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Abstract. In this note, the reverse order laws for {1, 3} and {1, 4}-generalized inverses of

matrices are considered. New necessary and sufficient conditions for (AB){1, 3} ⊆ B{1, 3} · A{1, 3}

and (AB){1, 4} ⊆ B{1, 4} ·A{1, 4} are presented.
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1. Results. Let A be a complex matrix. We denote by R(A), N (A), r(A) and

nul(A) the range, the null space, the rank, and the nullity of a matrix A, respectively.

By PM , we denote the orthogonal projection (P = P 2 = P ∗) on the subspace M .

The Moore–Penrose inverse of A ∈ Cn×m is the unique matrix A† ∈ Cm×n

satisfying the four Penrose equations in [10],

(1) AA†A = A, (2) A†AA† = A†, (3) (AA†)∗ = AA†, (4) (A†A)∗ = A†A.

It is well-known that each matrix A has its Moore–Penrose inverse.

For a subset K ⊆ {1, 2, 3, 4}, we say that B ∈ Cm×n is a K-inverse of A ∈ Cn×m

if B satisfies the Penrose equation (j) for each j ∈ K. We use AK for the collection

of all K-inverses of A, and AK for an unspecified element X ∈ AK.

The reverse order law for the Moore–Penrose inverse was first studied by Greville

[5] in the 1960’s, giving a necessary and sufficient condition for the reverse order law

(AB)† = B†A†,(1.1)

for matrices A and B. This was followed (see [4]) by further equivalent conditions

for (1.1). Sun and Wei [11] considered the reverse order law for the weighted Moore–
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Penrose inverses of two matrices. Hartwig [6] and Tian [13, 14] studied the reverse

order law for the Moore–Penrose inverse of the product of three or more matrices.

The next step was to consider the reverse order law for K-inverses, where K ⊆

{1, 2, 3, 4}. The cases K = {1, 3} and K = {1, 4} were considered by M. Wei and

Guo [16] who obtained the equivalent conditions for B{1, 3}A{1, 3} ⊆ (AB){1, 3},

(AB){1, 3} ⊆ B{1, 3}A{1, 3}, and (AB){1, 3} = B{1, 3}A{1, 3} by applying product

singular value decomposition (P-SVD) of matrices. They proved that for A ∈ Cm×n

and B ∈ Cn×p, (AB){1, 3} ⊆ B{1, 3}A{1, 3} if and only if

dim(R(Z14)) = dim(R(Z12, Z14))

and

0 ≤ min{p− r2,m− r1} ≤ n− r1 − r22 − r(Z14),

where Z12, Z14 and constants r1, r2 are described in [16, Theorem 1.1] for P-SVD of

matrices A and B.

Later, also in the settings of matrices, Takane et al. [12] discovered using other

techniques some new necessary and sufficient conditions for

B{1, 3}A{1, 3} ⊆ (AB){1, 3}.

Djordjević [3] considered necessary and sufficient conditions for B{1, 3}A{1, 3} ⊆

(AB){1, 3} in the case of bounded linear operators on Hilbert spaces. Cvetković-Ilić

and Harte [2] offered purely algebraic necessary and sufficient conditions for reverse

order lawB{1, 3}A{1, 3} ⊆ (AB){1, 3} for generalized inverses in C*-algebras, extend-

ing rank conditions for matrices and range conditions for Hilbert space operators. Liu

and Yang [7] derived some necessary and sufficient conditions for all three types of

reverse order laws using the method of maximal and minimal rank of matrix expres-

sions. They proved that for A ∈ C
m×n and B ∈ C

n×k, (AB){1, 3} ⊆ B{1, 3}A{1, 3}

if and only if

r(A∗AB,B) + r(A) = r(AB) + min{r(A∗, B),max{n+ r(A)−m,n+ r(B)− k}}.

As can be seen from the above, reverse order laws for generalized inverses have

been considered in quite a number of papers. However, only [7, 16] were dealing with

the particular one

(AB){1, 3} ⊆ B{1, 3} ·A{1, 3}.

In this note, using some techniques different than those of [7, 16], we give new

necessary and sufficient conditions for the inclusions:

(AB){1, 3} ⊆ B{1, 3} ·A{1, 3},
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(AB){1, 4} ⊆ B{1, 4} ·A{1, 4}.

It is well known that the sets of {1, 3} and {1, 4}-generalized inverses of A ∈ Cn×m

are described by

A{1, 3} = {A† + (I −A†A)Y : Y ∈ C
m×n}

and

A{1, 4} = {A† + Z(I −AA†) : Z ∈ C
m×n}.

