NEW CONDITIONS FOR THE REVERSE ORDER LAWS FOR $\{1,3\}$ AND $\{1,4\}$-GENERALIZED INVERSES*

DRAGANA S. CVETKOVIĆ-ILIĆ ${ }^{\dagger}$

Abstract

In this note, the reverse order laws for $\{1,3\}$ and $\{1,4\}$-generalized inverses of matrices are considered. New necessary and sufficient conditions for $(A B)\{1,3\} \subseteq B\{1,3\} \cdot A\{1,3\}$ and $(A B)\{1,4\} \subseteq B\{1,4\} \cdot A\{1,4\}$ are presented.

Key words. Generalized inverses, $\{1,3\}$-Generalized inverses, $\{1,4\}$-Generalized inverses, MPinverse, Reverse order law.

AMS subject classifications. 15A09.

1. Results. Let A be a complex matrix. We denote by $\mathcal{R}(A), \mathcal{N}(A), \mathrm{r}(A)$ and $\operatorname{nul}(A)$ the range, the null space, the rank, and the nullity of a matrix A, respectively. By P_{M}, we denote the orthogonal projection $\left(P=P^{2}=P^{*}\right)$ on the subspace M.

The Moore-Penrose inverse of $A \in \mathbb{C}^{n \times m}$ is the unique matrix $A^{\dagger} \in \mathbb{C}^{m \times n}$ satisfying the four Penrose equations in [10],
(1) $A A^{\dagger} A=A$,
(2) $A^{\dagger} A A^{\dagger}=A^{\dagger}$,
(3) $\left(A A^{\dagger}\right)^{*}=A A^{\dagger}$,
(4) $\left(A^{\dagger} A\right)^{*}=A^{\dagger} A$.

It is well-known that each matrix A has its Moore-Penrose inverse.
For a subset $K \subseteq\{1,2,3,4\}$, we say that $B \in \mathbb{C}^{m \times n}$ is a K-inverse of $A \in \mathbb{C}^{n \times m}$ if B satisfies the Penrose equation (j) for each $j \in K$. We use $A K$ for the collection of all K-inverses of A, and A^{K} for an unspecified element $X \in A K$.

The reverse order law for the Moore-Penrose inverse was first studied by Greville [5] in the 1960's, giving a necessary and sufficient condition for the reverse order law

$$
\begin{equation*}
(A B)^{\dagger}=B^{\dagger} A^{\dagger} \tag{1.1}
\end{equation*}
$$

for matrices A and B. This was followed (see [4]) by further equivalent conditions for (1.1). Sun and Wei [11 considered the reverse order law for the weighted Moore-

[^0]Penrose inverses of two matrices. Hartwig [6] and Tian [13, 14] studied the reverse order law for the Moore-Penrose inverse of the product of three or more matrices.

The next step was to consider the reverse order law for K-inverses, where $K \subseteq$ $\{1,2,3,4\}$. The cases $K=\{1,3\}$ and $K=\{1,4\}$ were considered by M. Wei and Guo [16] who obtained the equivalent conditions for $B\{1,3\} A\{1,3\} \subseteq(A B)\{1,3\}$, $(A B)\{1,3\} \subseteq B\{1,3\} A\{1,3\}$, and $(A B)\{1,3\}=B\{1,3\} A\{1,3\}$ by applying product singular value decomposition (P-SVD) of matrices. They proved that for $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times p},(A B)\{1,3\} \subseteq B\{1,3\} A\{1,3\}$ if and only if

$$
\operatorname{dim}\left(R\left(Z_{14}\right)\right)=\operatorname{dim}\left(R\left(Z_{12}, Z_{14}\right)\right)
$$

and

$$
0 \leq \min \left\{p-r_{2}, m-r_{1}\right\} \leq n-r_{1}-r_{2}^{2}-\mathrm{r}\left(Z_{14}\right),
$$

where Z_{12}, Z_{14} and constants r_{1}, r_{2} are described in [16. Theorem 1.1] for P-SVD of matrices A and B.

Later, also in the settings of matrices, Takane et al. 12 discovered using other techniques some new necessary and sufficient conditions for

$$
B\{1,3\} A\{1,3\} \subseteq(A B)\{1,3\}
$$

Djordjević [3] considered necessary and sufficient conditions for $B\{1,3\} A\{1,3\} \subseteq$ $(A B)\{1,3\}$ in the case of bounded linear operators on Hilbert spaces. Cvetković-Ilić and Harte [2] offered purely algebraic necessary and sufficient conditions for reverse order law $B\{1,3\} A\{1,3\} \subseteq(A B)\{1,3\}$ for generalized inverses in C^{*}-algebras, extending rank conditions for matrices and range conditions for Hilbert space operators. Liu and Yang [7] derived some necessary and sufficient conditions for all three types of reverse order laws using the method of maximal and minimal rank of matrix expressions. They proved that for $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times k},(A B)\{1,3\} \subseteq B\{1,3\} A\{1,3\}$ if and only if

$$
\mathrm{r}\left(A^{*} A B, B\right)+\mathrm{r}(A)=\mathrm{r}(A B)+\min \left\{\mathrm{r}\left(A^{*}, B\right), \max \{n+\mathrm{r}(A)-m, n+\mathrm{r}(B)-k\}\right\} .
$$

