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Abstract. By using the complex representation of quaternion matrices, the Moore–Penrose

generalized inverse and the Kronecker product of matrices, the expressions of the least squares

η-Hermitian solution with the least norm and the expressions of the least squares η-anti-Hermitian

solution with the least norm are derived for the matrix equation AXB+CXD = E over quaternions.
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1. Introduction. Throughout this paper, let Q, Rm×n, SRn×n, ASRn×n, Cm×n,

and Qm×n be the skew field of quaternions, the set of all m × n real matrices, the

set of all n × n real symmetric matrices, the set of all n × n real anti-symmetric

matrices, the set of all m× n complex matrices, and the set of all m× n quaternion

matrices, respectively. For A ∈ Cm×n, Re(A) and Im(A) denote the real part and the

imaginary part of matrix A, respectively. For A ∈ Qm×n, A, AT , AH and A+ denote

the conjugate matrix, the transpose matrix, the conjugate transpose matrix, and the

Moore–Penrose generalized inverse matrix of matrix A, respectively.

A quaternion a can be uniquely expressed as a = a0 + a1i+ a2j + a3k with real

coefficients a0, a1, a2, a3, and i2 = j2 = k2 = −1, ij = −ji = k, and a can be uniquely

expressed as a = c1 + c2j, where c1 and c2 are complex numbers. The following

quaternion involutions of a quaternion a = a0 + a1i+ a2j + a3k, defined as [4]

ai = −iai = a0 + a1i− a2j − a3k,
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aj = −jaj = a0 − a1i+ a2j − a3k,

ak = −kak = a0 − a1i− a2j + a3k.

For any A ∈ Qm×n, A can be uniquely expressed as A = A1 + A2j, where A1, A2 ∈
Cm×n, and AH = Re(A1)

T − Im(A1)
T i − Re(A2)

T j − Im(A2)
T k. The complex rep-

resentation matrix of A = A1 +A2j ∈ Qm×n is denoted by

f(A) =

[

A1 A2

−A2 A1

]

∈ C2m×2n.

Notice that f(A) is uniquely determined by A. For A ∈ Qm×n, B ∈ Qn×s, we have

f(AB) = f(A)f(B) (see [39]). We define the inner product : 〈A,B〉=tr(BHA) for all

A,B ∈ Qm×n. Then Qm×n is a right Hilbert inner product space and the norm of a

matrix generated by this inner product is the quaternion matrix Frobenius norm ‖ ·‖.
For A = (aij) ∈ Qm×n, B = (bij) ∈ Qp×q, the symbol A ⊗ B = (aijB) ∈ Qmp×nq

stands for the Kronecker product of A and B.

Definition 1.1. [6, 18] A matrix A ∈ Qn×n is η-Hermitian if AηH = A, and

a matrix A ∈ Qn×n is η-anti-Hermitian if AηH = −A, where AηH = −ηAHη,

η ∈ {i, j, k}. η-Hermitian matrices and η-anti -Hermitian matrices are denoted by

ηHQ
n×n and ηAQn×n, respectively.

Various aspects of the solutions for real, complex, or quaternion matrix equations

such as AXB = C, AX + XB = C, AXB + CXTD = E, X − AXB = C, and

AXB + CY D = E have been widely investigated (see [2], [8]-[11], [12], [14], [15],

[19]-[38], [40] and references cited therein). For the matrix equation

AXB + CXD = E,(1.1)

if B and C are identity matrices, then the matrix equation (1.1) reduces to the well-

known Sylvester equation [3]. If C and D are identity matrices, then the matrix

equation (1.1) reduces to the well-known Stein equation. There are many impor-

tant results about their solutions. For example, Mitra [14] and Tian [16] considered

the solvability condition for the complex and real matrix equation (1.1), respectively.

Hernández and Gassó [5] obtained the explicit solution of the matrix equation (1.1).

Mansour [13] studied the solvability condition for the matrix equation (1.1) in the

operator algebra. For the quaternion matrix equation (1.1), Huang [7] obtained nec-

essary and sufficient conditions for the existence of a solution or a unique solution us-

ing the method of complex representation of quaternion matrices. Using the complex

representation of quaternion matrices, the Moore–Penrose generalized inverse, and

the Kronecker product of matrices, Yuan, Liao, and Lei [38] studied the least squares

Hermitian problems for the quaternion matrix equation (AXB,CXD) = (E,F ). η-

Hermitian and η-anti-Hermitian quaternion matrices, are important class of matrices
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applied in widely linear modelling due to the quaternion involution properties (see

[4, 17, 18] for details). In this paper, we use the results of [38] to consider the least

squares η-Hermitian and η-anti-Hermitian problems for quaternion matrix equation

(1.1). The related problems are described as follows.