In the following, we state some auxiliary lemmas.

Theorem 1.1. [1] Let A ∈ Cn×m, B ∈ Cp×k, and C ∈ Cn×k. Then the matrix

equation

AXB = C

is consistent if and only if, for some A(1) ∈ A{1} and B(1) ∈ B{1},

AA(1)CB(1)B = C

in which case the general solution is

X = A(1)CB(1) + Y −A(1)AY BB(1)

for arbitrary Y ∈ Cm×p.

Corollary 1.2. Let B ∈ Cp×k and C ∈ Cn×k. Then the matrix equation

XB = C

is consistent if and only if N (B) ⊆ N (C) or, equivalently, R(C∗) ⊆ R(B∗). In that

case, the general solution is given by

X = CB(1) + Y − Y BB(1)

for arbitrary Y ∈ Cn×p and some B(1) ∈ B{1}.

Proof. By Theorem 1.1, we see that the equationXB = C is consistent if and only

if CB(1)B = C, i.e., B∗(B∗)(1)C∗ = C∗. Since B∗(B∗)(1) is a projection, we have that

XB = C is consistent if and only if R(C∗) ⊆ R(B∗(B∗)(1)), i.e., N (B(1)B) ⊆ N (C).

Finally, by N (B(1)B) = N (B), we get that XB = C is consistent if and only if

N (B) ⊆ N (C).

Lemma 1.3. Let A ∈ Cn×m and let P ∈ Cm×m and Q ∈ Cn×n be orthogonal

projections. Then
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(i) (AP )† = P (AP )†,

(ii) (QA)† = (QA)†Q.

Proof. (i) It is easy to verify that P (AP )† is Moore–Penrose inverse of AP . The

proof for (ii) is similar.

Lemma 1.4. Let A ∈ Cn×m and B ∈ Cm×k. Set S = B†(I − A†A) and C =

I −A†A− S†S. Then C is an orthogonal projection and

C = (I −A†A)(I − S†S) = (I − S†S)(I −A†A) = PN (A)∩N (B∗).

Proof. Since SA† = 0 and AS∗ = 0, we get that S†SA†A = 0 and A†AS†S = 0,

respectively. Hence, C = (I−A†A)(I−S†S) = (I−S†S)(I−A†A). Now, it is evident

that C is an orthogonal projection. We need to prove that R(C) = N (A) ∩ N (B∗).

Let x ∈ N (A) ∩ N (B∗). Then Ax = 0 and B∗x = 0 which imply that Sx = 0,

i.e., Cx = x. So x ∈ R(C). On the other hand, if we suppose that x ∈ R(C), we

get that x = Cx, i.e., x = (I − A†A)(I − S†S)x = (I − S†S)(I − A†A)x. Clearly,

Ax = A(I − A†A)(I − S†S)x = 0. Also, B†x = Sx + B†A†Ax = Sx = SCx = 0.

Hence, B∗x = 0, so x ∈ N (A) ∩ N (B∗). We conclude that C = PN (A)∩N (B∗).

Lemma 1.5. For A ∈ C
n×m and B ∈ C

m×k, let S = B†(I − A†A). Then the

following conditions are equivalent:

(i) (I − SS†)((AB)† −B†A†) = 0,

(ii)
(

I − SS†
)(

(AB)†A−B†A†A
)

= 0,

(iii) (I − SS†)((AB)†A−B†) = 0.

Proof. (i) ⇒ (ii) : Multiplying (i) from right by A, we get (ii).

(ii) ⇒ (i) : Multiplying (ii) from right by A† and using the fact that (AB)†AA†

= (AA†AB)†AA† = (AB)†, which holds by Lemma 1.3, we get that (i) holds.

(i) ⇒ (iii) : Suppose that (i) holds, i.e., (I−SS†)(AB)† = (I−SS†)B†A†. Then

(I − SS†)((AB)†A−B†) = (I − SS†)(B†A†A−B†)

= (I − SS†)(−S) = 0.

(iii) ⇒ (i) : Multiplying (iii) from right by A† and using the fact that (AB)†AA†

= (AB)†, we get that (i) holds.