As can be seen from the above, reverse order laws for generalized inverses have been considered in quite a number of papers. However, only [7, 16] were dealing with the particular one

$$
(A B)\{1,3\} \subseteq B\{1,3\} \cdot A\{1,3\}
$$

In this note, using some techniques different than those of [7, 16], we give new necessary and sufficient conditions for the inclusions:

$$
(A B)\{1,3\} \subseteq B\{1,3\} \cdot A\{1,3\}
$$

$$
(A B)\{1,4\} \subseteq B\{1,4\} \cdot A\{1,4\}
$$

It is well known that the sets of $\{1,3\}$ and $\{1,4\}$-generalized inverses of $A \in \mathbb{C}^{n \times m}$ are described by

$$
A\{1,3\}=\left\{A^{\dagger}+\left(I-A^{\dagger} A\right) Y: Y \in \mathbb{C}^{m \times n}\right\}
$$

and

$$
A\{1,4\}=\left\{A^{\dagger}+Z\left(I-A A^{\dagger}\right): Z \in \mathbb{C}^{m \times n}\right\}
$$

In the following, we state some auxiliary lemmas.
Theorem 1.1. [1] Let $A \in \mathbb{C}^{n \times m}, B \in \mathbb{C}^{p \times k}$, and $C \in \mathbb{C}^{n \times k}$. Then the matrix equation

$$
A X B=C
$$

is consistent if and only if, for some $A^{(1)} \in A\{1\}$ and $B^{(1)} \in B\{1\}$,

$$
A A^{(1)} C B^{(1)} B=C
$$

in which case the general solution is

$$
X=A^{(1)} C B^{(1)}+Y-A^{(1)} A Y B B^{(1)}
$$

for arbitrary $Y \in \mathbb{C}^{m \times p}$.
Corollary 1.2. Let $B \in \mathbb{C}^{p \times k}$ and $C \in \mathbb{C}^{n \times k}$. Then the matrix equation

$$
X B=C
$$

is consistent if and only if $\mathcal{N}(B) \subseteq \mathcal{N}(C)$ or, equivalently, $\mathcal{R}\left(C^{*}\right) \subseteq \mathcal{R}\left(B^{*}\right)$. In that case, the general solution is given by

$$
X=C B^{(1)}+Y-Y B B^{(1)}
$$

for arbitrary $Y \in \mathbb{C}^{n \times p}$ and some $B^{(1)} \in B\{1\}$.
Proof. By Theorem 1.1 we see that the equation $X B=C$ is consistent if and only if $C B^{(1)} B=C$, i.e., $B^{*}\left(B^{*}\right)^{(1)} C^{*}=C^{*}$. Since $B^{*}\left(B^{*}\right)^{(1)}$ is a projection, we have that $X B=C$ is consistent if and only if $\mathcal{R}\left(C^{*}\right) \subseteq \mathcal{R}\left(B^{*}\left(B^{*}\right)^{(1)}\right)$, i.e., $\mathcal{N}\left(B^{(1)} B\right) \subseteq \mathcal{N}(C)$. Finally, by $\mathcal{N}\left(B^{(1)} B\right)=\mathcal{N}(B)$, we get that $X B=C$ is consistent if and only if $\mathcal{N}(B) \subseteq \mathcal{N}(C)$.

Lemma 1.3. Let $A \in \mathbb{C}^{n \times m}$ and let $P \in \mathbb{C}^{m \times m}$ and $Q \in \mathbb{C}^{n \times n}$ be orthogonal projections. Then
(i) $(A P)^{\dagger}=P(A P)^{\dagger}$,
(ii) $(Q A)^{\dagger}=(Q A)^{\dagger} Q$.

Proof. (i) It is easy to verify that $P(A P)^{\dagger}$ is Moore-Penrose inverse of $A P$. The proof for (ii) is similar.