Problem I.Given A ∈ Qm×n, B ∈ Qn×s, C ∈ Qm×n, D ∈ Qn×s, and E ∈ Qm×s,

let

HL = {X |X ∈ ηHQ
m×n, ||AXB+CXD−E|| = min

X0∈ηHQm×n
||AX0B+CX0D−E||}.

Find XH ∈ HL such that

||XH || = min
X∈HL

||X ||.

Problem II. Given A ∈ Qm×n, B ∈ Qn×s, C ∈ Qm×n, D ∈ Qn×s, and E ∈
Qm×s, let

AL = {X |X ∈ ηAQn×n, ||AXB +CXD−E|| = min
X0∈ηAQm×n

||AX0B +CX0D−E||}.

Find XA ∈ AL such that

||XA|| = min
X∈AL

||X ||.

The solutionXH of Problem I is called the least squares η-Hermitian solution with

the least norm, and the solution XA of Problem II is called the least squares η-anti-

Hermitian solution with the least norm for matrix equation (1.1) over quaternions.

Our approach to solving these problems is based on the way of studying vec(ABC)

mentioned in [38], which can overcome the difficulty from the noncommutative multi-

plication of quaternions, and turns Problems I and II of quaternion matrix equation

(1.1) into a system of real equations, respectively.

This paper is organized as follows. In Section 2, we analyze the structure of

two special matrix sets: ηHQn×n and ηAQn×n. In Section 3, we derive the explicit

expression for the solution of Problem I. In Section 4, we derive the explicit expression

for the solution of Problem II. Finally, in Section 5, we give numerical algorithms and

numerical examples for Problems I and II, respectively.

2. The structure of ηHQn×n and ηAQn×n. In this section, we analyze the

structure of ηHQ
n×n and ηAQn×n.

Definition 2.1. For matrix A ∈ Qn×n, let a1 = (a11,
√
2a21, . . . ,

√
2an1), a2 =

(a22,
√
2a32, . . . ,

√
2an2), . . . , an−1 = (a(n−1)(n−1),

√
2an(n−1)), an = ann, and denote
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by vecS(A) the following vector:

vecS(A) = (a1, a2, . . . , an−1, an)
T ∈ Q

n(n+1)
2 .(2.1)

Definition 2.2. For matrix B ∈ Qn×n, let b1 = (b21, b31, . . . , bn1), b2 = (b32, b42,

. . . , bn2), . . . , bn−2 = (b(n−1)(n−2), bn(n−2)), bn−1 = bn(n−1), and denote by vecA(B)

the following vector:

vecA(B) =
√
2(b1, b2, . . . , bn−2, bn−1)

T ∈ Q
n(n−1)

2 .(2.2)

Lemma 2.3. [38] Suppose X ∈ Rn×n. Then,

(i) X ∈ SR
n×n ⇐⇒ vec(X) = KSvecS(X), where vecS(X) is represented as

(2.1), and the matrix KS ∈ Rn2×n(n+1)
2 is of the following form:

KS = 1√
2































√
2e1 e2 e3 · · · en−1 en 0 0 · · · 0 0 · · · 0 0 0

0 e1 0 · · · 0 0
√

2e2 e3 · · · en−1 en · · · 0 0 0

0 0 e1 · · · 0 0 0 e2 · · · 0 0 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · e1 0 0 0 · · · e2 0 · · ·
√

2en−1 en 0

0 0 0 · · · 0 e1 0 0 · · · 0 e2 · · · 0 en−1
√

2en































,

(ii) X ∈ ASR
n×n ⇐⇒ vec(X) = KAvecA(X), where vecA(X) is represented as

(2.2), and the matrix KA ∈ Rn2×n(n−1)
2 is of the following form:

KA =
1√
2













e2 e3 · · · en−1 en 0 · · · 0 0 · · · 0

−e1 0 · · · 0 0 e3 · · · en−1 en · · · 0

0 −e1 · · · 0 0 −e2 · · · 0 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0 0 0

0 0 · · · −e1 0 0 · · · −e2 0 · · · en

0 0 · · · 0 −e1 0 · · · 0 −e2 · · · −en−1













,

where ei is the i-th column of In. Obviously, KT
SKS = In(n+1)

2

and KT
AKA =

In(n−1)
2

.

