TWO SPECIAL KINDS OF LEAST SQUARES SOLUTIONS FOR THE QUATERNION MATRIX EQUATION $A X B+C X D=E^{*}$

SHI-FANG YUAN ${ }^{\dagger}$ AND QING-WEN WANG ${ }^{\ddagger}$

Abstract

By using the complex representation of quaternion matrices, the Moore-Penrose generalized inverse and the Kronecker product of matrices, the expressions of the least squares η-Hermitian solution with the least norm and the expressions of the least squares η-anti-Hermitian solution with the least norm are derived for the matrix equation $A X B+C X D=E$ over quaternions.

Key words. Matrix equation, Least squares solution, η-Hermitian matrix, η-Anti-Hermitian matrix, Moore-Penrose generalized inverse, Kronecker product, Quaternion matrices.

AMS subject classifications. $65 \mathrm{~F} 05,65 \mathrm{H} 10,15 \mathrm{~A} 33$.

1. Introduction. Throughout this paper, let $\mathbb{Q}, \mathbb{R}^{m \times n}, \mathbb{S R}^{n \times n}, \mathbb{A S}^{n \times n}, \mathbb{C}^{m \times n}$, and $\mathbb{Q}^{m \times n}$ be the skew field of quaternions, the set of all $m \times n$ real matrices, the set of all $n \times n$ real symmetric matrices, the set of all $n \times n$ real anti-symmetric matrices, the set of all $m \times n$ complex matrices, and the set of all $m \times n$ quaternion matrices, respectively. For $A \in \mathbb{C}^{m \times n}, \operatorname{Re}(A)$ and $\operatorname{Im}(A)$ denote the real part and the imaginary part of matrix A, respectively. For $A \in \mathbb{Q}^{m \times n}, \bar{A}, A^{T}, A^{H}$ and A^{+}denote the conjugate matrix, the transpose matrix, the conjugate transpose matrix, and the Moore-Penrose generalized inverse matrix of matrix A, respectively.

A quaternion a can be uniquely expressed as $a=a_{0}+a_{1} i+a_{2} j+a_{3} k$ with real coefficients $a_{0}, a_{1}, a_{2}, a_{3}$, and $i^{2}=j^{2}=k^{2}=-1, i j=-j i=k$, and a can be uniquely expressed as $a=c_{1}+c_{2} j$, where c_{1} and c_{2} are complex numbers. The following quaternion involutions of a quaternion $a=a_{0}+a_{1} i+a_{2} j+a_{3} k$, defined as [4]

$$
a^{i}=-i a i=a_{0}+a_{1} i-a_{2} j-a_{3} k
$$

[^0]\[

$$
\begin{aligned}
& a^{j}=-j a j=a_{0}-a_{1} i+a_{2} j-a_{3} k, \\
& a^{k}=-k a k=a_{0}-a_{1} i-a_{2} j+a_{3} k .
\end{aligned}
$$
\]

For any $A \in \mathbb{Q}^{m \times n}, A$ can be uniquely expressed as $A=A_{1}+A_{2} j$, where $A_{1}, A_{2} \in$ $\mathbb{C}^{m \times n}$, and $A^{H}=\operatorname{Re}\left(A_{1}\right)^{T}-\operatorname{Im}\left(A_{1}\right)^{T} i-\operatorname{Re}\left(A_{2}\right)^{T} j-\operatorname{Im}\left(A_{2}\right)^{T} k$. The complex representation matrix of $A=A_{1}+A_{2} j \in \mathbb{Q}^{m \times n}$ is denoted by

$$
f(A)=\left[\begin{array}{rr}
A_{1} & A_{2} \\
-\overline{A_{2}} & \overline{A_{1}}
\end{array}\right] \in \mathbb{C}^{2 m \times 2 n}
$$

Notice that $f(A)$ is uniquely determined by A. For $A \in \mathbb{Q}^{m \times n}, B \in \mathbb{Q}^{n \times s}$, we have $f(A B)=f(A) f(B)$ (see [39]). We define the inner product: $\langle A, B\rangle=\operatorname{tr}\left(B^{H} A\right)$ for all $A, B \in \mathbb{Q}^{m \times n}$. Then $\mathbb{Q}^{m \times n}$ is a right Hilbert inner product space and the norm of a matrix generated by this inner product is the quaternion matrix Frobenius norm $\|\cdot\|$. For $A=\left(a_{i j}\right) \in \mathbb{Q}^{m \times n}, B=\left(b_{i j}\right) \in \mathbb{Q}^{p \times q}$, the symbol $A \otimes B=\left(a_{i j} B\right) \in \mathbb{Q}^{m p \times n q}$ stands for the Kronecker product of A and B.

Definition 1.1. 6, 18 A matrix $A \in \mathbb{Q}^{n \times n}$ is η-Hermitian if $A^{\eta H}=A$, and a matrix $A \in \mathbb{Q}^{n \times n}$ is η-anti-Hermitian if $A^{\eta H}=-A$, where $A^{\eta H}=-\eta A^{H} \eta$, $\eta \in\{i, j, k\}$. η-Hermitian matrices and η-anti -Hermitian matrices are denoted by $\eta \mathbb{H} \mathbb{Q}^{n \times n}$ and $\eta \mathbb{A Q}^{n \times n}$, respectively.

Various aspects of the solutions for real, complex, or quaternion matrix equations such as $A X B=C, A X+X B=C, A X B+C X^{T} D=E, X-A \bar{X} B=C$, and $A X B+C Y D=E$ have been widely investigated (see [2], 8]-11, [12], 14, [15], [19]-38, [40] and references cited therein). For the matrix equation

$$
\begin{equation*}
A X B+C X D=E \tag{1.1}
\end{equation*}
$$

if B and C are identity matrices, then the matrix equation (1.1) reduces to the wellknown Sylvester equation [3]. If C and D are identity matrices, then the matrix equation (1.1) reduces to the well-known Stein equation. There are many important results about their solutions. For example, Mitra [14] and Tian [16] considered the solvability condition for the complex and real matrix equation (1.1), respectively. Hernández and Gassó [5] obtained the explicit solution of the matrix equation (1.1). Mansour [13] studied the solvability condition for the matrix equation (1.1) in the operator algebra. For the quaternion matrix equation (1.1), Huang 7 , obtained necessary and sufficient conditions for the existence of a solution or a unique solution using the method of complex representation of quaternion matrices. Using the complex representation of quaternion matrices, the Moore-Penrose generalized inverse, and the Kronecker product of matrices, Yuan, Liao, and Lei [38] studied the least squares Hermitian problems for the quaternion matrix equation $(A X B, C X D)=(E, F)$. η Hermitian and η-anti-Hermitian quaternion matrices, are important class of matrices
applied in widely linear modelling due to the quaternion involution properties (see [4, 17, 18] for details). In this paper, we use the results of [38] to consider the least squares η-Hermitian and η-anti-Hermitian problems for quaternion matrix equation (1.1). The related problems are described as follows.

Problem I. Given $A \in \mathbb{Q}^{m \times n}, B \in \mathbb{Q}^{n \times s}, C \in \mathbb{Q}^{m \times n}, D \in \mathbb{Q}^{n \times s}$, and $E \in \mathbb{Q}^{m \times s}$, let
$H_{L}=\left\{X \mid X \in \eta \mathbb{H} \mathbb{Q}^{m \times n},\|A X B+C X D-E\|=\min _{X_{0} \in \eta \mathbb{H} \mathbb{Q}^{m \times n}}\left\|A X_{0} B+C X_{0} D-E\right\|\right\}$.
Find $X_{H} \in H_{L}$ such that

$$
\left\|X_{H}\right\|=\min _{X \in H_{L}}\|X\| .
$$

Problem II. Given $A \in \mathbb{Q}^{m \times n}, B \in \mathbb{Q}^{n \times s}, C \in \mathbb{Q}^{m \times n}, D \in \mathbb{Q}^{n \times s}$, and $E \in$ $\mathbb{Q}^{m \times s}$, let
$A_{L}=\left\{X \mid X \in \eta \mathbb{A}^{n \times n},\|A X B+C X D-E\|=\min _{X_{0} \in \eta \mathbb{Q}^{m \times n}}\left\|A X_{0} B+C X_{0} D-E\right\|\right\}$.
Find $X_{A} \in A_{L}$ such that

$$
\left\|X_{A}\right\|=\min _{X \in A_{L}}\|X\|
$$

The solution X_{H} of Problem I is called the least squares η-Hermitian solution with the least norm, and the solution X_{A} of Problem II is called the least squares η-antiHermitian solution with the least norm for matrix equation (1.1) over quaternions.

Our approach to solving these problems is based on the way of studying vec $(A B C)$ mentioned in [38, which can overcome the difficulty from the noncommutative multiplication of quaternions, and turns Problems I and II of quaternion matrix equation (1.1) into a system of real equations, respectively.