Lemma 1.4. Let $A \in \mathbb{C}^{n \times m}$ and $B \in \mathbb{C}^{m \times k}$. Set $S=B^{\dagger}\left(I-A^{\dagger} A\right)$ and $C=$ $I-A^{\dagger} A-S^{\dagger} S$. Then C is an orthogonal projection and

$$
C=\left(I-A^{\dagger} A\right)\left(I-S^{\dagger} S\right)=\left(I-S^{\dagger} S\right)\left(I-A^{\dagger} A\right)=P_{\mathcal{N}(A) \cap \mathcal{N}\left(B^{*}\right)}
$$

Proof. Since $S A^{\dagger}=0$ and $A S^{*}=0$, we get that $S^{\dagger} S A^{\dagger} A=0$ and $A^{\dagger} A S^{\dagger} S=0$, respectively. Hence, $C=\left(I-A^{\dagger} A\right)\left(I-S^{\dagger} S\right)=\left(I-S^{\dagger} S\right)\left(I-A^{\dagger} A\right)$. Now, it is evident that C is an orthogonal projection. We need to prove that $\mathcal{R}(C)=\mathcal{N}(A) \cap \mathcal{N}\left(B^{*}\right)$. Let $x \in \mathcal{N}(A) \cap \mathcal{N}\left(B^{*}\right)$. Then $A x=0$ and $B^{*} x=0$ which imply that $S x=0$, i.e., $C x=x$. So $x \in \mathcal{R}(C)$. On the other hand, if we suppose that $x \in \mathcal{R}(C)$, we get that $x=C x$, i.e., $x=\left(I-A^{\dagger} A\right)\left(I-S^{\dagger} S\right) x=\left(I-S^{\dagger} S\right)\left(I-A^{\dagger} A\right) x$. Clearly, $A x=A\left(I-A^{\dagger} A\right)\left(I-S^{\dagger} S\right) x=0$. Also, $B^{\dagger} x=S x+B^{\dagger} A^{\dagger} A x=S x=S C x=0$. Hence, $B^{*} x=0$, so $x \in \mathcal{N}(A) \cap \mathcal{N}\left(B^{*}\right)$. We conclude that $C=P_{\mathcal{N}(A) \cap \mathcal{N}\left(B^{*}\right)}$. $\mathbf{\square}$

Lemma 1.5. For $A \in \mathbb{C}^{n \times m}$ and $B \in \mathbb{C}^{m \times k}$, let $S=B^{\dagger}\left(I-A^{\dagger} A\right)$. Then the following conditions are equivalent:
(i) $\left(I-S S^{\dagger}\right)\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}\right)=0$,
(ii) $\left(I-S S^{\dagger}\right)\left((A B)^{\dagger} A-B^{\dagger} A^{\dagger} A\right)=0$,
(iii) $\left(I-S S^{\dagger}\right)\left((A B)^{\dagger} A-B^{\dagger}\right)=0$.

Proof. $(i) \Rightarrow(i i)$: Multiplying (i) from right by A, we get ($i i$).
(ii) $\Rightarrow\left(\right.$ i) : Multiplying (ii) from right by A^{\dagger} and using the fact that $(A B)^{\dagger} A A^{\dagger}$ $=\left(A A^{\dagger} A B\right)^{\dagger} A A^{\dagger}=(A B)^{\dagger}$, which holds by Lemma 1.3, we get that (i) holds.
$(i) \Rightarrow(i i i)$: Suppose that (i) holds, i.e., $\left(I-S S^{\dagger}\right)(A B)^{\dagger}=\left(I-S S^{\dagger}\right) B^{\dagger} A^{\dagger}$. Then

$$
\begin{aligned}
\left(I-S S^{\dagger}\right)\left((A B)^{\dagger} A-B^{\dagger}\right) & =\left(I-S S^{\dagger}\right)\left(B^{\dagger} A^{\dagger} A-B^{\dagger}\right) \\
& =\left(I-S S^{\dagger}\right)(-S)=0
\end{aligned}
$$

$($ iii $) \Rightarrow(i)$: Multiplying (iii) from right by A^{\dagger} and using the fact that $(A B)^{\dagger} A A^{\dagger}$ $=(A B)^{\dagger}$, we get that (i) holds.

Lemma 1.6. Let $A \in \mathbb{C}^{n \times m}, B \in \mathbb{C}^{m \times k}$, $T \in \mathbb{C}^{m \times n}$, and $Z \in \mathbb{C}^{k \times n}$. Set $S=B^{\dagger}\left(I-A^{\dagger} A\right), C=I-A^{\dagger} A-S^{\dagger} S, D=(A B)^{\dagger}-B^{\dagger} A^{\dagger}$ and $E=A^{\dagger}+S^{\dagger}(D+$ $\left.\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z\right)+C T$. If $\left(I-S S^{\dagger}\right) D=0$, then

$$
\begin{equation*}
\mathcal{N}(E)=\mathcal{N}\left(A^{*}\right) \cap \mathcal{N}\left(\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z\right) \cap \mathcal{N}(C T) \tag{1.2}
\end{equation*}
$$

Proof. Denote the right side of (1.2) by F. Suppose that $x \in \mathcal{N}(E)$. Then

$$
\begin{equation*}
\left(A^{\dagger}+S^{\dagger}\left(D+\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z\right)+C T\right) x=0 \tag{1.3}
\end{equation*}
$$

