{k j}\right|\right\}
$$

By the definition of J_{A}, we have

$$
\rho\left(J_{A^{T}}\right)=\rho\left(D^{-1} N^{T}\right)=\rho\left(N D^{-1}\right)=\rho\left(D^{-1}\left(N D^{-1}\right) D\right)=\rho\left(D^{-1} N\right)=\rho\left(J_{A}\right)
$$

Theorem 2.4. Let $A=\left(a_{i j}\right), B \in \mathbb{R}^{n \times n}$ be two nonsingular M-matrices and let $B^{-1}=\left(\beta_{i j}\right)$. Then

$$
\begin{gather*}
\tau\left(A \circ B^{-1}\right) \geq \min _{i \neq j} \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{j j} \beta_{j j}\right)^{2}\right.\right. \\
\left.\left.+4 a_{i i} a_{j j} \beta_{i i} \beta_{j j} \rho^{2}\left(J_{A}\right) \rho^{2}\left(J_{B}\right)\right]^{\frac{1}{2}}\right\} . \tag{2.1}
\end{gather*}
$$

Proof. It is evident that (2.1) is an equality for $n=1$.
We next assume that $n \geq 2$.
If $A \circ B^{-1}$ is irreducible, then A and B are irreducible. Then J_{A} and J_{B} are also irreducible and nonnegative, so there exists a positive vector $u=\left(u_{i}\right)$ such that $J_{A^{T}} u=\rho\left(J_{A^{T}}\right) u$. Note that $\rho\left(J_{A^{T}}\right)=\rho\left(J_{A}\right)$, so we have

$$
\sum_{j \neq i} \frac{\left|a_{j i}\right| u_{j}}{u_{i}}=a_{i i} \rho\left(J_{A}\right)
$$

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 23, pp. 287-294, March 2012

ELA

Let $\hat{A}=\left(\hat{a}_{i j}\right)=\hat{U} A \hat{U}^{-1}$ and $\hat{B}^{-1}=\left(\hat{\beta}_{i j}\right)=\hat{V} B^{-1} \hat{V}^{-1}$ in which \hat{U} and \hat{V} are the nonsingular diagonal matrices $\hat{U}=\operatorname{diag}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\hat{V}=\operatorname{diag}\left(\frac{1}{v_{1}}, \frac{1}{v_{2}}, \ldots, \frac{1}{v_{n}}\right)$. Then, we have

$$
\begin{aligned}
\hat{A} & =\left(\hat{a}_{i j}\right)=\hat{U} A \hat{U}^{-1} \\
& =\left[\begin{array}{cccc}
u_{1} & & & \\
& u_{2} & & \\
& \ddots & \\
& & u_{n}
\end{array}\right]\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{u_{1}} & & \\
& \frac{1}{u_{2}} & \\
& & \ddots \\
\\
& =\left[\begin{array}{cccc}
a_{11} & \frac{a_{12} u_{1}}{u_{2}} & \cdots & \frac{a_{1 n} u_{1}}{u_{n}} \\
\frac{a_{21} u_{2}}{u_{1}} & a_{22} & \cdots & \frac{a_{2 n} u_{2}}{u_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{a_{n 1} u_{n}}{u_{1}} & \frac{a_{n 2} u_{n}}{u_{2}} & \cdots & a_{n n}
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{B}^{-1} & =\left(\hat{\beta_{i j}}\right)=\hat{V} B^{-1} \hat{V}^{-1} \\
& =\left[\begin{array}{cccc}
\frac{1}{v_{1}} & & & \\
& \frac{1}{v_{2}} & & \\
& & \ddots & \\
& & \frac{1}{v_{n}}
\end{array}\right]\left[\begin{array}{cccc}
\beta_{11} & \beta_{12} & \cdots & \beta_{1 n} \\
\beta_{21} & \beta_{22} & \cdots & \beta_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{n 1} & \beta_{n 2} & \cdots & \beta_{n n}
\end{array}\right]\left[\begin{array}{lll}
v_{1} & & \\
& v_{2} & \\
& & \ddots \\
& & \\
& v_{n}
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
\beta_{11} & \frac{\beta_{12} v_{2}}{v_{1}} & \cdots & \frac{\beta_{1 n} v_{n}}{v_{1}} \\
\frac{\beta_{21} v_{1}}{v_{2}} & \beta_{22} & \cdots & \frac{\beta_{2 n} v_{n}}{v_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\beta_{n 1} v_{1}}{v_{n}} & \frac{\beta_{n 2} v_{2}}{v_{n}} & \cdots & \beta_{n n}
\end{array}\right] .
\end{aligned}
$$