We identify q ∈ Q with a complex vector ~q ∈ C2, and denote such an identification

by the symbol ∼=, that is,

c1 + c2j = q ∼= ~q = (c1, c2).
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For A = A1 +A2j ∈ Qm×n, we have A ∼= ΦA = (A1, A2),

vec(A1) + vec(A2)j = vec(A) ∼= vec(ΦA) =

[

vec(A1)

vec(A2)

]

,

so that

‖vec(A)‖ = ‖vec(ΦA)‖ =

∥

∥

∥

∥

∥

[

vec(A1)

vec(A2)

]∥

∥

∥

∥

∥

.

We denote
−→
A = (Re(A1), Im(A1),Re(A2), Im(A2)),

vec(
−→
A ) =















vec(Re(A1))

vec(Im(A1))

vec(Re(A2))

vec(Im(A2))















.

Notice that ‖vec(ΦA)‖ = ‖vec(−→A )‖. In particular, for A = A1 + A2i ∈ Cm×n with

A1, A2 ∈ Rm×n, we have A ∼= −→
A = (A1, A2), and

vec(A1) + vec(A2)i = vec(A) ∼= vec(
−→
A ) =

[

vec(A1)

vec(A2)

]

.

Addition of two quaternion matrices A = A1 +A2j and B = B1 +B2j satisfies

(A1 +B1) + (A2 +B2)j = (A+B) ∼= ΦA+B = (A1 +B1, A2 +B2),

whereas multiplication satisfies

AB = (A1 +A2j)(B1 +B2j) = (A1B1 −A2B2) + (A1B2 +A2B1)j.

So AB ∼= ΦAB, moreover, ΦAB can be expressed as

ΦAB = (A1B1 −A2B2, A1B2 +A2B1)

= (A1, A2)

[

B1 B2

−B2 B1

]

= ΦAf(B).

For X = X1 +X2j ∈ ηHQ
n×n, by Definition 1.1, we have

XHη = ηX

⇐⇒ (Re(X1)
T − Im(X1)

T i− Re(X2)
T j − Im(X2)

T k)η
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= η(Re(X1) + Im(X1)i +Re(X2)j + Im(X2)k)

⇐⇒ Re(X1)
T = Re(X1), Im(X1)

T =

{

−Im(X1), η = i

Im(X1), η 6= i
,

Re(X2)
T =

{

−Re(X2), η = j

Re(X2), η 6= j
, Im(X2)

T =

{

−Im(X2), η = k

Im(X2), η 6= k
.

Theorem 2.4. If X ∈ Qn×n, then X ∈ ηHQn×n ⇐⇒ vec(
−→
X ) = KηHvecηH(

−→
X ),

where

KiH =















KS 0 0 0

0 KA 0 0

0 0 KS 0

0 0 0 KS















, veciH(
−→
A ) =















vecS(Re(A1))

vecA(Im(A1))

vecS(Re(A2))

vecS(Im(A2))















,

KjH =















KS 0 0 0

0 KS 0 0

0 0 KA 0

0 0 0 KS















, vecjH(
−→
A ) =















vecS(Re(A1))

vecS(Im(A1))

vecA(Re(A2))

vecS(Im(A2))















,

KkH =















KS 0 0 0

0 KS 0 0

0 0 KS 0

0 0 0 KA















, veckH(
−→
A ) =















vecS(Re(A1))

vecS(Im(A1))

vecS(Re(A2))

vecA(Im(A2))















.

Proof. We prove it only the case of η = j, similar arguments handle the cases

that η = i and η = k. For X ∈ Qn×n, we have

X ∈ jHQ
n×n

⇐⇒ XHj = jX

⇐⇒ Re(X1)
T = Re(X1), Im(X1)

T = Im(X1),

Re(X2)
T = −Re(X2), Im(X1)

T = Im(X1)
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⇐⇒ vec(
−→
X ) =















vec(Re(A1))

vec(Im(A1))

vec(Re(A2))

vec(Im(A2))















=















KS 0 0 0

0 KS 0 0

0 0 KA 0

0 0 0 KS





























vecS(Re(A1))

vecS(Im(A1))

vecA(Re(A2))

vecS(Im(A2))















= KjHvecjH(
−→
X ).

Similar to the discussions mentioned above, we have

Theorem 2.5. If X ∈ Qn×n, then X ∈ ηAQn×n ⇐⇒ vec(
−→
X ) = KηAvecηA(

−→
X ),

where

KiA =















KA 0 0 0

0 KS 0 0

0 0 KA 0

0 0 0 KA















, veciA(
−→
A ) =















vecA(Re(A1))

vecS(Im(A1))

vecA(Re(A2))

vecA(Im(A2))















,

KjA =















KA 0 0 0

0 KA 0 0

0 0 KS 0

0 0 0 KA















, vecjA(
−→
A ) =















vecA(Re(A1))

vecA(Im(A1))

vecS(Re(A2))

vecA(Im(A2))















,

KkA =















KA 0 0 0

0 KA 0 0

0 0 KA 0

0 0 0 KS















, veckA(
−→
A ) =















vecA(Re(A1))

vecA(Im(A1))

vecA(Re(A2))

vecS(Im(A2))















.