Multiplying (1.3) from the left side by $A^{\dagger} A$, we get $A^{\dagger} x=0$, i.e., $x \in \mathcal{N}\left(A^{*}\right)$, since $A S^{*}=A S^{\dagger}=0$ and $A C=0$. Similarly, multiplying (1.3) by $I-A^{\dagger} A$ from the left side, we get

$$
\begin{equation*}
\left(S^{\dagger}\left(D+\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z\right)+C T\right) x=0 \tag{1.4}
\end{equation*}
$$

Since $\left(I-S S^{\dagger}\right) D=0$, multiplying (1.4) from the left by S gives

$$
\begin{equation*}
\left(D+\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z\right) x=0 \tag{1.5}
\end{equation*}
$$

by Lemma 1.4 and Lemma 1.5. We already proved that $A^{\dagger} x=0$. Hence, by Lemma 1.3, it follows that $D x=0$. Now, from (1.5), we get $\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z x=0$. By (1.4), it follows that $C T x=0$, so $x \in F$.

On the other hand, if $x \in F$, then $x \in \mathcal{N}\left(A^{*}\right)$, so $A^{\dagger} x=0$ which implies that $D x=0$. Also, $x \in \mathcal{N}\left(\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z\right) \cap \mathcal{N}(C T)$. Hence, $\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z x=$ $C T x=0$, which implies $x \in \mathcal{N}(E)$.

We now state the main result of our paper.
Theorem 1.7. Let $A \in \mathbb{C}^{n \times m}$ and $B \in \mathbb{C}^{m \times k}$. Then the following conditions are equivalent:
(i) $(A B)\{1,3\} \subseteq B\{1,3\} \cdot A\{1,3\}$,
(ii) $\left(I-S S^{\dagger}\right)\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}\right)=0$ and $\mathrm{r}(C) \geq \min \{n-\mathrm{r}(A), k-\mathrm{r}(B)\}$,
where $S=B^{\dagger}\left(I-A^{\dagger} A\right)$ and $C=I-A^{\dagger} A-S^{\dagger} S$.
Proof. We first remark that by Lemma 1.4, we have that C is an orthogonal projection and

$$
C=\left(I-A^{\dagger} A\right)\left(I-S^{\dagger} S\right)=\left(I-S^{\dagger} S\right)\left(I-A^{\dagger} A\right)=P_{\mathcal{N}(A) \cap \mathcal{N}\left(B^{*}\right)}
$$

$(i i) \Rightarrow(i)$: Suppose that (ii) holds. We must prove that for arbitrary $(A B)^{(1,3)}$ there exist $A^{(1,3)}$ and $B^{(1,3)}$ such that $(A B)^{(1,3)}=B^{(1,3)} \cdot A^{(1,3)}$. Thus, given any $Z \in \mathbb{C}^{k \times n}$, we must show that there exist $X \in \mathbb{C}^{m \times n}$ and $Y \in \mathbb{C}^{k \times m}$ such that

$$
\begin{align*}
& (A B)^{\dagger}+\left(I-(A B)^{\dagger}(A B)\right) Z \\
& =\left(B^{\dagger}+\left(I-B^{\dagger} B\right) Y\right)\left(A^{\dagger}+\left(I-A^{\dagger} A\right) X\right) \tag{1.6}
\end{align*}
$$

Multiplying (1.6) from left first by $B^{\dagger} B$ and then by $\left(I-B^{\dagger} B\right)$ and using Lemma 1.3, we get that (1.6) implies the following:

$$
\begin{align*}
& (A B)^{\dagger}+\left(B^{\dagger} B-(A B)^{\dagger}(A B)\right) Z=B^{\dagger} A^{\dagger}+B^{\dagger}\left(I-A^{\dagger} A\right) X \tag{1.7}\\
& \left(I-B^{\dagger} B\right) Z=\left(I-B^{\dagger} B\right) Y\left(A^{\dagger}+\left(I-A^{\dagger} A\right) X\right)
\end{align*}
$$

If we sum (1.7) and (1.8), we get (1.6). Hence, (1.6) is equivalent to (1.7) and (1.8).
Now, we have to prove that for arbitrary $Z \in \mathbb{C}^{k \times n}$, there exist $X \in \mathbb{C}^{m \times n}$ and $Y \in \mathbb{C}^{k \times m}$ such that (1.7) and (1.8) hold. Since Lemma 1.5 implies that

$$
\left(I-S S^{\dagger}\right)\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}\right)=0
$$

is equivalent to

$$
\left(I-S S^{\dagger}\right)\left(B^{\dagger}-(A B)^{\dagger} A\right)=0
$$

we have that for each $Z \in \mathbb{C}^{k \times n}$

$$
\left(I-S S^{\dagger}\right)\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}+\left(B^{\dagger} B-(A B)^{\dagger}(A B)\right) Z\right)=0
$$

so equation (1.7) is solvable for each $Z \in \mathbb{C}^{k \times n}$. The set of solutions is described by (1.9) $S_{Z}=\left\{S^{\dagger}\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}+\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z\right)+\left(I-S^{\dagger} S\right) T: T \in \mathbb{C}^{m \times n}\right\}$.