This paper is organized as follows. In Section 2, we analyze the structure of two special matrix sets: $\eta \mathbb{H} \mathbb{Q}^{n \times n}$ and $\eta \mathbb{A} \mathbb{Q}^{n \times n}$. In Section 3, we derive the explicit expression for the solution of Problem I. In Section 4, we derive the explicit expression for the solution of Problem II. Finally, in Section 5, we give numerical algorithms and numerical examples for Problems I and II, respectively.
2. The structure of $\eta \mathbb{H} \mathbb{Q}^{n \times n}$ and $\eta \mathbb{A} \mathbb{Q}^{n \times n}$. In this section, we analyze the structure of $\eta \mathbb{H} \mathbb{Q}^{n \times n}$ and $\eta \mathbb{A} \mathbb{Q}^{n \times n}$.

Definition 2.1. For matrix $A \in \mathbb{Q}^{n \times n}$, let $a_{1}=\left(a_{11}, \sqrt{2} a_{21}, \ldots, \sqrt{2} a_{n 1}\right), a_{2}=$ $\left(a_{22}, \sqrt{2} a_{32}, \ldots, \sqrt{2} a_{n 2}\right), \ldots, a_{n-1}=\left(a_{(n-1)(n-1)}, \sqrt{2} a_{n(n-1)}\right), a_{n}=a_{n n}$, and denote

ELA

by $\operatorname{vec}_{S}(A)$ the following vector:

$$
\begin{equation*}
\operatorname{vec}_{S}(A)=\left(a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right)^{T} \in \mathbb{Q}^{\frac{n(n+1)}{2}} . \tag{2.1}
\end{equation*}
$$

Definition 2.2. For matrix $B \in \mathbb{Q}^{n \times n}$, let $b_{1}=\left(b_{21}, b_{31}, \ldots, b_{n 1}\right), b_{2}=\left(b_{32}, b_{42}\right.$, $\left.\ldots, b_{n 2}\right), \ldots, b_{n-2}=\left(b_{(n-1)(n-2)}, b_{n(n-2)}\right), b_{n-1}=b_{n(n-1)}$, and denote by $\operatorname{vec}_{A}(B)$ the following vector:

$$
\begin{equation*}
\operatorname{vec}_{A}(B)=\sqrt{2}\left(b_{1}, b_{2}, \ldots, b_{n-2}, b_{n-1}\right)^{T} \in \mathbb{Q}^{\frac{n(n-1)}{2}} \tag{2.2}
\end{equation*}
$$

Lemma 2.3. 38 Suppose $X \in \mathbb{R}^{n \times n}$. Then,
(i) $X \in \mathbb{S R}^{n \times n} \Longleftrightarrow \operatorname{vec}(X)=K_{S} \operatorname{vec}_{S}(X)$, where $\operatorname{vec}_{S}(X)$ is represented as (2.1), and the matrix $K_{S} \in \mathbb{R}^{n^{2} \times \frac{n(n+1)}{2}}$ is of the following form:

$$
K_{S}=\frac{1}{\sqrt{2}}
$$

$\left[\begin{array}{cccccccccccccc}\sqrt{2} e_{1} & e_{2} & e_{3} & \cdots & e_{n-1} & e_{n} & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \\ 0 & e_{1} & 0 & \cdots & 0 & 0 & \sqrt{2} e_{2} & e_{3} & \cdots & e_{n-1} & e_{n} & \cdots & 0 & 0 \\ 0 & 0 & e_{1} & \cdots & 0 & 0 & 0 & e_{2} & \cdots & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & & \vdots & 0 \\ 0 & 0 & 0 & \cdots & e_{1} & 0 & 0 & 0 & \cdots & e_{2} & 0 & \cdots & \sqrt{2} e_{n-1} & e_{n} \\ 0 & 0 & 0 & \cdots & 0 & e_{1} & 0 & 0 & \cdots & 0 & e_{2} & \cdots & 0 & 0 \\ e_{n-1} & \sqrt{2} e_{n}\end{array}\right]$,
(ii) $X \in \mathbb{A S R}^{n \times n} \Longleftrightarrow \operatorname{vec}(X)=K_{A} \operatorname{vec}_{A}(X)$, where $\operatorname{vec}_{A}(X)$ is represented as (2.2), and the matrix $K_{A} \in \mathbb{R}^{n^{2} \times \frac{n(n-1)}{2}}$ is of the following form:

$$
K_{A}=\frac{1}{\sqrt{2}}\left[\begin{array}{ccccccccccc}
e_{2} & e_{3} & \cdots & e_{n-1} & e_{n} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
-e_{1} & 0 & \cdots & 0 & 0 & e_{3} & \cdots & e_{n-1} & e_{n} & \cdots & 0 \\
0 & -e_{1} & \cdots & 0 & 0 & -e_{2} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & 0 & 0 & & 0 \\
0 & 0 & \cdots & -e_{1} & 0 & 0 & \cdots & -e_{2} & 0 & \cdots & e_{n} \\
0 & 0 & \cdots & 0 & -e_{1} & 0 & \cdots & 0 & -e_{2} & \cdots & -e_{n-1}
\end{array}\right],
$$

where e_{i} is the i-th column of I_{n}. Obviously, $K_{S}^{T} K_{S}=I_{\frac{n(n+1)}{2}}$ and $K_{A}^{T} K_{A}=$ $I_{\frac{n(n-1)}{2}}$.
We identify $q \in \mathbb{Q}$ with a complex vector $\vec{q} \in \mathbb{C}^{2}$, and denote such an identification by the symbol \cong, that is,

$$
c_{1}+c_{2} j=q \cong \vec{q}=\left(c_{1}, c_{2}\right) .
$$

ELA

Two Special Kinds of Least Squares Solutions for the Quaternion Matrix Equation
For $A=A_{1}+A_{2} j \in \mathbb{Q}^{m \times n}$, we have $A \cong \Phi_{A}=\left(A_{1}, A_{2}\right)$,

$$
\operatorname{vec}\left(A_{1}\right)+\operatorname{vec}\left(A_{2}\right) j=\operatorname{vec}(A) \cong \operatorname{vec}\left(\Phi_{A}\right)=\left[\begin{array}{c}
\operatorname{vec}\left(A_{1}\right) \\
\operatorname{vec}\left(A_{2}\right)
\end{array}\right]
$$

so that

$$
\|\operatorname{vec}(A)\|=\left\|\operatorname{vec}\left(\Phi_{A}\right)\right\|=\left\|\left[\begin{array}{c}
\operatorname{vec}\left(A_{1}\right) \\
\operatorname{vec}\left(A_{2}\right)
\end{array}\right]\right\|
$$

We denote $\vec{A}=\left(\operatorname{Re}\left(A_{1}\right), \operatorname{Im}\left(A_{1}\right), \operatorname{Re}\left(A_{2}\right), \operatorname{Im}\left(A_{2}\right)\right)$,

$$
\operatorname{vec}(\vec{A})=\left[\begin{array}{c}
\operatorname{vec}\left(\operatorname{Re}\left(A_{1}\right)\right) \\
\operatorname{vec}\left(\operatorname{Im}\left(A_{1}\right)\right) \\
\operatorname{vec}\left(\operatorname{Re}\left(A_{2}\right)\right) \\
\operatorname{vec}\left(\operatorname{Im}\left(A_{2}\right)\right)
\end{array}\right]
$$

Notice that $\left\|\operatorname{vec}\left(\Phi_{A}\right)\right\|=\|\operatorname{vec}(\vec{A})\|$. In particular, for $A=A_{1}+A_{2} i \in \mathbb{C}^{m \times n}$ with $A_{1}, A_{2} \in \mathbb{R}^{m \times n}$, we have $A \cong \vec{A}=\left(A_{1}, A_{2}\right)$, and

$$
\operatorname{vec}\left(A_{1}\right)+\operatorname{vec}\left(A_{2}\right) i=\operatorname{vec}(A) \cong \operatorname{vec}(\vec{A})=\left[\begin{array}{c}
\operatorname{vec}\left(A_{1}\right) \\
\operatorname{vec}\left(A_{2}\right)
\end{array}\right]
$$

Addition of two quaternion matrices $A=A_{1}+A_{2} j$ and $B=B_{1}+B_{2} j$ satisfies

$$
\left(A_{1}+B_{1}\right)+\left(A_{2}+B_{2}\right) j=(A+B) \cong \Phi_{A+B}=\left(A_{1}+B_{1}, A_{2}+B_{2}\right)
$$

whereas multiplication satisfies

$$
A B=\left(A_{1}+A_{2} j\right)\left(B_{1}+B_{2} j\right)=\left(A_{1} B_{1}-A_{2} \overline{B_{2}}\right)+\left(A_{1} B_{2}+A_{2} \overline{B_{1}}\right) j
$$