3. The solution of Problem I. It is well known that for A ∈ Cm×n, B ∈ Cn×s,

and C ∈ Cs×t,

vec(ABC) = (CT ⊗A)vec(B).(3.1)

However, in the setting of quaternion matrices, if A ∈ Qm×n, B ∈ Qn×s, and

C ∈ Qs×t, (3.1) does not hold because Q is not commutative under multiplication.
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Nevertheless, by applying the method in [38] to study vec(ABC), we can turn Prob-

lem I for quaternion matrix equation (1.1) into the least squares problem with the

least norm for a system of real equations, and solve Problem I.

Lemma 3.1. [38] Let A = A1 + A2j ∈ Qm×n, B = B1 + B2j ∈ Qn×s, and

C = C1 + C2j ∈ Qs×t be given. Then

vec(ΦABC) = (f(C)T ⊗A1, f(Cj)H ⊗A2)

[

vec(ΦB)

vec(−ΦjBj)

]

.

Lemma 3.2. For X = X1 +X2j ∈ ηHQ
n×n, let

W =















In2 iIn2 0 0

0 0 In2 iIn2

In2 −iIn2 0 0

0 0 In2 −iIn2















.

Then
[

vec(ΦX)

vec(−ΦjXj)

]

= WKηHvecηH(
−→
X ).

Proof. For X = X1 +X2j ∈ ηHQn×n, by Theorem 2.4, we have

[

vec(ΦX)

vec(−ΦjXj)

]

=















vec(X1)

vec(X2)

vec(X1)

vec(X2)















=















In2 iIn2 0 0

0 0 In2 iIn2

In2 −iIn2 0 0

0 0 In2 −iIn2





























vec(Re(A1))

vec(Im(A1))

vec(Re(A2))

vec(Im(A2))















= WKηHvecηH(
−→
X ).

By Theorem 2.4, and Lemmas 3.1 and 3.2, we have

Lemma 3.3. If A = A1 + A2j ∈ Qm×n, X = X1 + X2j ∈ ηHQn×n, and

B = B1 + B2j ∈ Qn×s, then

vec(ΦAXB) = (f(B)T ⊗A1, f(Bj)H ⊗A2)WKηHvecηH(
−→
X ).
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Lemma 3.4. [1] The matrix equation Ax = b, with A ∈ Rm×n and b ∈ Rn, has a

solution x ∈ Rn if and only if

AA+b = b,

in this case it has the general solution

x = A+b+ (I −A+A)y,

where y ∈ Rn is an arbitrary vector.

Lemma 3.5. [1] The least squares solutions of the matrix equation Ax = b, with

A ∈ Rm×n and b ∈ Rn, can be represented as

x = A+b+ (I −A+A)y,

where y ∈ Rn is an arbitrary vector, and the least squares solution of the matrix

equation Ax = b with the least norm is x = A+b.

Based on our earlier discussions, we now turn our attention to Problem I. The

following notation is necessary for deriving the solutions of Problem I. For A = A1 +

A2j ∈ Qm×n, B ∈ Qn×s, C = C1 + C2j ∈ Qm×n, D ∈ Qn×s, E ∈ Qm×s, set

P = [(f(B)T ⊗A1, f(Bj)H ⊗A2) + (f(D)T ⊗ C1, f(Dj)H ⊗ C2)]WKηH ,

P1 = Re(P ), P2 = Im(P ), e =





vec(Re(ΦE))

vec(Im(ΦE))



 ,(3.2)

and

R = (I − P+
1 P1)P

T
2 ,

Z = (I + (I −R+R)P2P
+
1 P+T

1 PT
2 (I −R+R))−1,

H = R+ + (I − R+R)ZP2P
+
1 P+T

1 (I − PT
2 R+),

S11 = I − P1P
+
1 + P+T

1 PT
2 Z(I −R+R)P2P

+
1 ,

S12 = −P+T
1 PT

2 (I −R+R)Z,

S22 = (I −R+R)Z.