Lemma 1.6. Let A ∈ Cn×m, B ∈ Cm×k, T ∈ Cm×n, and Z ∈ Ck×n. Set

S = B†(I − A†A), C = I −A†A − S†S, D = (AB)† − B†A† and E = A† + S†
(

D +

(B†B − (AB)†AB)Z
)

+ CT . If (I − SS†)D = 0, then

N (E) = N (A∗) ∩ N ((B†B − (AB)†AB)Z) ∩ N (CT ).(1.2)
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Proof. Denote the right side of (1.2) by F . Suppose that x ∈ N (E). Then

(

A† + S†
(

D + (B†B − (AB)†AB)Z
)

+ CT
)

x = 0.(1.3)

Multiplying (1.3) from the left side by A†A, we get A†x = 0, i.e., x ∈ N (A∗), since

AS∗ = AS† = 0 and AC = 0. Similarly, multiplying (1.3) by I − A†A from the left

side, we get
(

S†
(

D + (B†B − (AB)†AB)Z
)

+ CT
)

x = 0.(1.4)

Since (I − SS†)D = 0, multiplying (1.4) from the left by S gives

(

D + (B†B − (AB)†AB)Z
)

x = 0,(1.5)

by Lemma 1.4 and Lemma 1.5. We already proved that A†x = 0. Hence, by Lemma

1.3, it follows that Dx = 0. Now, from (1.5), we get (B†B − (AB)†AB)Zx = 0. By

(1.4), it follows that CTx = 0, so x ∈ F .

On the other hand, if x ∈ F , then x ∈ N (A∗), so A†x = 0 which implies that

Dx = 0. Also, x ∈ N ((B†B−(AB)†AB)Z)∩N (CT ). Hence, (B†B−(AB)†AB)Zx =

CTx = 0, which implies x ∈ N (E).

We now state the main result of our paper.

Theorem 1.7. Let A ∈ C
n×m and B ∈ C

m×k. Then the following conditions

are equivalent:

(i) (AB){1, 3} ⊆ B{1, 3} · A{1, 3},

(ii) (I − SS†)((AB)† −B†A†) = 0 and r(C) ≥ min{n− r(A), k − r(B)},

where S = B†(I −A†A) and C = I −A†A− S†S.

Proof. We first remark that by Lemma 1.4, we have that C is an orthogonal

projection and

C = (I −A†A)(I − S†S) = (I − S†S)(I −A†A) = PN (A)∩N (B∗).

(ii) ⇒ (i) : Suppose that (ii) holds. We must prove that for arbitrary (AB)(1,3)

there exist A(1,3) and B(1,3) such that (AB)(1,3) = B(1,3) · A(1,3). Thus, given any

Z ∈ Ck×n, we must show that there exist X ∈ Cm×n and Y ∈ Ck×m such that

(AB)† +
(

I − (AB)†(AB)
)

Z

=
(

B† + (I −B†B)Y
)(

A† + (I −A†A)X
)

.
(1.6)
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Multiplying (1.6) from left first by B†B and then by (I−B†B) and using Lemma

1.3, we get that (1.6) implies the following:

(AB)† +
(

B†B − (AB)†(AB)
)

Z = B†A† +B†(I −A†A)X,(1.7)
(

I −B†B
)

Z = (I −B†B)Y (A† + (I −A†A)X).(1.8)

If we sum (1.7) and (1.8), we get (1.6). Hence, (1.6) is equivalent to (1.7) and (1.8).

Now, we have to prove that for arbitrary Z ∈ Ck×n, there exist X ∈ Cm×n and

Y ∈ Ck×m such that (1.7) and (1.8) hold. Since Lemma 1.5 implies that

(I − SS†)((AB)† −B†A†) = 0

is equivalent to

(I − SS†)(B† − (AB)†A) = 0,

we have that for each Z ∈ C
k×n

(I − SS†)
(

(AB)† − B†A† +
(

B†B − (AB)†(AB)
)

Z
)

= 0,

so equation (1.7) is solvable for each Z ∈ Ck×n. The set of solutions is described by

SZ = {S†
(

(AB)† −B†A† + (B†B − (AB)†AB)Z
)

+ (I − S†S)T : T ∈ C
m×n}.(1.9)

Now, substituting X given by (1.9) in equation (1.8), we get

(I −B†B)Z = (I −B†B)Y
(

A† + S†
(

D + (B†B − (AB)†AB)Z
)

+ CT
)

,(1.10)

whereD = (AB)†−B†A†. Thus, to prove (i), it is sufficient to prove that for arbitrary

Z, there exist matrices P and T such that

(I −B†B)Z = P
(

A† + S†
(

D + (B†B − (AB)†AB)Z
)

+ CT
)

,(1.11)

which is, by Corollary 1.2, equivalent to the fact that for arbitrary Z, there exists a

matrix T such that

N (A† + S†
(

D + (B†B − (AB)†AB)Z
)

+ CT ) ⊆ N ((I −B†B)Z).(1.12)

Put E = A† + S†
(

D + (B†B − (AB)†AB)Z + CT
)

. By Lemma 1.6, we have

N (E) = N (A∗) ∩ N ((B†B − (AB)†AB)Z) ∩ N (CT ).