Now, substituting X given by (1.9) in equation (1.8), we get
(1.10) $\left(I-B^{\dagger} B\right) Z=\left(I-B^{\dagger} B\right) Y\left(A^{\dagger}+S^{\dagger}\left(D+\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z\right)+C T\right)$,
where $D=(A B)^{\dagger}-B^{\dagger} A^{\dagger}$. Thus, to prove (i), it is sufficient to prove that for arbitrary Z, there exist matrices P and T such that

$$
\begin{equation*}
\left(I-B^{\dagger} B\right) Z=P\left(A^{\dagger}+S^{\dagger}\left(D+\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z\right)+C T\right) \tag{1.11}
\end{equation*}
$$

which is, by Corollary 1.2, equivalent to the fact that for arbitrary Z, there exists a matrix T such that

$$
\begin{equation*}
\mathcal{N}\left(A^{\dagger}+S^{\dagger}\left(D+\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z\right)+C T\right) \subseteq \mathcal{N}\left(\left(I-B^{\dagger} B\right) Z\right) \tag{1.12}
\end{equation*}
$$

Put $E=A^{\dagger}+S^{\dagger}\left(D+\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z+C T\right)$. By Lemma 1.6, we have

$$
\mathcal{N}(E)=\mathcal{N}\left(A^{*}\right) \cap \mathcal{N}\left(\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z\right) \cap \mathcal{N}(C T)
$$

Hence, (1.12) is equivalent to

$$
\begin{equation*}
\mathcal{N}\left(A^{*}\right) \cap \mathcal{N}\left(\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z\right) \cap \mathcal{N}(C T) \subseteq \mathcal{N}\left(\left(I-B^{\dagger} B\right) Z\right) \tag{1.13}
\end{equation*}
$$

If $x \in \mathcal{N}\left(A^{*}\right) \cap \mathcal{N}\left(\left(B^{\dagger} B-(A B)^{\dagger} A B\right) Z\right) \cap \mathcal{N}(C T)$, then $B^{\dagger} B Z x=(A B)^{\dagger} A B Z x$, so we conclude that for such x, the condition $x \in \mathcal{N}\left(\left(I-B^{\dagger} B\right) Z\right)$ is equivalent to the condition $x \in \mathcal{N}\left(\left(I-(A B)^{\dagger} A B\right) Z\right)$. Now, we get that (1.13) like (1.12) is equivalent to
(1.14) $\mathcal{N}\left(A^{*}\right) \cap \mathcal{N}\left(\left(I-(A B)^{\dagger} A B\right) B^{\dagger} B Z\right) \cap \mathcal{N}(C T) \subseteq \mathcal{N}\left(\left(I-(A B)^{\dagger} A B\right) Z\right)$.

Set $Q=\mathcal{N}\left(\left(I-(A B)^{\dagger} A B\right) Z\right)$ and $Q_{1}=\mathcal{N}\left(\left(I-(A B)^{\dagger} A B\right) B^{\dagger} B Z\right)$. Then $Q=\{x \in$ $\left.\mathbb{C}^{n}: Z x \in \mathcal{R}\left(B^{*} A^{*}\right)\right\}, Q_{1}=\left\{x \in \mathbb{C}^{n}: Z x \in \mathcal{N}(B) \oplus \mathcal{R}\left(B^{*} A^{*}\right)\right\}$, and $Q \subseteq Q_{1}$. So, to prove (i), we must show that for every matrix Z, there exists a linear mapping (matrix) T which maps the set

$$
C_{1}=\left\{x \in \mathbb{C}^{n}: Z x \in \mathcal{N}(B) \oplus \mathcal{R}\left(B^{*} A^{*}\right), P_{\mathcal{N}(B)} Z x \neq 0\right\} \cap \mathcal{N}\left(A^{*}\right)
$$

to the set

$$
\begin{equation*}
C_{2}=\left\{y \in \mathbb{C}^{m}: P_{\mathcal{R}(C)} y \neq 0\right\} \tag{1.15}
\end{equation*}
$$

In the case when $\mathrm{r}(C) \geq n-\mathrm{r}(A)$, there exists a linear T which maps the subspace $\mathcal{N}\left(A^{*}\right)$ injectively into $\mathcal{R}(C)$, thus mapping C_{1} to C_{2}. Now suppose that $\mathrm{r}(C) \geq$ $k-\mathrm{r}(B)$.