So $A B \cong \Phi_{A B}$, moreover, $\Phi_{A B}$ can be expressed as

$$
\begin{aligned}
\Phi_{A B} & =\left(A_{1} B_{1}-A_{2} \overline{B_{2}}, A_{1} B_{2}+A_{2} \overline{B_{1}}\right) \\
& =\left(A_{1}, A_{2}\right)\left[\begin{array}{cc}
B_{1} & B_{2} \\
-\overline{B_{2}} & \overline{B_{1}}
\end{array}\right] \\
& =\Phi_{A} f(B) .
\end{aligned}
$$

For $X=X_{1}+X_{2} j \in \eta \mathbb{H} \mathbb{Q}^{n \times n}$, by Definition 1.1, we have

$$
\begin{aligned}
& X^{H} \eta=\eta X \\
\Longleftrightarrow & \left(\operatorname{Re}\left(X_{1}\right)^{T}-\operatorname{Im}\left(X_{1}\right)^{T} i-\operatorname{Re}\left(X_{2}\right)^{T} j-\operatorname{Im}\left(X_{2}\right)^{T} k\right) \eta
\end{aligned}
$$

ELA

262
S.F. Yuan and Q.W. Wang

$$
\begin{gathered}
\quad=\eta\left(\operatorname{Re}\left(X_{1}\right)+\operatorname{Im}\left(X_{1}\right) i+\operatorname{Re}\left(X_{2}\right) j+\operatorname{Im}\left(X_{2}\right) k\right) \\
\Longleftrightarrow \operatorname{Re}\left(X_{1}\right)^{T}=\operatorname{Re}\left(X_{1}\right), \quad \operatorname{Im}\left(X_{1}\right)^{T}=\left\{\begin{array}{r}
-\operatorname{Im}\left(X_{1}\right), \\
\operatorname{Im}\left(X_{1}\right), \\
\eta \neq i
\end{array},\right. \\
\\
\operatorname{Re}\left(X_{2}\right)^{T}=\left\{\begin{array}{r}
-\operatorname{Re}\left(X_{2}\right), \\
\operatorname{Re}\left(X_{2}\right), \\
\quad \eta \neq j
\end{array}, \quad \operatorname{Im}\left(X_{2}\right)^{T}=\left\{\begin{array}{rr}
-\operatorname{Im}\left(X_{2}\right), & \eta=k \\
\operatorname{Im}\left(X_{2}\right), & \eta \neq k
\end{array} .\right.\right.
\end{gathered}
$$

Theorem 2.4. If $X \in \mathbb{Q}^{n \times n}$, then $X \in \eta \mathbb{H} \mathbb{Q}^{n \times n} \Longleftrightarrow \operatorname{vec}(\vec{X})=K_{\eta H} \operatorname{vec}_{\eta H}(\vec{X})$, where

$$
\begin{aligned}
& K_{i H}=\left[\begin{array}{cccc}
K_{S} & 0 & 0 & 0 \\
0 & K_{A} & 0 & 0 \\
0 & 0 & K_{S} & 0 \\
0 & 0 & 0 & K_{S}
\end{array}\right], \quad \operatorname{vec}_{i H}(\vec{A})=\left[\begin{array}{c}
\operatorname{vec}_{S}\left(\operatorname{Re}\left(A_{1}\right)\right) \\
\operatorname{vec}_{A}\left(\operatorname{Im}\left(A_{1}\right)\right) \\
\operatorname{vec}_{S}\left(\operatorname{Re}\left(A_{2}\right)\right) \\
\operatorname{vec}_{S}\left(\operatorname{Im}\left(A_{2}\right)\right)
\end{array}\right], \\
& K_{j H}=\left[\begin{array}{cccc}
K_{S} & 0 & 0 & 0 \\
0 & K_{S} & 0 & 0 \\
0 & 0 & K_{A} & 0 \\
0 & 0 & 0 & K_{S}
\end{array}\right], \quad \operatorname{vec}_{j H}(\vec{A})=\left[\begin{array}{c}
\operatorname{vec}_{S}\left(\operatorname{Re}\left(A_{1}\right)\right) \\
\operatorname{vec}_{S}\left(\operatorname{Im}\left(A_{1}\right)\right) \\
\operatorname{vec}_{A}\left(\operatorname{Re}\left(A_{2}\right)\right) \\
\operatorname{vec}_{S}\left(\operatorname{Im}\left(A_{2}\right)\right)
\end{array}\right], \\
& K_{k H}=\left[\begin{array}{cccc}
K_{S} & 0 & 0 & 0 \\
0 & K_{S} & 0 & 0 \\
0 & 0 & K_{S} & 0 \\
0 & 0 & 0 & K_{A}
\end{array}\right], \quad \operatorname{vec}_{k H}(\vec{A})=\left[\begin{array}{c}
\operatorname{vec}_{S}\left(\operatorname{Re}\left(A_{1}\right)\right) \\
\operatorname{vec}_{S}\left(\operatorname{Im}\left(A_{1}\right)\right) \\
\operatorname{vec}_{S}\left(\operatorname{Re}\left(A_{2}\right)\right) \\
\operatorname{vec}_{A}\left(\operatorname{Im}\left(A_{2}\right)\right)
\end{array}\right] .
\end{aligned}
$$

Proof. We prove it only the case of $\eta=j$, similar arguments handle the cases that $\eta=i$ and $\eta=k$. For $X \in \mathbb{Q}^{n \times n}$, we have

$$
\begin{aligned}
& X \in j \mathbb{H} \mathbb{Q}^{n \times n} \\
\Longleftrightarrow & X^{H} j=j X \\
\Longleftrightarrow & \operatorname{Re}\left(X_{1}\right)^{T}=\operatorname{Re}\left(X_{1}\right), \operatorname{Im}\left(X_{1}\right)^{T}=\operatorname{Im}\left(X_{1}\right) \\
& \operatorname{Re}\left(X_{2}\right)^{T}=-\operatorname{Re}\left(X_{2}\right), \operatorname{Im}\left(X_{1}\right)^{T}=\operatorname{Im}\left(X_{1}\right)
\end{aligned}
$$

ELA

Two Special Kinds of Least Squares Solutions for the Quaternion Matrix Equation

$$
\begin{aligned}
\Longleftrightarrow \operatorname{vec}(\vec{X}) & =\left[\begin{array}{c}
\operatorname{vec}\left(\operatorname{Re}\left(A_{1}\right)\right) \\
\operatorname{vec}\left(\operatorname{Im}\left(A_{1}\right)\right) \\
\operatorname{vec}\left(\operatorname{Re}\left(A_{2}\right)\right) \\
\operatorname{vec}\left(\operatorname{Im}\left(A_{2}\right)\right)
\end{array}\right]=\left[\begin{array}{cccc}
K_{S} & 0 & 0 & 0 \\
0 & K_{S} & 0 & 0 \\
0 & 0 & K_{A} & 0 \\
0 & 0 & 0 & K_{S}
\end{array}\right]\left[\begin{array}{c}
\operatorname{vec}_{S}\left(\operatorname{Re}\left(A_{1}\right)\right) \\
\operatorname{vec}_{S}\left(\operatorname{Im}\left(A_{1}\right)\right) \\
\operatorname{vec}_{A}\left(\operatorname{Re}\left(A_{2}\right)\right) \\
\operatorname{vec}_{S}\left(\operatorname{Im}\left(A_{2}\right)\right)
\end{array}\right] \\
& =K_{j H} \operatorname{vec}_{j H}(\vec{X}) .
\end{aligned}
$$