¿From the results in [12], we have

[

P1

P2

]+

= (P+
1 −HTP2P

+
1 , HT ),

[

P1

P2

]+ [
P1

P2

]

= P+
1 P1 +RR+,

I −
[

P1

P2

]+ [
P1

P2

]

=

[

S11 S12

ST
12 S22

]

.
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Theorem 3.6. Let A ∈ Qm×n, B ∈ Qk×s, C ∈ Qm×n, D ∈ Qk×s, and E ∈
Qm×s. Let P1, P2, and e be as in (3.2). Then

HL =
{

X
∣

∣

∣vec(
−→
X ) = KηH [(P+

1 −HTP2P
+
1 , HT )e+ (I − P+

1 P1 −RR+)y]
}

,(3.3)

where y ∈ R2n2+n is an arbitrary vector.

Proof. By Lemma 3.3,

‖AXB + CXD − E‖2 = ‖ΦAXB +ΦCXD − ΦE‖2

= ‖vec(ΦAXB) + vec(ΦCXD)− vec(ΦE)‖2

=

∥

∥

∥

∥

∥

∥

QvecηH(
−→
X )−





vec(Re(ΦE))

vec(Im(ΦE))





∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

(

P1

P2

)

vecηH(
−→
X )− e

∥

∥

∥

∥

∥

2

.

By Lemma 3.5, it follows that

vecηH(
−→
X ) =

[

P1

P2

]+

e+



I −
[

P1

P2

]+

(P1, P2)



 y,

and thus,

vec(
−→
X ) = KηH(P+

1 −HTP2P
+
1 , HT )e +KηH(I − P+

1 P1 −RR+)y.

By Lemma 3.4 and Theorem 3.6, we get the following conclusion.

Corollary 3.7. The quaternion matrix equation (1.1) has a solution X ∈
ηHQm×n if and only if

[

S11 S12

ST
12 S22

]

e = 0.(3.4)

In this case, denote by HE the solution set of (1.1). Then

HE =
{

X
∣

∣

∣vec(
−→
X ) = KηH [(P+

1 −HTP2P
+
1 , HT )e+ (I − P+

1 P1 −RR+)y]
}

,

where y ∈ R2n2+n is an arbitrary vector.

Furthermore, if (3.4) holds, then the quaternion matrix equation (1.1) has a unique

solution X ∈ HE if and only if

rank

[

P1

P2

]

= 2n2 + n.(3.5)
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In this case,

HE =
{

X
∣

∣

∣vec(
−→
X ) = KηH(P+

1 −HTP2P
+
1 , HT )e

}

.(3.6)

Theorem 3.8. Problem I has a unique solution XH ∈ HL. This solution satisfies

vec(
−−→
XH) = KηH(P+

1 −HTP2P
+
1 , HT )e.(3.7)

Proof. From (3.3), it is easy to verify that the solution set HL is nonempty and

is a closed convex set. Hence, Problem I has a unique solution XH ∈ HL.

We now prove that the solution XH can be expressed as (3.7).

From (3.3), we have

min
X∈HL

||X || = min
X∈HL

‖vec(−→X )‖,

by Lemma 3.5 and (3.3),

vec(
−−→
XH) = KηH

[

P1

P2

]+

e.

Thus,

vec(
−−→
XH) = KηH(P+

1 −HTP2P
+
1 , HT )e.

Corollary 3.9. The least norm problem

||XH || = min
X∈HE

||X ||

has a unique solution XH ∈ HE and XH can be expressed as (3.7).

4. The solution of Problem II. We now discuss the solution of Problem II.

Similar to Lemmas 3.2 and 3.3, we have the following conclusions.

Lemma 4.1. For X = X1 +X2j ∈ ηAQn×n, one gets
[

vec(ΦX)

vec(−ΦjXj)

]

= WKηAvecηA(
−→
X ).

Lemma 4.2. For A = A1 + A2j ∈ Qm×n, X = X1 + X2j ∈ ηAQn×n, and

B = B1 + B2j ∈ Qn×s, one gets

vec(ΦAXB) = (f(B)T ⊗ A1, f(Bj)H ⊗ A2)WKηAvecηA(
−→
X ).
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For A = A1 + A2j ∈ Qm×n, B ∈ Qn×s, C = C1 + C2j ∈ Qm×n, D ∈ Qn×s, and

E ∈ Qm×s, set

Q = [(f(B)T ⊗A1, f(Bj)H ⊗A2) + (f(D)T ⊗ C1, f(Dj)H ⊗ C2)]WKηA,

Q1 = Re(Q), Q2 = Im(Q), e =





vec(Re(ΦE))

vec(Im(ΦE))



 ,(4.1)

and

R1 = (I −Q+
1 Q1)Q

T
2 ,

Z1 = (I + (I −R+
1 R1)Q2Q

+
1 Q

+T
1 QT

2 (I −R+
1 R1))

−1,

H1 = R+
1 + (I −R+

1 R1)Z1Q2Q
+
1 Q

+T
1 (I −QT

2 R
+
1 ),

∆11 = I −Q1Q
+
1 +Q+T

1 QT
2 Z1(I −R+

1 R1)Q2Q
+
1 ,

∆12 = −Q+T
1 QT

2 (I −R+
1 R1)Z1,

∆22 = (I −R+
1 R1)Z1.