Put $Q_{1}^{\prime}=Q_{1} \cap \mathcal{N}\left(A^{*}\right)$ and $Q^{\prime}=Q \cap \mathcal{N}\left(A^{*}\right)$. Also, denote by Z_{0} the restriction of Z to the subspace Q_{1}^{\prime}. Let $T_{0}: Q_{1}^{\prime} \rightarrow \mathcal{R}(C)$ be the mapping defined by $T_{0}=$ $M \circ P_{\mathcal{N}(B)} \circ Z_{0}$, for some injective linear mapping $M: \mathcal{N}(B) \rightarrow \mathcal{R}(C)$ and let T be any linear extension of T_{0} to the space \mathbb{C}^{n}. Then $T\left(C_{1}\right)=T_{0}\left(C_{1}\right) \subseteq T_{0}\left(Q_{1}^{\prime}\right) \subseteq \mathcal{R}(C)$. Let us show that $T x \neq 0$ on $C_{1}=Q_{1}^{\prime} \backslash Q^{\prime}$. If $T x=0$ for some $x \in Q_{1}^{\prime} \backslash Q^{\prime}$, it follows that $T_{0}(x)=0$, so $\left(P_{\mathcal{N}(B)} \circ Z_{0}\right)(x)=0$ which implies that $x \in Q^{\prime}$ which is a contradiction. Hence, $T\left(C_{1}\right) \subseteq \mathcal{R}(C)$ and $T(x) \neq 0$ for every $x \in C_{1}$ and hence, $T\left(C_{1}\right) \subseteq C_{2}$.
$(i) \Rightarrow(i i):$ If (i) holds, then for arbitrary $Z \in \mathbb{C}^{k \times n}$, there exist $X \in \mathbb{C}^{m \times n}$ and $Y \in \mathbb{C}^{k \times m}$ such that (1.6) holds.

Multiplying (1.6) by $B^{\dagger} B$ from the left, we get that

$$
(A B)^{\dagger}+\left(B^{\dagger} B-(A B)^{\dagger}(A B)\right) Z=B^{\dagger} A^{\dagger}+B^{\dagger}\left(I-A^{\dagger} A\right) X
$$

For $Z=0$, we get that the equation

$$
(A B)^{\dagger}-B^{\dagger} A^{\dagger}=B^{\dagger}\left(I-A^{\dagger} A\right) X
$$

is solvable. Hence,

$$
\mathcal{R}\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}\right) \subseteq \mathcal{R}(S)
$$

which is equivalent to

$$
\begin{equation*}
\left(I-S S^{\dagger}\right)\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}\right)=0 \tag{1.16}
\end{equation*}
$$

Using the previous part of the proof, we get that if (1.16) and (i) hold, then for arbitrary Z, there exists a matrix T which maps the set $C_{1}=\left\{x \in \mathbb{C}^{n}: Z x \in\right.$ $\left.\mathcal{N}(B) \oplus \mathcal{R}\left(B^{*} A^{*}\right), P_{\mathcal{N}(B)} Z x \neq 0\right\} \cap \mathcal{N}\left(A^{*}\right)$ to the set $C_{2}=\left\{y \in \mathbb{C}^{m}: P_{\mathcal{R}(C)} y \neq 0\right\}$.

We distinguish two cases:
1° If $\operatorname{dim}\left(\mathcal{N}\left(A^{*}\right)\right) \leq \operatorname{dim}(\mathcal{N}(B))$, then there exists Z such that $C_{1}=\mathcal{N}\left(A^{*}\right) \backslash\{0\}$. It is now easy to see that there exists T which maps C_{1} into the set C_{2} defined by (1.15) if and only if $\operatorname{dim} \mathcal{N}\left(A^{*}\right) \leq \operatorname{dim}(\mathcal{R}(C))$.
2° Suppose now $\operatorname{dim}\left(\mathcal{N}\left(A^{*}\right)\right)>\operatorname{dim}(\mathcal{N}(B))$. Pick a subspace K of $\mathcal{N}\left(A^{*}\right)$ of dimension $\operatorname{nul}(B)$, a linear $Z: \mathbb{C}^{k} \rightarrow \mathbb{C}^{n}$ mapping K isomorphically to $\mathcal{N}(B)$ and let $T: \mathbb{C}^{k} \rightarrow \mathbb{C}^{m}$ be as supposed to exist. Clearly, we have $K \backslash\{0\} \subseteq C_{1}$. Thus, $\left(P_{\mathcal{R}(C)} \circ T\right) x \neq 0$ for $x \in K \backslash\{0\}$, i.e., $P_{\mathcal{R}(C)} \circ T$ maps injectively K into $\mathcal{R}(C)$. This proves $\operatorname{dim}(\mathcal{N}(B))=\operatorname{dim} K \leq \operatorname{dim}(\mathcal{R}(C))$.

REmark 1.8.

(1) The first condition from Theorem 1.7 (ii):

$$
\left(I-S S^{\dagger}\right)\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}\right)=0
$$

has a few equivalent forms which are given in Lemma 1.5. Beside these forms it is equivalent to:

$$
\left(I-S S^{\dagger}\right)\left((A B)^{\dagger} A B-B^{\dagger} B\right)=0
$$

(2) The second condition from Theorem 1.7 (ii):

$$
\mathrm{r}(C) \geq \min \{n-\mathrm{r}(A), k-\mathrm{r}(B)\}
$$

can be written as

$$
\mathrm{r}(C) \geq \min \left\{\operatorname{nul}\left(A^{*}\right), \operatorname{nul}(B)\right\}
$$

(3) Since $C=P_{\mathcal{N}(A) \cap \mathcal{N}\left(B^{*}\right)}$, we have that $\mathrm{r}(C)=\operatorname{dim}\left(\mathcal{N}(A) \cap \mathcal{N}\left(B^{*}\right)\right)$.