Also let $W=\hat{V} \hat{U}$. Then, W is nonsingular. From Lemma 2.1, we have

$$
(V U)\left(A \circ B^{-1}\right)(V U)^{-1}=V U\left(A \circ B^{-1}\right) U^{-1} V^{-1}=\left(U A U^{-1}\right) \circ\left(V B^{-1} V^{-1}\right)=\hat{A} \circ \hat{B}^{-1}
$$

Thus, we have $\tau\left(A \circ B^{-1}\right)=\tau\left(\hat{A} \circ \hat{B}^{-1}\right)$ and

$$
\hat{A} \circ \hat{B}^{-1}=\left(c_{i j}\right)=\left[\begin{array}{cccc}
a_{11} \beta_{11} & \frac{a_{12} \beta_{12} u_{1} v_{2}}{u_{2} v_{1}} & \cdots & \frac{a_{1 n} \beta_{1 n} u_{1} v_{n}}{u_{n} v_{1}} \\
\frac{a_{21} \beta_{21} u_{2} v_{1}}{u_{1} v_{2}} & a_{22} \beta_{22} & \cdots & \frac{a_{2 n} \beta_{2 n} u_{2} v_{n}}{u_{n} v_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{a_{n 1} \beta_{n 1} u_{n} v_{1}}{u_{1} v_{n}} & \frac{a_{n 2} \beta_{n 2} u_{n} v_{2}}{u_{2} v_{n}} & \cdots & a_{n n} \beta_{n n}
\end{array}\right] .
$$

We next consider the minimum eigenvalue of $\hat{A} \circ \hat{B}^{-1}$. Let $\tau\left(\hat{A} \circ \hat{B}^{-1}\right)=\lambda$, so that $0<\lambda<a_{i i} \beta_{i i}, \forall i \in N$. Thus, by Lemma 2.3, there is a pair (i, j) of positive integers with $i \neq j$ such that

$$
\left|\lambda-a_{i i} \beta_{i i}\right|\left|\lambda-a_{j j} \beta_{j j}\right| \leq \sum_{k \neq i}\left|c_{k i}\right| \sum_{k \neq j}\left|c_{k j}\right| .
$$

Observe that

$$
\begin{aligned}
\sum_{k \neq i}\left|c_{k i}\right| \sum_{k \neq j}\left|c_{k j}\right| & =\left(\sum_{k \neq i}\left|\frac{a_{k i} \beta_{k i} u_{k} v_{i}}{u_{i} v_{k}}\right|\right)\left(\sum_{k \neq j}\left|\frac{a_{k j} \beta_{k j} u_{k} v_{j}}{u_{j} v_{k}}\right|\right) \\
& \leq\left(\sum_{k \neq i}\left|\frac{a_{k i} u_{k}}{u_{i}}\right| \rho\left(J_{B}\right) \beta_{i i}\right)\left(\sum_{k \neq i}\left|\frac{a_{k j} u_{k}}{u_{j}}\right| \rho\left(J_{B}\right) \beta_{j j}\right) \\
& =a_{i i} a_{j j} \beta_{i i} \beta_{j j} \rho^{2}\left(J_{A}\right) \rho^{2}\left(J_{B}\right)
\end{aligned}
$$