Similar to the discussions mentioned above, we have
Theorem 2.5. If $X \in \mathbb{Q}^{n \times n}$, then $X \in \eta \mathbb{A} \mathbb{Q}^{n \times n} \Longleftrightarrow \operatorname{vec}(\vec{X})=K_{\eta A} \operatorname{vec}_{\eta A}(\vec{X})$, where

$$
\begin{aligned}
& K_{i A}=\left[\begin{array}{cccc}
K_{A} & 0 & 0 & 0 \\
0 & K_{S} & 0 & 0 \\
0 & 0 & K_{A} & 0 \\
0 & 0 & 0 & K_{A}
\end{array}\right], \quad \operatorname{vec}_{i A}(\vec{A})=\left[\begin{array}{c}
\operatorname{vec}_{A}\left(\operatorname{Re}\left(A_{1}\right)\right) \\
\operatorname{vec}_{S}\left(\operatorname{Im}\left(A_{1}\right)\right) \\
\operatorname{vec}_{A}\left(\operatorname{Re}\left(A_{2}\right)\right) \\
\operatorname{vec}_{A}\left(\operatorname{Im}\left(A_{2}\right)\right)
\end{array}\right], \\
& K_{j A}=\left[\begin{array}{cccc}
K_{A} & 0 & 0 & 0 \\
0 & K_{A} & 0 & 0 \\
0 & 0 & K_{S} & 0 \\
0 & 0 & 0 & K_{A}
\end{array}\right], \quad \operatorname{vec}_{j A}(\vec{A})=\left[\begin{array}{c}
\operatorname{vec}_{A}\left(\operatorname{Re}\left(A_{1}\right)\right) \\
\operatorname{vec}_{A}\left(\operatorname{Im}\left(A_{1}\right)\right) \\
\operatorname{vec}_{S}\left(\operatorname{Re}\left(A_{2}\right)\right) \\
\operatorname{vec}_{A}\left(\operatorname{Im}\left(A_{2}\right)\right)
\end{array}\right], \\
& K_{k A}=\left[\begin{array}{cccc}
K_{A} & 0 & 0 & 0 \\
0 & K_{A} & 0 & 0 \\
0 & 0 & K_{A} & 0 \\
0 & 0 & 0 & K_{S}
\end{array}\right], \quad \operatorname{vec}_{k A}(\vec{A})=\left[\begin{array}{c}
\operatorname{vec}_{A}\left(\operatorname{Re}\left(A_{1}\right)\right) \\
\operatorname{vec}_{A}\left(\operatorname{Im}\left(A_{1}\right)\right) \\
\operatorname{vec}_{A}\left(\operatorname{Re}\left(A_{2}\right)\right) \\
\operatorname{vec}_{S}\left(\operatorname{Im}\left(A_{2}\right)\right)
\end{array}\right] .
\end{aligned}
$$

3. The solution of Problem I. It is well known that for $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times s}$, and $C \in \mathbb{C}^{s \times t}$,

$$
\begin{equation*}
\operatorname{vec}(A B C)=\left(C^{T} \otimes A\right) \operatorname{vec}(B) \tag{3.1}
\end{equation*}
$$

However, in the setting of quaternion matrices, if $A \in \mathbb{Q}^{m \times n}, B \in \mathbb{Q}^{n \times s}$, and $C \in \mathbb{Q}^{s \times t}$, (3.1) does not hold because \mathbb{Q} is not commutative under multiplication.

ELA

Nevertheless, by applying the method in [38] to study vec $(A B C)$, we can turn Problem I for quaternion matrix equation (1.1) into the least squares problem with the least norm for a system of real equations, and solve Problem I.

Lemma 3.1. 38 Let $A=A_{1}+A_{2} j \in \mathbb{Q}^{m \times n}, B=B_{1}+B_{2} j \in \mathbb{Q}^{n \times s}$, and $C=C_{1}+C_{2} j \in \mathbb{Q}^{s \times t}$ be given. Then

$$
\operatorname{vec}\left(\Phi_{A B C}\right)=\left(f(C)^{T} \otimes A_{1}, f(C j)^{H} \otimes A_{2}\right)\left[\begin{array}{c}
\operatorname{vec}\left(\Phi_{B}\right) \\
\operatorname{vec}\left(-\Phi_{j B j}\right)
\end{array}\right] .
$$

Lemma 3.2. For $X=X_{1}+X_{2} j \in \eta \mathbb{H} \mathbb{Q}^{n \times n}$, let

$$
W=\left[\begin{array}{cccc}
I_{n^{2}} & i I_{n^{2}} & 0 & 0 \\
0 & 0 & I_{n^{2}} & i I_{n^{2}} \\
I_{n^{2}} & -i I_{n^{2}} & 0 & 0 \\
0 & 0 & I_{n^{2}} & -i I_{n^{2}}
\end{array}\right]
$$

Then

$$
\left[\begin{array}{c}
\operatorname{vec}\left(\Phi_{X}\right) \\
\operatorname{vec}\left(-\Phi_{j X j}\right)
\end{array}\right]=W K_{\eta H} \operatorname{vec}_{\eta H}(\vec{X})
$$

Proof. For $X=X_{1}+X_{2} j \in \eta H Q^{n \times n}$, by Theorem 2.4, we have

$$
\begin{aligned}
{\left[\begin{array}{c}
\operatorname{vec}\left(\Phi_{X}\right) \\
\operatorname{vec}\left(-\Phi_{j X j}\right)
\end{array}\right] } & =\left[\begin{array}{c}
\operatorname{vec}\left(X_{1}\right) \\
\operatorname{vec}\left(X_{2}\right) \\
\operatorname{vec}\left(\overline{X_{1}}\right) \\
\operatorname{vec}\left(\overline{X_{2}}\right)
\end{array}\right] \\
& =\left[\begin{array}{cccc}
I_{n^{2}} & i I_{n^{2}} & 0 & 0 \\
0 & 0 & I_{n^{2}} & i I_{n^{2}} \\
I_{n^{2}} & -i I_{n^{2}} & 0 & 0 \\
0 & 0 & I_{n^{2}} & -i I_{n^{2}}
\end{array}\right]\left[\begin{array}{c}
\operatorname{vec}\left(\operatorname{Re}\left(A_{1}\right)\right) \\
\operatorname{vec}\left(\operatorname{Im}\left(A_{1}\right)\right) \\
\operatorname{vec}\left(\operatorname{Re}\left(A_{2}\right)\right) \\
\operatorname{vec}\left(\operatorname{Im}\left(A_{2}\right)\right)
\end{array}\right] \\
& =W K_{\eta H} \operatorname{vec}_{\eta H}(\vec{X}) .
\end{aligned}
$$

By Theorem 2.4, and Lemmas 3.1 and 3.2, we have
Lemma 3.3. If $A=A_{1}+A_{2} j \in Q^{m \times n}, X=X_{1}+X_{2} j \in \eta H Q^{n \times n}$, and $B=B_{1}+B_{2} j \in Q^{n \times s}$, then

$$
\operatorname{vec}\left(\Phi_{A X B}\right)=\left(f(B)^{T} \otimes A_{1}, f(B j)^{H} \otimes A_{2}\right) W K_{\eta H} \operatorname{vec}_{\eta H}(\vec{X}) .
$$

ELA

Lemma 3.4. [1] The matrix equation $A x=b$, with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{n}$, has a solution $x \in \mathbb{R}^{n}$ if and only if

$$
A A^{+} b=b
$$

in this case it has the general solution

$$
x=A^{+} b+\left(I-A^{+} A\right) y,
$$

where $y \in \mathbb{R}^{n}$ is an arbitrary vector.
Lemma 3.5. [1] The least squares solutions of the matrix equation $A x=b$, with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{n}$, can be represented as

$$
x=A^{+} b+\left(I-A^{+} A\right) y,
$$

where $y \in \mathbb{R}^{n}$ is an arbitrary vector, and the least squares solution of the matrix equation $A x=b$ with the least norm is $x=A^{+} b$.

Based on our earlier discussions, we now turn our attention to Problem I. The following notation is necessary for deriving the solutions of Problem I. For $A=A_{1}+$ $A_{2} j \in \mathrm{Q}^{m \times n}, B \in \mathrm{Q}^{n \times s}, C=C_{1}+C_{2} j \in \mathrm{Q}^{m \times n}, D \in \mathrm{Q}^{n \times s}, E \in \mathrm{Q}^{m \times s}$, set

$$
\begin{gather*}
P=\left[\left(f(B)^{T} \otimes A_{1}, f(B j)^{H} \otimes A_{2}\right)+\left(f(D)^{T} \otimes C_{1}, f(D j)^{H} \otimes C_{2}\right)\right] W K_{\eta H}, \\
P_{1}=\operatorname{Re}(P), \quad P_{2}=\operatorname{Im}(P), \quad e=\left[\begin{array}{c}
\operatorname{vec}\left(\operatorname{Re}\left(\Phi_{E}\right)\right) \\
\operatorname{vec}\left(\operatorname{Im}\left(\Phi_{E}\right)\right)
\end{array}\right], \tag{3.2}
\end{gather*}
$$

and

$$
\begin{aligned}
R & =\left(I-P_{1}^{+} P_{1}\right) P_{2}^{T} \\
Z & =\left(I+\left(I-R^{+} R\right) P_{2} P_{1}^{+} P_{1}^{+T} P_{2}^{T}\left(I-R^{+} R\right)\right)^{-1}, \\
H & =R^{+}+\left(I-R^{+} R\right) Z P_{2} P_{1}^{+} P_{1}^{+T}\left(I-P_{2}^{T} R^{+}\right), \\
S_{11} & =I-P_{1} P_{1}^{+}+P_{1}^{+T} P_{2}^{T} Z\left(I-R^{+} R\right) P_{2} P_{1}^{+}, \\
S_{12} & =-P_{1}^{+T} P_{2}^{T}\left(I-R^{+} R\right) Z, \\
S_{22} & =\left(I-R^{+} R\right) Z
\end{aligned}
$$