Hence, (1.12) is equivalent to

N (A∗) ∩ N ((B†B − (AB)†AB)Z) ∩ N (CT ) ⊆ N ((I −B†B)Z).(1.13)
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If x ∈ N (A∗)∩N ((B†B− (AB)†AB)Z)∩N (CT ), then B†BZx = (AB)†ABZx,

so we conclude that for such x, the condition x ∈ N ((I −B†B)Z) is equivalent to the

condition x ∈ N ((I − (AB)†AB)Z). Now, we get that (1.13) like (1.12) is equivalent

to

N (A∗) ∩ N ((I − (AB)†AB)B†BZ) ∩ N (CT ) ⊆ N ((I − (AB)†AB)Z).(1.14)

Set Q = N ((I − (AB)†AB)Z) and Q1 = N ((I − (AB)†AB)B†BZ). Then Q = {x ∈

Cn : Zx ∈ R(B∗A∗)}, Q1 = {x ∈ Cn : Zx ∈ N (B) ⊕ R(B∗A∗)}, and Q ⊆ Q1. So,

to prove (i), we must show that for every matrix Z, there exists a linear mapping

(matrix) T which maps the set

C1 = {x ∈ C
n : Zx ∈ N (B) ⊕R(B∗A∗), PN (B)Zx 6= 0} ∩ N (A∗)

to the set

C2 = {y ∈ C
m : PR(C)y 6= 0}.(1.15)

In the case when r(C) ≥ n−r(A), there exists a linear T which maps the subspace

N (A∗) injectively into R(C), thus mapping C1 to C2. Now suppose that r(C) ≥

k − r(B).

Put Q′
1 = Q1 ∩ N (A∗) and Q′ = Q ∩ N (A∗). Also, denote by Z0 the restriction

of Z to the subspace Q′
1. Let T0 : Q′

1 → R(C) be the mapping defined by T0 =

M ◦ PN (B) ◦ Z0, for some injective linear mapping M : N (B) → R(C) and let T be

any linear extension of T0 to the space Cn. Then T (C1) = T0(C1) ⊆ T0(Q
′
1) ⊆ R(C).

Let us show that Tx 6= 0 on C1 = Q′
1 \ Q′. If Tx = 0 for some x ∈ Q′

1 \ Q′, it

follows that T0(x) = 0, so (PN (B) ◦ Z0)(x) = 0 which implies that x ∈ Q′ which is

a contradiction. Hence, T (C1) ⊆ R(C) and T (x) 6= 0 for every x ∈ C1 and hence,

T (C1) ⊆ C2.

(i) ⇒ (ii) : If (i) holds, then for arbitrary Z ∈ Ck×n, there exist X ∈ Cm×n and

Y ∈ Ck×m such that (1.6) holds.

Multiplying (1.6) by B†B from the left, we get that

(AB)† +
(

B†B − (AB)†(AB)
)

Z = B†A† +B†(I −A†A)X.

For Z = 0, we get that the equation

(AB)† −B†A† = B†(I −A†A)X

is solvable. Hence,

R((AB)† −B†A†) ⊆ R(S)
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which is equivalent to

(I − SS†)((AB)† −B†A†) = 0.(1.16)

Using the previous part of the proof, we get that if (1.16) and (i) hold, then

for arbitrary Z, there exists a matrix T which maps the set C1 = {x ∈ Cn : Zx ∈

N (B) ⊕R(B∗A∗), PN (B)Zx 6= 0} ∩ N (A∗) to the set C2 = {y ∈ C
m : PR(C)y 6= 0}.

We distinguish two cases:

1◦ If dim(N (A∗)) ≤ dim(N (B)), then there exists Z such that C1 = N (A∗)\{0}.

It is now easy to see that there exists T which maps C1 into the set C2 defined by

(1.15) if and only if dimN (A∗) ≤ dim(R(C)).