Thus, we have

$$
\left|\lambda-a_{i i} \beta_{i i}\right|\left|\lambda-a_{j j} \beta_{j j}\right| \leq a_{i i} a_{j j} \beta_{i i} \beta_{j j} \rho^{2}\left(J_{A}\right) \rho^{2}\left(J_{B}\right)
$$

Then, we have

$$
\lambda \geq \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{j j} \beta_{j j}\right)^{2}+4 a_{i i} a_{j j} \beta_{i i} \beta_{j j} \rho^{2}\left(J_{A}\right) \rho^{2}\left(J_{B}\right)\right]^{\frac{1}{2}}\right\}
$$

That is,

$$
\begin{aligned}
\tau\left(A \circ B^{-1}\right) \geq & \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{j j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4 a_{i i} a_{j j} \beta_{i i} \beta_{j j} \rho^{2}\left(J_{A}\right) \rho^{2}\left(J_{B}\right)\right]^{\frac{1}{2}}\right\} \\
\geq & \min _{i \neq j} \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{j j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4 a_{i i} a_{j j} \beta_{i i} \beta_{j j} \rho^{2}\left(J_{A}\right) \rho^{2}\left(J_{B}\right)\right]^{\frac{1}{2}}\right\} .
\end{aligned}
$$

Now, assume that $A \circ B^{-1}$ is reducible. It is known that a matrix in Z_{n} is a nonsingular M-matrix if and only if all its leading principal minors are positive (see condition (E17) of Theorem 6.2 .3 of [1). If we denote by $D=\left(d_{i j}\right)$ the $n \times n$ permutation matrix with $d_{12}=d_{23}=\cdots=d_{n-1, n}=d_{n 1}=1$, then both $A-t D$ and $B-t D$ are irreducible nonsingular M-matrices for any chosen positive real number t, sufficiently small such that all the leading principal minors of both $A-t D$ and $B-t D$ are positive. Now we substitute $A-t D$ and $B-t D$ for A and B, respectively in the previous case, and then letting $t \longrightarrow 0$, the result follows by continuity. \square

ELA

Theorem 2.5. Let $A=\left(a_{i j}\right), B \in \mathbb{R}^{n \times n}$ be two nonsingular M-matrices and let $B^{-1}=\left(\beta_{i j}\right)$. Then

$$
\begin{aligned}
& \min _{i \neq j} \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{j j} \beta_{j j}\right)^{2}+4 a_{i i} a_{j j} \beta_{i i} \beta_{j j} \rho^{2}\left(J_{A}\right) \rho^{2}\left(J_{B}\right)\right]^{\frac{1}{2}}\right\} \\
\geq & \frac{1-\rho\left(J_{A}\right) \rho\left(J_{B}\right)}{1+\rho^{2}\left(J_{B}\right)} \min _{1 \leq i \leq n} \frac{a_{i i}}{b_{i i}} .
\end{aligned}
$$

Proof. Without loss of generality, for $i \neq j$, assume that

$$
\begin{equation*}
a_{i i} \beta_{i i}-a_{i i} \beta_{i i} \rho\left(J_{A}\right) \rho\left(J_{B}\right) \leq a_{j j} \beta_{j j}-a_{j j} \beta_{j j} \rho\left(J_{A}\right) \rho\left(J_{B}\right) \tag{2.2}
\end{equation*}
$$

Thus, (2.2) is equivalent to

$$
\begin{equation*}
a_{j j} \beta_{j j} \rho\left(J_{A}\right) \rho\left(J_{B}\right) \leq a_{i i} \beta_{i i} \rho\left(J_{A}\right) \rho\left(J_{B}\right)+a_{j j} \beta_{j j}-a_{i i} \beta_{i i} \tag{2.3}
\end{equation*}
$$