¿From the results in 12, we have

$$
\begin{aligned}
& {\left[\begin{array}{c}
P_{1} \\
P_{2}
\end{array}\right]^{+}=\left(P_{1}^{+}-H^{T} P_{2} P_{1}^{+}, H^{T}\right),\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]^{+}\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]=P_{1}^{+} P_{1}+R R^{+},} \\
& I-\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]^{+}\left[\begin{array}{c}
P_{1} \\
P_{2}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{12}^{T} & S_{22}
\end{array}\right] .
\end{aligned}
$$

ELA

Theorem 3.6. Let $A \in \mathbb{Q}^{m \times n}, B \in \mathbb{Q}^{k \times s}, C \in \mathbb{Q}^{m \times n}, D \in \mathbb{Q}^{k \times s}$, and $E \in$ $\mathbb{Q}^{m \times s}$. Let P_{1}, P_{2}, and e be as in (3.2). Then
(3.3) $H_{L}=\left\{X \mid \operatorname{vec}(\vec{X})=K_{\eta H}\left[\left(P_{1}^{+}-H^{T} P_{2} P_{1}^{+}, H^{T}\right) e+\left(I-P_{1}^{+} P_{1}-R R^{+}\right) y\right]\right\}$,
where $y \in \mathbb{R}^{2 n^{2}+n}$ is an arbitrary vector.
Proof. By Lemma 3.3,

$$
\begin{aligned}
\|A X B+C X D-E\|^{2} & =\left\|\Phi_{A X B}+\Phi_{C X D}-\Phi_{E}\right\|^{2} \\
& =\left\|\operatorname{vec}\left(\Phi_{A X B}\right)+\operatorname{vec}\left(\Phi_{C X D}\right)-\operatorname{vec}\left(\Phi_{E}\right)\right\|^{2} \\
& =\left\|Q \operatorname{vec}_{\eta H}(\vec{X})-\binom{\operatorname{vec}\left(\operatorname{Re}\left(\Phi_{E}\right)\right)}{\operatorname{vec}\left(\operatorname{Im}\left(\Phi_{E}\right)\right)}\right\|^{2} \\
& =\left\|\binom{P_{1}}{P_{2}} \operatorname{vec}_{\eta H}(\vec{X})-e\right\|^{2} .
\end{aligned}
$$

By Lemma 3.5, it follows that

$$
\operatorname{vec}_{\eta H}(\vec{X})=\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]^{+} e+\left(I-\left[\begin{array}{c}
P_{1} \\
P_{2}
\end{array}\right]^{+}\left(P_{1}, P_{2}\right)\right) y
$$

and thus,

$$
\operatorname{vec}(\vec{X})=K_{\eta H}\left(P_{1}^{+}-H^{T} P_{2} P_{1}^{+}, H^{T}\right) e+K_{\eta H}\left(I-P_{1}^{+} P_{1}-R R^{+}\right) y
$$

By Lemma 3.4 and Theorem 3.6, we get the following conclusion.
Corollary 3.7. The quaternion matrix equation (1.1) has a solution $X \in$ $\eta \mathbb{H} \mathbb{Q}^{m \times n}$ if and only if

$$
\left[\begin{array}{cc}
S_{11} & S_{12} \tag{3.4}\\
S_{12}^{T} & S_{22}
\end{array}\right] e=0
$$

In this case, denote by H_{E} the solution set of (1.1). Then

$$
H_{E}=\left\{X \mid \operatorname{vec}(\vec{X})=K_{\eta H}\left[\left(P_{1}^{+}-H^{T} P_{2} P_{1}^{+}, H^{T}\right) e+\left(I-P_{1}^{+} P_{1}-R R^{+}\right) y\right]\right\}
$$

where $y \in \mathbb{R}^{2 n^{2}+n}$ is an arbitrary vector.
Furthermore, if (3.4) holds, then the quaternion matrix equation (1.1) has a unique solution $X \in H_{E}$ if and only if

$$
\operatorname{rank}\left[\begin{array}{c}
P_{1} \tag{3.5}\\
P_{2}
\end{array}\right]=2 n^{2}+n .
$$

ELA

In this case,

$$
\begin{equation*}
H_{E}=\left\{X \mid \operatorname{vec}(\vec{X})=K_{\eta H}\left(P_{1}^{+}-H^{T} P_{2} P_{1}^{+}, H^{T}\right) e\right\} \tag{3.6}
\end{equation*}
$$

Theorem 3.8. Problem I has a unique solution $X_{H} \in H_{L}$. This solution satisfies

$$
\begin{equation*}
\operatorname{vec}\left(\overrightarrow{X_{H}}\right)=K_{\eta H}\left(P_{1}^{+}-H^{T} P_{2} P_{1}^{+}, H^{T}\right) e . \tag{3.7}
\end{equation*}
$$

Proof. From (3.3), it is easy to verify that the solution set H_{L} is nonempty and is a closed convex set. Hence, Problem I has a unique solution $X_{H} \in H_{L}$.

We now prove that the solution X_{H} can be expressed as (3.7).
From (3.3), we have

$$
\min _{X \in H_{L}}\|X\|=\min _{X \in H_{L}}\|\operatorname{vec}(\vec{X})\|
$$

by Lemma 3.5 and (3.3),

$$
\operatorname{vec}\left(\overrightarrow{X_{H}}\right)=K_{\eta H}\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]^{+} e
$$

Thus,

$$
\operatorname{vec}\left(\overrightarrow{X_{H}}\right)=K_{\eta H}\left(P_{1}^{+}-H^{T} P_{2} P_{1}^{+}, H^{T}\right) e
$$

Corollary 3.9. The least norm problem

$$
\left\|X_{H}\right\|=\min _{X \in H_{E}}\|X\|
$$

has a unique solution $X_{H} \in H_{E}$ and X_{H} can be expressed as (3.7).
4. The solution of Problem II. We now discuss the solution of Problem II. Similar to Lemmas 3.2 and 3.3, we have the following conclusions.

Lemma 4.1. For $X=X_{1}+X_{2} j \in \eta \mathbb{A}^{n \times n}$, one gets

$$
\left[\begin{array}{c}
\operatorname{vec}\left(\Phi_{X}\right) \\
\operatorname{vec}\left(-\Phi_{j X j}\right)
\end{array}\right]=W K_{\eta A} \operatorname{vec}_{\eta A}(\vec{X})
$$

Lemma 4.2. For $A=A_{1}+A_{2} j \in \mathbb{Q}^{m \times n}, X=X_{1}+X_{2} j \in \eta \mathbb{A} \mathbb{Q}^{n \times n}$, and $B=B_{1}+B_{2} j \in \mathbb{Q}^{n \times s}$, one gets

$$
\operatorname{vec}\left(\Phi_{A X B}\right)=\left(f(B)^{T} \otimes A_{1}, f(B j)^{H} \otimes A_{2}\right) W K_{\eta A} \operatorname{vec}_{\eta A}(\vec{X}) .
$$

ELA

For $A=A_{1}+A_{2} j \in \mathbb{Q}^{m \times n}, B \in \mathbb{Q}^{n \times s}, C=C_{1}+C_{2} j \in \mathbb{Q}^{m \times n}, D \in \mathbb{Q}^{n \times s}$, and $E \in \mathbb{Q}^{m \times s}$, set

$$
Q=\left[\left(f(B)^{T} \otimes A_{1}, f(B j)^{H} \otimes A_{2}\right)+\left(f(D)^{T} \otimes C_{1}, f(D j)^{H} \otimes C_{2}\right)\right] W K_{\eta A}
$$

$$
Q_{1}=\operatorname{Re}(Q), \quad Q_{2}=\operatorname{Im}(Q), \quad e=\left[\begin{array}{c}
\operatorname{vec}\left(\operatorname{Re}\left(\Phi_{E}\right)\right) \tag{4.1}\\
\operatorname{vec}\left(\operatorname{Im}\left(\Phi_{E}\right)\right)
\end{array}\right]
$$

and

$$
\begin{aligned}
R_{1} & =\left(I-Q_{1}^{+} Q_{1}\right) Q_{2}^{T} \\
Z_{1} & =\left(I+\left(I-R_{1}^{+} R_{1}\right) Q_{2} Q_{1}^{+} Q_{1}^{+T} Q_{2}^{T}\left(I-R_{1}^{+} R_{1}\right)\right)^{-1}, \\
H_{1} & =R_{1}^{+}+\left(I-R_{1}^{+} R_{1}\right) Z_{1} Q_{2} Q_{1}^{+} Q_{1}^{+T}\left(I-Q_{2}^{T} R_{1}^{+}\right), \\
\Delta_{11} & =I-Q_{1} Q_{1}^{+}+Q_{1}^{+T} Q_{2}^{T} Z_{1}\left(I-R_{1}^{+} R_{1}\right) Q_{2} Q_{1}^{+}, \\
\Delta_{12} & =-Q_{1}^{+T} Q_{2}^{T}\left(I-R_{1}^{+} R_{1}\right) Z_{1}, \\
\Delta_{22} & =\left(I-R_{1}^{+} R_{1}\right) Z_{1} .
\end{aligned}
$$