2◦ Suppose now dim(N (A∗)) > dim(N (B)). Pick a subspace K of N (A∗) of

dimension nul(B), a linear Z : Ck → Cn mapping K isomorphically to N (B) and

let T : Ck → Cm be as supposed to exist. Clearly, we have K \ {0} ⊆ C1. Thus,

(PR(C) ◦T )x 6= 0 for x ∈ K \ {0}, i.e., PR(C) ◦ T maps injectively K into R(C). This

proves dim(N (B)) = dimK ≤ dim(R(C)).

Remark 1.8.

(1) The first condition from Theorem 1.7 (ii):

(I − SS†)((AB)† −B†A†) = 0

has a few equivalent forms which are given in Lemma 1.5. Beside these forms

it is equivalent to:

(I − SS†)((AB)†AB −B†B) = 0.

(2) The second condition from Theorem 1.7 (ii):

r(C) ≥ min{n− r(A), k − r(B)},

can be written as

r(C) ≥ min{nul(A∗), nul(B)}.

(3) Since C = PN (A)∩N (B∗), we have that r(C) = dim(N (A) ∩ N (B∗)).

The proof of the part (i) ⇒ (ii) of Theorem 1.7 yields the following:

Corollary 1.9. Let A ∈ Cn×m and B ∈ Cm×k. Then the following conditions

are equivalent:

(i∗) (AB){1, 3} ⊆ B{1, 3} · A{1, 3},
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(ii∗) (I − SS†)((AB)† − B†A†) = 0, and at least one of the two conditions

below holds:

(a) r(C) ≥ k − r(B), k − r(B) < n− r(A),

(b) r(C) ≥ n− r(A), k − r(B) ≥ n− r(A),

where S = B†(I −A†A) and C = I −A†A− S†S.

Proof. (ii∗) ⇒ (i∗) : If any of the conditions (a) and (b) holds, then we have that

r(C) ≥ min{n− r(A), k − r(B)}, so the condition (ii) from Theorem 1.7 is satisfied,

which implies (i∗).

(i∗) ⇒ (ii∗) : If (i∗) holds, then, by Theorem 1.7, we have that (I−SS†)((AB)†−

B†A†) = 0. Using the part (ii) ⇒ (i) of the proof of Theorem 1.7, we get that for

arbitrary Z, there exists a matrix T which maps the set C1 = {x ∈ Cn : Zx ∈

N (B)⊕R(B∗A∗), PN (B)Zx 6= 0}∩N (A∗) into the set C2 = {y ∈ Cm : PR(C)y 6= 0}.

Now, as in the proof of that theorem we distinguish two cases:

a) Suppose that dim(N (A∗)) > dim(N (B)), i.e., k − r(B) < n − r(A). Pick

a subspace K of N (A∗) of dimension nul(B), a linear Z : Ck → Cn mapping K

isomorphically to N (B) and let T : Ck → Cm be as supposed to exist. Clearly,

we have K \ {0} ⊆ C1. Thus, (PR(C) ◦ T )x 6= 0 for x ∈ K \ {0}, i.e., PR(C) ◦ T

maps injectively K into R(C). This proves dim(N (B)) = dimK ≤ dim(R(C)), i.e.,

r(C) ≥ k − r(B).

b) If dim(N (A∗)) ≤ dim(N (B)), i.e., k − r(B) ≥ n − r(A), then there exists Z

such that C1 = N (A∗) \ {0}. Hence, the existence of mapping T which maps C1 to

the set C2 is equivalent to dimN (A∗) ≤ dim(R(C)), i.e., r(C) ≥ n− r(A).

Now, we conclude that (ii∗) holds.

Corollary 1.10. Let A ∈ Cn×m and B ∈ Cm×k. If m < n and m < k, then

(AB){1, 3} ⊆ B{1, 3} ·A{1, 3},

cannot be satisfied.

Proof. Since r(C) = dim(N (A) ∩ N (B∗)), we have that r(C) ≤ m − r(A) and

r(C) ≤ m − r(B). If m < n and m < k, then neither of the conditions (a) and (b)

from Corollary 1.9 can be satisfied.

The case K = {1, 4} is treated completely analogously and the corresponding

result follows by taking adjoints, or by reversal of products:

Theorem 1.11. Let A ∈ Cn×m and B ∈ Cm×k. Then the following conditions

are equivalent:
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(i′) (AB){1, 4} ⊆ B{1, 4} · A{1, 4},

(ii′) ((AB)† −B†A†)(I − V †V ) = 0 and r(D) ≥ min{n− r(A), k − r(B)},

where V = (I −BB†)A† and D = I −BB† − V V †.