From (2.1) and (2.3), we have

$$
\begin{aligned}
& \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{j j} \beta_{j j}\right)^{2}+4 a_{i i} a_{j j} \beta_{i i} \beta_{j j} \rho^{2}\left(J_{A}\right) \rho^{2}\left(J_{B}\right)\right]^{\frac{1}{2}}\right\} \\
& \geq \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{j j} \beta_{j j}\right)^{2}\right.\right. \\
&\left.\left.+4 a_{i i} \beta_{i i} \rho\left(J_{A}\right) \rho\left(J_{B}\right)\left[a_{i i} \beta_{i i} \rho\left(J_{A}\right) \rho\left(J_{B}\right)+a_{j j} \beta_{j j}-a_{i i} \beta_{i i}\right]\right]^{\frac{1}{2}}\right\} \\
&=\frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{j j} \beta_{j j}\right)^{2}\right.\right. \\
&\left.\left.+4 a_{i i}^{2} \beta_{i i}^{2} \rho^{2}\left(J_{A}\right) \rho^{2}\left(J_{B}\right)+4 a_{i i} \beta_{i i} \rho\left(J_{A}\right) \rho\left(J_{B}\right)\left(a_{j j} \beta_{j j}-a_{i i} \beta_{i i}\right)\right]^{\frac{1}{2}}\right\} \\
&= \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{j j} \beta_{j j}-a_{i i} \beta_{i i}+2 a_{i i} \beta_{i i} \rho\left(J_{A}\right) \rho\left(J_{B}\right)\right)^{2}\right]^{\frac{1}{2}}\right\} \\
&= \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left(a_{j j} \beta_{j j}-a_{i i} \beta_{i i}+2 a_{i i} \beta_{i i} \rho\left(J_{A}\right) \rho\left(J_{B}\right)\right)\right\} \\
&= a_{i i} \beta_{i i}-a_{i i} \beta_{i i} \rho\left(J_{A}\right) \rho\left(J_{B}\right) \\
&= a_{i i} \beta_{i i}\left(1-\rho\left(J_{A}\right) \rho\left(J_{B}\right)\right) \\
& \geq \frac{1-\rho\left(J_{A}\right) \rho\left(J_{B}\right)}{1+\rho^{2}\left(J_{B}\right)} \frac{a_{i i}}{b_{i i}} .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\tau\left(A \circ B^{-1}\right) \geq & \min _{i \neq j} \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{j j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.\quad+4 a_{i i} a_{j j} \beta_{i i} \beta_{j j} \rho^{2}\left(J_{A}\right) \rho^{2}\left(J_{B}\right)\right]^{\frac{1}{2}}\right\} \\
\geq & \frac{1-\rho\left(J_{A}\right) \rho\left(J_{B}\right)}{1+\rho^{2}\left(J_{B}\right)} \min _{1 \leq i \leq n} \frac{a_{i i}}{b_{i i}} .
\end{aligned}
$$

Remark 2.6. Theorem 2.5 shows that the result of Theorem 2.4 is better than the result of Theorem 9 in (5].

3. Examples.

Example 3.1. Let

$$
A=\left[\begin{array}{cccc}
1 & -0.5 & 0 & 0 \\
-0.5 & 1 & -0.5 & 0 \\
0 & -0.5 & 1 & -0.5 \\
0 & 0 & -0.5 & 1
\end{array}\right], \quad B=\left[\begin{array}{cccc}
4 & -1 & -1 & -1 \\
-2 & 5 & -1 & -1 \\
0 & -2 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right]
$$

Then

$$
A \circ B^{-1}=\left[\begin{array}{cccc}
0.4 & -0.1 & 0 & 0 \\
-0.1167 & 0.3667 & -0.1 & 0 \\
0 & -0.1167 & 0.4 & -0.1 \\
0 & 0 & -0.1 & 0.4
\end{array}\right]
$$