¿From the results in 12, we have

$$
\begin{aligned}
& {\left[\begin{array}{c}
Q_{1} \\
Q_{2}
\end{array}\right]^{+}=\left(Q_{1}^{+}-H_{1}^{T} Q_{2} Q_{1}^{+}, H_{1}^{T}\right),\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right]^{+}\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right]=Q_{1}^{+} Q_{1}+R_{1} R_{1}^{+}} \\
& I-\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right]^{+}\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right]=\left[\begin{array}{cc}
\Delta_{11} & \Delta_{12} \\
\Delta_{12}^{T} & \Delta_{22}
\end{array}\right] .
\end{aligned}
$$

Theorem 4.3. Let $A \in \mathbb{Q}^{m \times n}, B \in \mathbb{Q}^{k \times s}, C \in \mathbb{Q}^{m \times n}, D \in \mathbb{Q}^{k \times s}$, and $E \in$ $\mathbb{Q}^{m \times s}$. Let Q_{1}, Q_{2}, and e be as in (4.1). Then

$$
A_{L}=\left\{X \mid \operatorname{vec}(\vec{X})=K_{\eta A}\left[\left(Q_{1}^{+}-H_{1}^{T} Q_{2} Q_{1}^{+}, H_{1}^{T}\right) e+\left(I-Q_{1}^{+} Q_{1}-R_{1} R_{1}^{+}\right) y\right]\right\}
$$

where $y \in \mathbb{R}^{2 n^{2}-n}$ is an arbitrary vector.
By Lemma 3.4 and Theorem 4.3, we get the following conclusion.
Corollary 4.4. The quaternion matrix equation (1.1) has a solution $X \in$ $\eta \mathbb{H} \mathbb{Q}^{m \times n}$ if and only if

$$
\left[\begin{array}{cc}
\Delta_{11} & \Delta_{12} \tag{4.2}\\
\Delta_{12}^{T} & \Delta_{22}
\end{array}\right] e=0
$$

In this case, denote by A_{E} the solution set of (1.1). Then

$$
A_{E}=\left\{X \mid \operatorname{vec}(\vec{X})=K_{\eta A}\left[\left(Q_{1}^{+}-H_{1}^{T} Q_{2} Q_{1}^{+}, H_{1}^{T}\right) e+\left(I-Q_{1}^{+} Q_{1}-R_{1} R_{1}^{+}\right) y\right]\right\}
$$

where $y \in \mathbb{R}^{2 n^{2}-n}$ is an arbitrary vector.
Furthermore, if (4.2) holds, then the quaternion matrix equation (1.1) has a unique solution $X \in A_{E}$ if and only if

$$
\operatorname{rank}\left[\begin{array}{c}
Q_{1} \tag{4.3}\\
Q_{2}
\end{array}\right]=2 n^{2}-n
$$

In this case,

$$
\begin{equation*}
A_{E}=\left\{X \mid \operatorname{vec}(\vec{X})=K_{\eta A}\left(Q_{1}^{+}-H_{1}^{T} Q_{2} Q_{1}^{+}, H_{1}^{T}\right) e\right\} \tag{4.4}
\end{equation*}
$$

Theorem 4.5. Problem II has a unique solution $X_{A} \in A_{L}$. This solution satisfies

$$
\begin{equation*}
\operatorname{vec}\left(\overrightarrow{X_{A}}\right)=K_{\eta A}\left(Q_{1}^{+}-H_{1}^{T} Q_{2} Q_{1}^{+}, H_{1}^{T}\right) e \tag{4.5}
\end{equation*}
$$

Corollary 4.6. The least norm problem

$$
\left\|X_{A}\right\|=\min _{X \in A_{E}}\|X\|
$$

has a unique solution $X_{A} \in A_{E}$ and X_{A} can be expressed as (4.5).
5. Numerical verification. Based on the discussions in Sections 2, 3 and 4, we report two numerical algorithms and three numerical examples to find the solutions of Problems I, II in this section.

Algorithms 5.1 and 5.2 provide the methods to find the solutions of Problems I and II. When the consistent conditions for matrix equation (1.1) hold, Examples 5.3 and 5.4 consider the numerical solutions of Problems I and II for $X \in j \mathbb{H} \mathbb{Q}^{n \times n}$ and $X \in k \mathbb{A} \mathbb{Q}^{n \times n}$, respectively. In Example 5.5, we use a matrix to perturb the matrix E of Example 5.4, obtain the inconsistent matrix equation (1.1), thus we can analyze the least squares solution with the least norm for matrix equation (1.1) in Problem II. For demonstration purpose and avoiding the matrices with large norm to interrupt the solutions of Problems I and II, we only consider the cases of small $n=5$ and take the coefficient matrices in Examples 5.3 and 5.4 .

Algorithm 5.1. (for Problem I)
(1) Input A, B, C, D, and $E\left(A \in \mathbb{Q}^{m \times n}, B \in \mathbb{Q}^{n \times s}, C \in \mathbb{Q}^{m \times n}, D \in \mathbb{Q}^{n \times s}\right.$, and $\left.E \in \mathbb{Q}^{m \times s}\right)$.
(2) Compute $P_{1}, P_{2}, R, H, S_{11}, S_{12}, S_{22}$, and e.
(3) If (3.4) and (3.5) hold, then calculate $X_{H}\left(X_{H} \in H_{E}\right)$ according to (3.6).
(4) If (3.4) holds, then calculate $X_{H}\left(X_{H} \in H_{E}\right)$ according to (3.7), otherwise go to next step.
(5) Calculate $X_{H}\left(X_{H} \in H_{L}\right)$ according to (3.7).

Algorithm 5.2. (for Problem II)
(1) Input A, B, C, D, and $E\left(A \in \mathbb{Q}^{m \times n}, B \in \mathbb{Q}^{n \times s}, C \in \mathbb{Q}^{m \times n}, D \in \mathbb{Q}^{n \times s}\right.$, and $\left.E \in \mathbb{Q}^{m \times s}\right)$.
(2) Compute $Q_{1}, Q_{2}, R_{1}, H_{1}, \Delta_{11}, \Delta_{12}, \Delta_{22}$, and e.
(3) If (4.2) and (4.3) hold, then calculate $X_{A}\left(X_{A} \in A_{E}\right)$ according to (4.4).
(4) If (4.2) holds, then calculate $X_{A}\left(X_{A} \in A_{E}\right)$ according to (4.4), otherwise go to next step.
(5) Calculate $X_{A}\left(X_{A} \in A_{L}\right)$ according to (4.5).

Example 5.3. Taking
$A=A_{1}+A_{2} j, \quad B=B_{1}+B_{2} j, \quad C=C_{1}+C_{2} j, \quad D=D_{1}+D_{2} j, \quad X=X_{1}+X_{2} j$,
$E=A X B+C X D$, where

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{c}
I_{5} \\
\operatorname{ones}(3,5)
\end{array}\right] i, A_{2}=\left[\begin{array}{c}
-I_{5} \\
0_{3 \times 5}
\end{array}\right], C_{1}=\left[\begin{array}{c}
I_{5} \\
0_{3 \times 5}
\end{array}\right], C_{2}=\left[\begin{array}{c}
I_{5} \\
0_{3 \times 5}
\end{array}\right], \\
& B_{1}=\left(I_{5}, 0_{5 \times 1}\right), \quad B_{2}=\left(-I_{5}, 0_{5 \times 1}\right) i, \quad D_{1}=\operatorname{ones}(5,6) i, \quad D_{2}=\operatorname{ones}(5,6),
\end{aligned}
$$

$X_{1}=$
$\left[\begin{array}{lllll}1.0000+0.4000 i & 0.5000+1.0000 i & -2.0000+0.2500 i & -1.0000-1.0000 i & 0.2500+0.5000 i \\ 0.5000+1.0000 i & 2.0000+2.0000 i & 1.0000+1.0000 i & 2.0000-0.5000 i & -0.5000+1.0000 i \\ -2.0000+0.2500 i & 1.0000+1.0000 i & -1.0000+4.0000 i & 0.5000-2.0000 i & 1.0000+0.2500 i \\ -1.0000-1.0000 i & 2.0000-0.5000 i & 0.5000-2.0000 i & 1.0000+3.0000 i & 2.0000-1.0000 i \\ 0.2500+0.5000 i & -0.5000+1.0000 i & 1.0000+0.2500 i & 2.0000-1.0000 i & -2.0000+2.0000 i\end{array}\right]$,
$X_{2}=$

$$
\left[\begin{array}{lllll}
0+2.0000 i & 0.5000+0.5000 i & -1.0000+1.0000 i & 0.2500-0.2000 i & 2.0000+1.0000 i \\
-0.5000+0.5000 i & 0+0.5000 i & 2.0000+2.0000 i & -1.0000-0.5000 i & 0.2500+1.0000 i \\
1.0000+1.0000 i & -2.0000+2.0000 i & 0+1.0000 i & 1.0000+1.0000 i & -2.0000+0.5000 i \\
-0.2500-0.2000 i & 1.0000-0.5000 i & -1.0000+1.0000 i & 0-1.0000 i & 1.0000-1.0000 i \\
-2.0000+1.0000 i & -0.2500+1.0000 i & 2.0000+0.5000 i & -1.0000-1.0000 i & 0-4.0000 i
\end{array}\right],
$$