Corollary 1.12. Let A ∈ Cn×m and B ∈ Cm×k. Then the following conditions

are equivalent:

(i′′) (AB){1, 4} ⊆ B{1, 4} · A{1, 4},

(ii′′) ((AB)† − B†A†)(I − V †V ) = 0 and at least one of the two conditions

below holds:

(a′) r(D) ≥ n− r(A), n− r(A) < k − r(B)

(b′) r(D) ≥ k − r(B), n− r(A) ≥ k − r(B),

where V = (I −BB†)A† and D = I −BB† − V V †.

Corollary 1.13. Let A ∈ Cn×m and B ∈ Cm×k. If m < n and m < k, then

(AB){1, 4} ⊆ B{1, 4} · A{1, 4}

cannot be satisfied.

It is interesting that in Theorem 1.7 and Theorem 1.11, the matrices C and D are

equal. Furthermore, C = D = PN (A)∩N (B∗) and r(C) = r(D) = dim(N (A)∩N (B∗)).

Also, the second condition from (ii) of Theorem 1.7 and the second condition of (ii′)

of Theorem 1.11 are exactly the same. So, we have the following result.

Theorem 1.14. Let A ∈ Cn×m and B ∈ Cm×k. Then the following conditions

are equivalent:

(i) (AB){1, 3} ⊆ B{1, 3} · A{1, 3}, (AB){1, 4} ⊆ B{1, 4} ·A{1, 4},

(ii) (I − SS†)((AB)† −B†A†) = 0, ((AB)† −B†A†)(I − V †V ) = 0, and

r(C) ≥ min{n− r(A), k − r(B)},

where S = B†(I −A†A), V = (I −BB†)A† and C = I −A†A− S†S.

2. Numerical examples. The following examples illustrate application of the

presented results.

Example 2.1. Let

A =





0 0 1 0

0 1 111 0

10 −10 −4 −4



 and B =









1 1 1

1 1 1

1 −1 1

−1 −1 −1









.
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We have that r(A) = 3, r(B) = 2, and r(C) = 0. Using the program Mathematica,

we can easily check that

(I − SS†)((AB)† −B†A†) 6= 0,

while

((AB)† −B†A†)(I − V †V ) = 0, r(C) ≥ n− r(A) and k − r(B) ≥ n− r(A).

Hence, (AB){1, 3} ⊆ B{1, 3} · A{1, 3} is not satisfied while (AB){1, 4} ⊆ B{1, 4} ·

A{1, 4}.

Example 2.2. Let

A =





5 5 5 5 5 6

5 1 111 0 2 3

1111 23450 −4 −4 3 2



 and B =



















1 1543 1

1 1234 213

1 −1 1

−1 −1 −1

1 2 3

1 2 3



















.

We have that r(A) = r(B) = 3 and r(C) = 0. Furthermore, all the conditions in

Theorem 1.14 are satisfied and hence,

(AB){1, 3} ⊆ B{1, 3} · A{1, 3} and (AB){1, 4} ⊆ B{1, 4} · A{1, 4}.
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[8] G. Marsaglia and G.P.H. Styan. When does rank(A + B) = rank(A) + rank(B)? Canad.

Math. Bull., 15(3):451–452, 1972.

[9] G. Marsaglia and G.P.H. Styan. Equalities and inequalities for ranks of matrices. Linear

Multilinear Algebra, 2:269–292, 1974.

[10] R. Penrose. A generalized inverse for matrices. Math. Proc. Cambridge Philos. Soc., 51:406–

413, 1955.

[11] W. Sun and Y. Wei. Inverse order rule for weighted generalized inverse. SIAM J. Matrix Anal.

Appl., 19:772–775, 1998.

[12] Y. Takane, Y. Tian, and H. Yanai. On reverse-order laws for least-squares g-inverses and

minimum norm g-inverses of a matrix product. Aequationes Math., 73:56–70, 2007.

[13] Y. Tian. The Moore–Penrose inverse of a triple matrix product. Math. Practice Theory,

1:64-70, 1992.

[14] Y. Tian. Reverse order laws for the generalized inverses of multiple matrix products. Linear

Algebra Appl., 211:85–100, 1994.

[15] M. Wang, M. Wei, and Z. Jia. Mixed-type reverse order law of (AB)(1,3) . Linear Algebra

Appl., 430:1691–1699, 2009.

[16] M. Wei and W. Guo. Reverse order laws for least squares g-inverses and minimum norm

g-inverses of products of two matrices. Linear Algebra Appl., 342:117–132, 2002.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 231-242, February 2012