By calculating with Matlab 7.0, we have $\rho\left(J_{A}\right)=0.809, \rho\left(J_{B}\right)=0.7652$, and $\tau\left(A \circ B^{-1}\right)=0.2148$. By Theorem 9 in [5], we have

$$
\tau\left(A \circ B^{-1}\right) \geq \frac{1-\rho\left(J_{A}\right) \rho\left(J_{B}\right)}{1+\rho^{2}\left(J_{B}\right)} \min _{1 \leq i \leq n} \frac{a_{i i}}{b_{i i}}=0.048
$$

By our Theorem 2.4, we have

$$
\begin{aligned}
\tau\left(A \circ B^{-1}\right) \geq & \min _{i \neq j} \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{j j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4 a_{i i} a_{j j} \beta_{i i} \beta_{j j} \rho^{2}\left(J_{A}\right) \rho^{2}\left(J_{B}\right)\right]^{\frac{1}{2}}\right\}=0.1524
\end{aligned}
$$

which approaches the real value 0.2148 . This numerical example shows that the result in Theorem 2.4 is better than that in Theorem 9 in [5] in some cases.

Example 3.2. Let

$$
A=\left[\begin{array}{cc}
2 & -2 \\
-1 & 2
\end{array}\right], \quad B=\left[\begin{array}{cc}
2 & -0.5 \\
-0.5 & 1
\end{array}\right]
$$

Then

$$
A \circ B^{-1}=\left[\begin{array}{cc}
1.7142 & -0.5714 \\
-0.2857 & 2.2858
\end{array}\right]
$$

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 23, pp. 287-294, March 2012

By calculating with Matlab 7.0, we have $\rho\left(J_{A}\right)=0.7071, \rho\left(J_{B}\right)=0.3536$, and $\tau\left(A \circ B^{-1}\right)=1.0144$. By Theorem 9 in [5], we have

$$
\tau\left(A \circ B^{-1}\right) \geq \frac{1-\rho\left(J_{A}\right) \rho\left(J_{B}\right)}{1+\rho^{2}\left(J_{B}\right)} \min _{1 \leq i \leq n} \frac{a_{i i}}{b_{i i}}=0.6666
$$

By our Theorem 2.4, we have

$$
\begin{aligned}
\tau\left(A \circ B^{-1}\right) \geq & \min _{i \neq j} \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{j j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4 a_{i i} a_{j j} \beta_{i i} \beta_{j j} \rho^{2}\left(J_{A}\right) \rho^{2}\left(J_{B}\right)\right]^{\frac{1}{2}}\right\}=1.0144 .
\end{aligned}
$$

It is a surprise to see that our bound is the minimum eigenvalue of $A \circ B^{-1}$. This numerical example shows that the bound of Theorem 2.4 is sharp.

REFERENCES

[1] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, PA, 1994.
[2] M. Fiedler and T.L. Markham. An inequality for the Hadamard product of an M-matrix and inverse M-matrix. Linear Algebra Appl., 101:1-8, 1988.
[3] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.
[4] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
[5] R. Huang. Some inequalities for the Hadamard product and the Fan product of matrices. Linear Algebra Appl., 428:1551-1559, 2008.

[^0]: *Received by the editors on November 20, 2011. Accepted for publication on March 24, 2012. Handling Editor: Roger A. Horn.
 ${ }^{\dagger}$ Department of Architecture and Engineering, Oxbridge College, Kunming University of Science and Technology, Kunming, Yunnan, 650106, P.R. China (chenfubinyn@163.com). Supported by Scientific Research Fund of Yunnan Provincial Education Department (No. 2010Y073) and Scientific Research Fund of Oxbridge College (No. JQ10003).
 ${ }^{\ddagger}$ School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, 650091, P.R. China (liyaotang@ynu.edu.cn). Supported by National Natural Science Foundations of China (No. 10961027, No. 71161020) and IRTSTYN, and the Natural Science Foundation of Yunnan Province (No. 2009CD011).
 ${ }^{\S}$ Department of Forest Product Industry, Yunnan Forestry Technological College, Kunming, Yunnan, 650224, P.R. China (wangdefengyn@126.com).