Obviously, $X \in j \mathbb{H} \mathbb{Q}^{5 \times 5}$. Let

$$
\Phi_{A}=\left(A_{1}, A_{2}\right), \quad \Phi_{B}=\left(B_{1}, B_{2}\right), \quad \Phi_{C}=\left(C_{1}, C_{2}\right), \quad \Phi_{D}=\left(D_{1}, D_{2}\right),
$$

$$
\Phi_{X}=\left(X_{1}, X_{2}\right), \quad \Phi_{E}=\Phi_{A} f(X) f(B)+\Phi_{C} f(X) f(D)
$$

By using Matlab 7.7 and Algorithm 5.1, we obtain

$$
\operatorname{rank}\left[\begin{array}{c}
P_{1} \\
P_{2}
\end{array}\right]=55, \quad\left[\begin{array}{cc}
S_{11} & S_{12} \\
S_{12}^{T} & S_{22}
\end{array}\right] e=1.1249 \times 10^{-13}
$$

According to Algorithm 5.1 (3), we can see the matrix equation $A X B+C X D=E$ has a unique j-Hermitian solution and a unique Hermitian solution with the least norm $X_{H} \in H_{E}$, and we can get $\left\|X_{H}-X\right\|=1.5131 \times 10^{-14}$.

Example 5.4. Suppose A, B, C, D are the same as in Example 5.3 $X=X_{1}+$ $X_{2} j \in k \mathbb{A} \mathbb{Q}^{n \times n}$ and $E=A X B+C X D$, where
$X_{1}=$
$\left[\begin{array}{lllll}0 & 0.5189+0.5000 i & -2.0000+1.0000 i & -1.0000-0.2564 i & 0.2500+1.0000 i \\ -0.5189-0.5000 i & 0 & 1.0000+2.0000 i & 2.0000-0.5000 i & -0.5000+1.0000 i \\ 2.0000-1.0000 i & -1.0000-2.0000 i & 0 & 0.5000+1.0000 i & 1.0000+0.5000 i \\ 1.0000+0.2564 i & -2.0000+0.5000 i & -0.5000-1.0000 i & 0 & 2.0000-1.0000 i \\ -0.2500-1.0000 i & 0.5000-1.0000 i & -1.0000-0.5000 i & -2.0000+1.0000 i & 0\end{array}\right]$,
$X_{2}=$
$\left[\begin{array}{lllll}0+0.4000 i & 0.5000+1.0000 i & -1.0000+0.2500 i & 0.2500-1.0000 i & 2.0000+0.5000 i \\ -0.5000+1.0000 i & 0+2.0000 i & 2.0000+1.0000 i & -1.0000-0.5000 i & 0.2500+1.0000 i \\ 1.0000+0.2500 i & -2.0000+1.0000 i & 0+4.0000 i & 1.0000-2.0000 i & -2.0000+0.2500 i \\ -0.2500-1.0000 i & 1.0000-0.5000 i & -1.0000-2.0000 i & 0+3.0000 i & 1.0000-1.0000 i \\ -2.0000+0.5000 i & -0.2500+1.0000 i & 2.0000+0.2500 i & -1.0000-1.0000 i & 0+2.0000 i\end{array}\right]$.

Let

$$
\begin{gathered}
\Phi_{A}=\left(A_{1}, A_{2}\right), \quad \Phi_{B}=\left(B_{1}, B_{2}\right), \quad \Phi_{C}=\left(C_{1}, C_{2}\right), \quad \Phi_{D}=\left(D_{1}, D_{2}\right) \\
\Phi_{X}=\left(X_{1}, X_{2}\right), \quad \Phi_{E}=\Phi_{A} f(X) f(B)+\Phi_{C} f(X) f(D)
\end{gathered}
$$

By using Matlab 7.7 and Algorithm 5.2 we obtain

$$
\operatorname{rank}\left[\begin{array}{c}
P_{1} \\
P_{2}
\end{array}\right]=45, \quad\left[\begin{array}{cc}
S_{11} & S_{12} \\
S_{12}^{T} & S_{22}
\end{array}\right] e=8.2499 \times 10^{-15}
$$

According to Algorithm 5.2 (4), we can see the matrix equation $A X B+C X D=E$ has infinite k-anti-Hermitian solutions and a unique k-anti-Hermitian solution with the least norm $X_{A} \in A_{E}$ for Problem II and we can get $\left\|X_{A}-X\right\|=1.4058 \times 10^{-14}$.

Example 5.5. Suppose

$$
A, \quad B, \quad C, \quad D, \quad X, \quad \Phi_{A}, \quad \Phi_{B}, \quad \Phi_{C}, \quad \Phi_{D}, \quad \Phi_{X}
$$

are the same as in Example 5.4 $\Phi_{G}=\operatorname{ones}(8,12)$ and let $\Phi_{E}=\Phi_{A} f(X) f(B)+$ $\Phi_{C} f(X) f(D)+\Phi_{G}$. By using Matlab 7.7 and Algorithm 5.2 we obtain

$$
\operatorname{rank}\left[\begin{array}{c}
P_{1} \\
P_{2}
\end{array}\right]=45, \quad\left[\begin{array}{cc}
S_{11} & S_{12} \\
S_{12}^{T} & S_{22}
\end{array}\right] e=9.5570
$$

According to Algorithm 5.2 (5), we can see the matrix equation $A X B+C X D=E$ has infinite least squares k-anti-Hermitian solutions and a unique least squares k -anti-Hermitian solution with the least norm $X_{A} \in A_{L}$ for Problem II and we can get $\left\|X_{A}-X\right\|=0.1866$. and $X_{A}=X_{A 1}+X_{A 2} j$, where
$X_{A 1}=$

$$
\left[\begin{array}{lllll}
0 & 0.5189+0.5000 i & -2.0000+1.0000 i & -1.0000-0.2564 i & 0.2500+1.0000 i \\
-0.5189-0.5000 i & 0 & 1.0000+2.0000 i & 2.0000-0.5000 i & -0.5000+1.0000 i \\
2.0000-1.0000 i & -1.0000-2.0000 i & 0 & 0.5000+1.0000 i & 1.0000+0.5000 i \\
1.0000+0.2564 i & -2.0000+0.5000 i & -0.5000-1.0000 i & 0 & 2.0000-1.0000 i \\
-0.2500-1.0000 i & 0.5000-1.0000 i & -1.0000-0.5000 i & -2.0000+1.0000 i & 0
\end{array}\right],
$$

$X_{A 2}=$

$$
\left[\begin{array}{lllll}
0+0.3627 i & 0.5000+0.9627 i & -1.0000+0.2127 i & 0.2500-1.0373 i & 2.0000+0.4627 i \\
-0.5000+0.9627 i & 0+1.9627 i & 2.0000+0.9627 i & -1.0000-0.5373 i & 0.2500+0.9627 i \\
1.0000+0.2127 i & -2.0000+0.9627 i & 0+3.9627 i & 1.0000-2.0373 i & -2.0000+0.2127 i \\
-0.2500-1.0373 i & 1.0000-0.5373 i & -1.0000-2.0373 i & 0+2.9627 i & 1.0000-1.0373 i \\
-2.0000+0.4627 i & -0.2500+0.9627 i & 2.0000+0.2127 i & -1.0000-1.0373 i & 0+1.9627 i
\end{array}\right]
$$

In addition, the related numerical results are also verified and listed in Table 1 and Table 2, where

$$
\begin{aligned}
& N\left(P_{1}, P_{2}\right)=\left\|I-\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]^{+}-\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{12}^{T} & S_{22}
\end{array}\right]\right\| \text { and } \\
& N\left(Q_{1}, Q_{2}\right)=\left\|I-\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right]\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right]^{+}-\left[\begin{array}{ll}
\Delta_{11} & \Delta_{12} \\
\Delta_{12}^{T} & \Delta_{22}
\end{array}\right]\right\| .
\end{aligned}
$$

Table 1. Numerical results for Example 5.3.