¿From the results in [12], we have

[

Q1

Q2

]+

= (Q+
1 −HT

1 Q2Q
+
1 , H

T
1 ),

[

Q1

Q2

]+ [
Q1

Q2

]

= Q+
1 Q1 +R1R

+
1 ,

I −
[

Q1

Q2

]+ [
Q1

Q2

]

=

[

∆11 ∆12

∆T
12 ∆22

]

.

Theorem 4.3. Let A ∈ Qm×n, B ∈ Qk×s, C ∈ Qm×n, D ∈ Qk×s, and E ∈
Qm×s. Let Q1, Q2, and e be as in (4.1). Then

AL =
{

X
∣

∣

∣vec(
−→
X ) = KηA[(Q

+
1 −HT

1 Q2Q
+
1 , H

T
1 )e+ (I −Q+

1 Q1 −R1R
+
1 )y]

}

,

where y ∈ R2n2−n is an arbitrary vector.

By Lemma 3.4 and Theorem 4.3, we get the following conclusion.

Corollary 4.4. The quaternion matrix equation (1.1) has a solution X ∈
ηHQ

m×n if and only if

[

∆11 ∆12

∆T
12 ∆22

]

e = 0.(4.2)
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In this case, denote by AE the solution set of (1.1). Then

AE =
{

X
∣

∣

∣vec(
−→
X ) = KηA[(Q

+
1 −HT

1 Q2Q
+
1 , H

T
1 )e+ (I −Q+

1 Q1 −R1R
+
1 )y]

}

,

where y ∈ R2n2−n is an arbitrary vector.

Furthermore, if (4.2) holds, then the quaternion matrix equation (1.1) has a unique

solution X ∈ AE if and only if

rank

[

Q1

Q2

]

= 2n2 − n.(4.3)

In this case,

AE =
{

X
∣

∣

∣vec(
−→
X ) = KηA(Q

+
1 −HT

1 Q2Q
+
1 , H

T
1 )e

}

.(4.4)

Theorem 4.5. Problem II has a unique solution XA ∈ AL. This solution satisfies

vec(
−→
XA) = KηA(Q

+
1 −HT

1 Q2Q
+
1 , H

T
1 )e.(4.5)

Corollary 4.6. The least norm problem

||XA|| = min
X∈AE

||X ||

has a unique solution XA ∈ AE and XA can be expressed as (4.5).

5. Numerical verification. Based on the discussions in Sections 2, 3 and 4, we

report two numerical algorithms and three numerical examples to find the solutions

of Problems I, II in this section.

Algorithms 5.1 and 5.2 provide the methods to find the solutions of Problems I

and II. When the consistent conditions for matrix equation (1.1) hold, Examples 5.3

and 5.4 consider the numerical solutions of Problems I and II for X ∈ jHQ
n×n and

X ∈ kAQn×n, respectively. In Example 5.5, we use a matrix to perturb the matrix

E of Example 5.4, obtain the inconsistent matrix equation (1.1), thus we can analyze

the least squares solution with the least norm for matrix equation (1.1) in Problem

II. For demonstration purpose and avoiding the matrices with large norm to interrupt

the solutions of Problems I and II, we only consider the cases of small n = 5 and take

the coefficient matrices in Examples 5.3 and 5.4.
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Algorithm 5.1. (for Problem I)

(1) Input A, B, C, D, and E (A ∈ Qm×n, B ∈ Qn×s, C ∈ Qm×n, D ∈ Qn×s,

and E ∈ Qm×s).

(2) Compute P1, P2, R, H, S11, S12, S22, and e.

(3) If (3.4) and (3.5) hold, then calculate XH(XH ∈ HE) according to (3.6).

(4) If (3.4) holds, then calculate XH(XH ∈ HE) according to (3.7), otherwise go

to next step.

(5) Calculate XH(XH ∈ HL) according to (3.7).

Algorithm 5.2. (for Problem II)

(1) Input A, B, C, D, and E (A ∈ Qm×n, B ∈ Qn×s, C ∈ Qm×n, D ∈ Qn×s,

and E ∈ Qm×s).