The proof of the part $(i) \Rightarrow(i i)$ of Theorem 1.7yields the following:
Corollary 1.9. Let $A \in \mathbb{C}^{n \times m}$ and $B \in \mathbb{C}^{m \times k}$. Then the following conditions are equivalent:

$$
\left(i^{*}\right)(A B)\{1,3\} \subseteq B\{1,3\} \cdot A\{1,3\}
$$

$\left(i i^{*}\right)\left(I-S S^{\dagger}\right)\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}\right)=0$, and at least one of the two conditions below holds:
(a) $\mathrm{r}(C) \geq k-\mathrm{r}(B), k-\mathrm{r}(B)<n-\mathrm{r}(A)$,
(b) $\mathrm{r}(C) \geq n-\mathrm{r}(A), k-\mathrm{r}(B) \geq n-\mathrm{r}(A)$,
where $S=B^{\dagger}\left(I-A^{\dagger} A\right)$ and $C=I-A^{\dagger} A-S^{\dagger} S$.
Proof. $\left(i i^{*}\right) \Rightarrow\left(i^{*}\right)$: If any of the conditions (a) and (b) holds, then we have that $\mathrm{r}(C) \geq \min \{n-\mathrm{r}(A), k-\mathrm{r}(B)\}$, so the condition (ii) from Theorem 1.7 is satisfied, which implies $\left(i^{*}\right)$.
$\left(i^{*}\right) \Rightarrow\left(i i^{*}\right):$ If $\left(i^{*}\right)$ holds, then, by Theorem 1.7, we have that $\left(I-S S^{\dagger}\right)\left((A B)^{\dagger}-\right.$ $\left.B^{\dagger} A^{\dagger}\right)=0$. Using the part $(i i) \Rightarrow(i)$ of the proof of Theorem 1.7 we get that for arbitrary Z, there exists a matrix T which maps the set $C_{1}=\left\{x \in \mathbb{C}^{n}: Z x \in\right.$ $\left.\mathcal{N}(B) \oplus \mathcal{R}\left(B^{*} A^{*}\right), P_{\mathcal{N}(B)} Z x \neq 0\right\} \cap \mathcal{N}\left(A^{*}\right)$ into the set $C_{2}=\left\{y \in \mathbb{C}^{m}: P_{\mathcal{R}(C)} y \neq 0\right\}$.

Now, as in the proof of that theorem we distinguish two cases:
a) Suppose that $\operatorname{dim}\left(\mathcal{N}\left(A^{*}\right)\right)>\operatorname{dim}(\mathcal{N}(B))$, i.e., $k-\mathrm{r}(B)<n-\mathrm{r}(A)$. Pick a subspace K of $\mathcal{N}\left(A^{*}\right)$ of dimension $\operatorname{nul}(B)$, a linear $Z: \mathbb{C}^{k} \rightarrow \mathbb{C}^{n}$ mapping K isomorphically to $\mathcal{N}(B)$ and let $T: \mathbb{C}^{k} \rightarrow \mathbb{C}^{m}$ be as supposed to exist. Clearly, we have $K \backslash\{0\} \subseteq C_{1}$. Thus, $\left(P_{\mathcal{R}(C)} \circ T\right) x \neq 0$ for $x \in K \backslash\{0\}$, i.e., $P_{\mathcal{R}(C)} \circ T$ maps injectively K into $\mathcal{R}(C)$. This proves $\operatorname{dim}(\mathcal{N}(B))=\operatorname{dim} K \leq \operatorname{dim}(\mathcal{R}(C))$, i.e., $\mathrm{r}(C) \geq k-\mathrm{r}(B)$.
b) If $\operatorname{dim}\left(\mathcal{N}\left(A^{*}\right)\right) \leq \operatorname{dim}(\mathcal{N}(B))$, i.e., $k-\mathrm{r}(B) \geq n-\mathrm{r}(A)$, then there exists Z such that $C_{1}=\mathcal{N}\left(A^{*}\right) \backslash\{0\}$. Hence, the existence of mapping T which maps C_{1} to the set C_{2} is equivalent to $\operatorname{dim} \mathcal{N}\left(A^{*}\right) \leq \operatorname{dim}(\mathcal{R}(C))$, i.e., $\mathrm{r}(C) \geq n-\mathrm{r}(A)$.