	$\left\\|S_{11}\right\\|$	$\left\\|S_{12}\right\\|$	$\left\\|S_{22}\right\\|$	$\\|H\\|$	$\\|Z\\|$	$N\left(P_{1}, P_{2}\right)$
$E 5.3$	8.2938	1.4272	174.4133	2.2601	9.1727	$3.2778 e-014$

Table 2. Numerical results for Example 5.4 and Example 5.5

	$\left\\|\Delta_{11}\right\\|$	$\left\\|\Delta_{12}\right\\|$	$\left\\|\Delta_{22}\right\\|$	$\left\\|H_{1}\right\\|$	$\left\\|Z_{1}\right\\|$	$N\left(Q_{1}, Q_{2}\right)$
$E 5.4, E 5.5$	8.3695	1.3086	8.5747	1.7614	9.2480	$3.6131 e-014$

Examples 5.3.5.4, and 5.5 are used to show the feasibility of Algorithms 5.1 and 5.2

Acknowledgment. The authors would like to thank the referees very much for their valuable suggestions and comments, which resulted in a great improvement of the original manuscript.

REFERENCES

[1] B.-I. Adi and T.N.E. Greville. Generalized Inverses: Theory and Applications. John Wiley and Sons, New York, 1974.
[2] M. Dehghan and M. Hajarian. On the reflexive solutions of the matrix equation $A X B+C Y D=$ E. Bull. Korean Math. Soc., 46:511-519, 2009.
[3] J.D. Gardiner, A.J. Laub, J.J. Amato, and C.B. Moler. Solution of Sylvester matrix equation $A X B^{T}+C X D^{T}=E . A C M$ Trans. Math. Software, 18:223-231, 1992.
[4] T. Ell and S.J. Sangwine. Quaternion involutions and anti-involutions. Comput. Math. Appl., 53:137-143, 2007.
[5] V. Hernández and M. Gassó. Explicit solution of the matrix equation $A X B-C X D=E$. Linear Algebra Appl., 121:333-344, 1989.
[6] R.A. Horn and F.Z. Zhang. A generalization of the complex Autonne-Takagi factorization to quaternion matrices. Linear Multilinear Algebra, DOI: 10.1080/03081087.2011.618838.
[7] L.P. Huang. The matrix equation $A X B-G X D=E$ over the quaternion field. Linear Algebra Appl., 234:197-208, 1996.
[8] T.S. Jiang and M.S. Wei. On solutions of the matrix equations $X-A X B=C$ and $X-A \bar{X} B=$ C. Linear Algebra Appl., 367:225-233, 2003.
[9] T.S. Jiang and M.S. Wei. On a solution of the quaternion matrix equation $X-A \widetilde{X} B=C$ and its application. Acta Math. Sin., 21:483-490, 2005.
[10] Y.T. Li and W.J. Wu. Symmetric and skew-antisymmetric solutions to systems of real quaternion matrix equations. Comput. Math. Appl., 55:1142-1147, 2008.
[11] A.P. Liao, Z.Z. Bai, and Y. Lei. Best approximate solution of matrix equation $A X B+C Y D=$ E. SIAM J. Matrix Anal. Appl., 27:675-688, 2005.
[12] J.R. Magnus. L-structured matrices and linear matrix equations. Linear Multilinear Algebra, 14:67-88, 1983.
[13] A. Mansour. Solvability of $A X B-C X D=E$ in the operators algebra $B(H)$. Lobachevskii J. Math., 31:257-261, 2010.
[14] S.K. Mitra. The matrix equation $A X B+C X D=E . S I A M$ J. Appl. Math., 32:823-825, 1977.
[15] M.A. Ramadan, M.A. Abdel Naby, and A.M.E. Bayoumi. On the explicit solutions of forms of the Sylvester and the Yakubovich matrix equations. Math. Comput. Modelling, 50:14001408, 2009.
[16] Y.G. Tian. The solvability of two linear matrix equations. Linear Multilinear Algebra, 48:123147, 2000.
[17] C.C. Took and D.P. Mandic. Augmented second-order statistics of quaternion random signals. Signal Process., 91:214-224, 2011.
[18] C.C. Took, D.P. Mandic, and F.Z. Zhang. On the unitary diagonalisation of a special class of quaternion matrices. Appl. Math. Lett., 24:1806-1809, 2011.
[19] M.H. Wang, X.H. Chen, and M.S. Wei. Iterative algorithms for solving the matrix equation $A X B+C X^{T} D=E$. Appl. Math. Comput., 187:622-629, 2007.
[20] Q.W. Wang. A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity. Linear Algebra Appl., 384:43-54, 2004.
[21] Q.W. Wang. The general solution to a system of real quaternion matrix equations. Comput. Math. Appl., 49:665-675, 2005.
[22] Q.W. Wang. Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations. Comput. Math. Appl., 49:641-650, 2005.
[23] Q.W. Wang and Z.H. He. Some matrix equations with applications. Linear Multilinear Algebra, DOI:10.1080/03081087.2011.648635.
[24] Q.W. Wang and J. Jiang. Extreme ranks of (skew-)Hermitian solutions to a quaternion matrix equation Electron. J. Linear Algebra, 20:552-573, 2010.
[25] Q.W. Wang and C.K. Li. Ranks and the least-norm of the general solution to a system of quaternion matrix equations. Linear Algebra Appl., 430:1626-1640, 2009.
[26] Q.W. Wang, G.J. Song, and C.Y. Lin. Extreme ranks of the solution to a consistent system of linear quaternion matrix equations with an application. Appl. Math. Comput., 189:15171532, 2007.
[27] Q.W. Wang, G.J. Song, and X. Liu. Maximal and minimal ranks of the common solution of some linear matrix equations over an arbitrary division ring with applications. Algebra Colloq., 16:293-308, 2009.
[28] Q.W. Wang, J.H. Sun, and S.Z. Li. Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra. Linear Algebra Appl., 353:169-182, 2002.
[29] Q.W. Wang, J.W. van der Woude, and H.X. Chang. A system of real quaternion matrix equations with applications. Linear Algebra Appl., 431:2291-2303, 2009.
[30] Q.W. Wang, Z.C. Wu, and C.Y. Lin. Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications. Appl. Math. Comput., 182:1755-1764, 2006.
[31] Q.W. Wang, S.W. Yu, and C.Y. Lin Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications. Appl. Math. Comput., 195:733-744, 2008.
[32] Q.W. Wang, S.W. Yu, and Q. Zhang. The real solutions to a system of quaternion matrix equations with applications. Comm. Algebra, 37:2060-2079, 2009.
[33] Q.W. Wang and F. Zhang. The reflexive re-nonnegative definite solution to a quaternion matrix equation. Electron. J. Linear Algebra, 17:88-101, 2008.
[34] Q.W. Wang, H.S. Zhang, and S.W. Yu. On solutions to the quaternion matrix equation $A X B+$ $C Y D=E$. Electron. J. Linear Algebra, 17:343-358, 2008.
[35] A.G. Wu, H.Q. Wang, and G.R. Duan. On matrix equations $X-A X F=C$ and $X-A \bar{X} F=C$. J. Comput. Appl. Math., 230:690-698, 2009.
[36] L. Xie, Y.J. Liu, and H.Z. Yang. Gradient based and least squares based iterative algorithms for matrix equations $A X B+C X^{T} D=F$. Appl. Math. Comput., 217:2191-2199, 2010.
[37] Q.F. Xiao, X.Y. Hu, and L. Zhang. The anti-symmetric ortho-symmetric solutions of the matrix equation $A^{T} X A=D$. Electron J. Linear Algebra, 18:21-29, 2009.
[38] S.F. Yuan, A.P. Liao, and Y. Lei. Least squares Hermitian solution of the matrix equation $(A X B, C X D)=(E, F)$ with the least norm over the skew field of quaternions. Math. Comput. Modelling, 48:91-100, 2008.
[39] F.Z. Zhang. Quaternions and matrices of quaternions. Linear Algebra Appl., 251:21-57, 1997.
[40] B. Zhou and G.R. Duan. On equivalence and explicit solutions of a class of matrix equations. Math. Comput. Modelling, 50:1409-1420, 2009.

[^0]: *Received by the editors on July 19, 2011. Accepted for publication on January 26, 2012. Handling Editor: Bryan L. Shader.
 \dagger Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China, and School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, P.R. China (ysf301@yahoo.com.cn). Supported by Natural Science Fund of China (61070150), Guangdong Natural Science Fund of China (10452902001005845), and Program for Guangdong Excellent Talents in University, Guangdong Education Ministry, China (LYM10128).
 ${ }^{\ddagger}$ Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China (wqw858@yahoo.com.cn). Supported by grants from the Natural Science Foundation of China (11171205, 60672160), the Natural Science Foundation of Shanghai (11ZR1412500), the Ph.D. Programs Foundation of Ministry of Education of China (20093108110001), and Shanghai Leading Academic Discipline Project (J50101).