(2) Compute Q1, Q2, R1, H1, ∆11, ∆12, ∆22, and e.

(3) If (4.2) and (4.3) hold, then calculate XA(XA ∈ AE) according to (4.4).

(4) If (4.2) holds, then calculate XA(XA ∈ AE) according to (4.4), otherwise go

to next step.

(5) Calculate XA(XA ∈ AL) according to (4.5).

Example 5.3. Taking

A = A1 +A2j, B = B1 +B2j, C = C1 +C2j, D = D1 +D2j, X = X1 +X2j,

E = AXB + CXD, where

A1 =

[

I5

ones(3, 5)

]

i, A2 =

[

−I5

03×5

]

, C1 =

[

I5

03×5

]

, C2 =

[

I5

03×5

]

,

B1 = (I5, 05×1), B2 = (−I5, 05×1)i, D1 = ones(5, 6)i, D2 = ones(5, 6),

X1 =




















1.0000 + 0.4000i 0.5000 + 1.0000i −2.0000 + 0.2500i −1.0000 − 1.0000i 0.2500 + 0.5000i

0.5000 + 1.0000i 2.0000 + 2.0000i 1.0000 + 1.0000i 2.0000 − 0.5000i −0.5000 + 1.0000i

−2.0000 + 0.2500i 1.0000 + 1.0000i −1.0000 + 4.0000i 0.5000 − 2.0000i 1.0000 + 0.2500i

−1.0000 − 1.0000i 2.0000 − 0.5000i 0.5000 − 2.0000i 1.0000 + 3.0000i 2.0000 − 1.0000i

0.2500 + 0.5000i −0.5000 + 1.0000i 1.0000 + 0.2500i 2.0000 − 1.0000i −2.0000 + 2.0000i





















,

X2 =




















0 + 2.0000i 0.5000 + 0.5000i −1.0000 + 1.0000i 0.2500 − 0.2000i 2.0000 + 1.0000i

−0.5000 + 0.5000i 0 + 0.5000i 2.0000 + 2.0000i −1.0000 − 0.5000i 0.2500 + 1.0000i

1.0000 + 1.0000i −2.0000 + 2.0000i 0 + 1.0000i 1.0000 + 1.0000i −2.0000 + 0.5000i

−0.2500 − 0.2000i 1.0000 − 0.5000i −1.0000 + 1.0000i 0 − 1.0000i 1.0000 − 1.0000i

−2.0000 + 1.0000i −0.2500 + 1.0000i 2.0000 + 0.5000i −1.0000 − 1.0000i 0 − 4.0000i





















,

Obviously, X ∈ jHQ5×5. Let

ΦA = (A1, A2), ΦB = (B1, B2), ΦC = (C1, C2), ΦD = (D1, D2),
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ΦX = (X1, X2), ΦE = ΦAf(X)f(B) + ΦCf(X)f(D).

By using Matlab 7.7 and Algorithm 5.1, we obtain

rank

[

P1

P2

]

= 55,

[

S11 S12

ST
12 S22

]

e = 1.1249× 10−13.

According to Algorithm 5.1 (3), we can see the matrix equation AXB + CXD = E

has a unique j-Hermitian solution and a unique Hermitian solution with the least

norm XH ∈ HE , and we can get ‖XH −X‖ = 1.5131× 10−14.

Example 5.4. Suppose A,B,C,D are the same as in Example 5.3, X = X1 +

X2j ∈ kAQn×n and E = AXB + CXD, where

X1 =





















0 0.5189 + 0.5000i −2.0000 + 1.0000i −1.0000 − 0.2564i 0.2500 + 1.0000i

−0.5189 − 0.5000i 0 1.0000 + 2.0000i 2.0000 − 0.5000i −0.5000 + 1.0000i

2.0000 − 1.0000i −1.0000 − 2.0000i 0 0.5000 + 1.0000i 1.0000 + 0.5000i

1.0000 + 0.2564i −2.0000 + 0.5000i −0.5000 − 1.0000i 0 2.0000 − 1.0000i

−0.2500 − 1.0000i 0.5000 − 1.0000i −1.0000 − 0.5000i −2.0000 + 1.0000i 0





















,

X2 =





















0 + 0.4000i 0.5000 + 1.0000i −1.0000 + 0.2500i 0.2500 − 1.0000i 2.0000 + 0.5000i

−0.5000 + 1.0000i 0 + 2.0000i 2.0000 + 1.0000i −1.0000 − 0.5000i 0.2500 + 1.0000i

1.0000 + 0.2500i −2.0000 + 1.0000i 0 + 4.0000i 1.0000 − 2.0000i −2.0000 + 0.2500i

−0.2500 − 1.0000i 1.0000 − 0.5000i −1.0000 − 2.0000i 0 + 3.0000i 1.0000 − 1.0000i

−2.0000 + 0.5000i −0.2500 + 1.0000i 2.0000 + 0.2500i −1.0000 − 1.0000i 0 + 2.0000i





















.

Let

ΦA = (A1, A2), ΦB = (B1, B2), ΦC = (C1, C2), ΦD = (D1, D2),

ΦX = (X1, X2), ΦE = ΦAf(X)f(B) + ΦCf(X)f(D).

By using Matlab 7.7 and Algorithm 5.2, we obtain

rank

[

P1

P2

]

= 45,

[

S11 S12

ST
12 S22

]

e = 8.2499× 10−15.

According to Algorithm 5.2 (4), we can see the matrix equation AXB + CXD = E

has infinite k-anti-Hermitian solutions and a unique k-anti-Hermitian solution with

the least norm XA ∈ AE for Problem II and we can get ‖XA−X‖ = 1.4058×10−14.

Example 5.5. Suppose

A, B, C, D, X, ΦA, ΦB, ΦC , ΦD, ΦX
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are the same as in Example 5.4, ΦG = ones(8, 12) and let ΦE = ΦAf(X)f(B) +

ΦCf(X)f(D) + ΦG. By using Matlab 7.7 and Algorithm 5.2, we obtain

rank

[

P1

P2

]

= 45,

[

S11 S12

ST
12 S22

]

e = 9.5570.

According to Algorithm 5.2 (5), we can see the matrix equation AXB + CXD = E

has infinite least squares k-anti-Hermitian solutions and a unique least squares k-

anti-Hermitian solution with the least norm XA ∈ AL for Problem II and we can get

‖XA −X‖ = 0.1866. and XA = XA1 +XA2j, where

XA1 =




















0 0.5189 + 0.5000i −2.0000 + 1.0000i −1.0000 − 0.2564i 0.2500 + 1.0000i

−0.5189 − 0.5000i 0 1.0000 + 2.0000i 2.0000 − 0.5000i −0.5000 + 1.0000i

2.0000 − 1.0000i −1.0000 − 2.0000i 0 0.5000 + 1.0000i 1.0000 + 0.5000i

1.0000 + 0.2564i −2.0000 + 0.5000i −0.5000 − 1.0000i 0 2.0000 − 1.0000i

−0.2500 − 1.0000i 0.5000 − 1.0000i −1.0000 − 0.5000i −2.0000 + 1.0000i 0





















,

XA2 =



















0 + 0.3627i 0.5000 + 0.9627i −1.0000 + 0.2127i 0.2500 − 1.0373i 2.0000 + 0.4627i

−0.5000 + 0.9627i 0 + 1.9627i 2.0000 + 0.9627i −1.0000 − 0.5373i 0.2500 + 0.9627i

1.0000 + 0.2127i −2.0000 + 0.9627i 0 + 3.9627i 1.0000 − 2.0373i −2.0000 + 0.2127i

−0.2500 − 1.0373i 1.0000 − 0.5373i −1.0000 − 2.0373i 0 + 2.9627i 1.0000 − 1.0373i

−2.0000 + 0.4627i −0.2500 + 0.9627i 2.0000 + 0.2127i −1.0000 − 1.0373i 0 + 1.9627i



















.

In addition, the related numerical results are also verified and listed in Table 1

and Table 2, where

N(P1, P2) =

∥

∥

∥

∥

∥

∥

I −
[

P1

P2

][

P1

P2

]+

−
[

S11 S12

ST
12 S22

]

∥

∥

∥

∥

∥

∥

and

N(Q1, Q2) =

∥

∥

∥

∥

∥

∥

I −
[

Q1

Q2

][

Q1

Q2

]+

−
[

∆11 ∆12

∆T
12 ∆22

]

∥

∥

∥

∥

∥

∥

.

Table 1. Numerical results for Example 5.3.

||S11|| ||S12|| ||S22|| ‖H‖ ‖Z‖ N(P1, P2)

E5.3 8.2938 1.4272 174.4133 2.2601 9.1727 3.2778e− 014

Table 2. Numerical results for Example 5.4 and Example 5.5.

||∆11|| ||∆12|| ||∆22|| ‖H1‖ ‖Z1‖ N(Q1, Q2)

E5.4, E5.5 8.3695 1.3086 8.5747 1.7614 9.2480 3.6131e− 014
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Examples 5.3, 5.4, and 5.5 are used to show the feasibility of Algorithms 5.1 and 5.2.
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