Now, we conclude that $\left(i i^{*}\right)$ holds.
Corollary 1.10. Let $A \in \mathbb{C}^{n \times m}$ and $B \in \mathbb{C}^{m \times k}$. If $m<n$ and $m<k$, then

$$
(A B)\{1,3\} \subseteq B\{1,3\} \cdot A\{1,3\}
$$

cannot be satisfied.
Proof. Since $\mathrm{r}(C)=\operatorname{dim}\left(\mathcal{N}(A) \cap \mathcal{N}\left(B^{*}\right)\right)$, we have that $\mathrm{r}(C) \leq m-\mathrm{r}(A)$ and $\mathrm{r}(C) \leq m-\mathrm{r}(B)$. If $m<n$ and $m<k$, then neither of the conditions (a) and (b) from Corollary 1.9 can be satisfied.

The case $K=\{1,4\}$ is treated completely analogously and the corresponding result follows by taking adjoints, or by reversal of products:

Theorem 1.11. Let $A \in \mathbb{C}^{n \times m}$ and $B \in \mathbb{C}^{m \times k}$. Then the following conditions are equivalent:
$\left(i^{\prime}\right)(A B)\{1,4\} \subseteq B\{1,4\} \cdot A\{1,4\}$,
$\left(i i^{\prime}\right)\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}\right)\left(I-V^{\dagger} V\right)=0$ and $\mathrm{r}(D) \geq \min \{n-\mathrm{r}(A), k-\mathrm{r}(B)\}$,
where $V=\left(I-B B^{\dagger}\right) A^{\dagger}$ and $D=I-B B^{\dagger}-V V^{\dagger}$.
Corollary 1.12. Let $A \in \mathbb{C}^{n \times m}$ and $B \in \mathbb{C}^{m \times k}$. Then the following conditions are equivalent:
$\left(i^{\prime \prime}\right)(A B)\{1,4\} \subseteq B\{1,4\} \cdot A\{1,4\}$,
$\left(i i^{\prime \prime}\right)\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}\right)\left(I-V^{\dagger} V\right)=0$ and at least one of the two conditions below holds:

$$
\begin{aligned}
& \left(a^{\prime}\right) \mathrm{r}(D) \geq n-\mathrm{r}(A), n-\mathrm{r}(A)<k-\mathrm{r}(B) \\
& \left(b^{\prime}\right) \mathrm{r}(D) \geq k-\mathrm{r}(B), n-\mathrm{r}(A) \geq k-\mathrm{r}(B),
\end{aligned}
$$

where $V=\left(I-B B^{\dagger}\right) A^{\dagger}$ and $D=I-B B^{\dagger}-V V^{\dagger}$.
Corollary 1.13. Let $A \in \mathbb{C}^{n \times m}$ and $B \in \mathbb{C}^{m \times k}$. If $m<n$ and $m<k$, then

$$
(A B)\{1,4\} \subseteq B\{1,4\} \cdot A\{1,4\}
$$

cannot be satisfied.
It is interesting that in Theorem 1.7 and Theorem 1.11 the matrices C and D are equal. Furthermore, $C=D=P_{\mathcal{N}(A) \cap \mathcal{N}\left(B^{*}\right)}$ and $\mathrm{r}(C)=\mathrm{r}(D)=\operatorname{dim}\left(\mathcal{N}(A) \cap \mathcal{N}\left(B^{*}\right)\right)$. Also, the second condition from (ii) of Theorem 1.7 and the second condition of $\left(i i^{\prime}\right)$ of Theorem 1.11 are exactly the same. So, we have the following result.

Theorem 1.14. Let $A \in \mathbb{C}^{n \times m}$ and $B \in \mathbb{C}^{m \times k}$. Then the following conditions are equivalent:
(i) $(A B)\{1,3\} \subseteq B\{1,3\} \cdot A\{1,3\},(A B)\{1,4\} \subseteq B\{1,4\} \cdot A\{1,4\}$,
(ii) $\left(I-S S^{\dagger}\right)\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}\right)=0$, $\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}\right)\left(I-V^{\dagger} V\right)=0$, and $\mathrm{r}(C) \geq \min \{n-\mathrm{r}(A), k-\mathrm{r}(B)\}$,
where $S=B^{\dagger}\left(I-A^{\dagger} A\right), V=\left(I-B B^{\dagger}\right) A^{\dagger}$ and $C=I-A^{\dagger} A-S^{\dagger} S$.
2. Numerical examples. The following examples illustrate application of the presented results.

Example 2.1. Let

$$
A=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & 111 & 0 \\
10 & -10 & -4 & -4
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & -1 & 1 \\
-1 & -1 & -1
\end{array}\right]
$$

We have that $\mathrm{r}(A)=3, \mathrm{r}(B)=2$, and $\mathrm{r}(C)=0$. Using the program Mathematica, we can easily check that

$$
\left(I-S S^{\dagger}\right)\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}\right) \neq 0
$$

while

$$
\left((A B)^{\dagger}-B^{\dagger} A^{\dagger}\right)\left(I-V^{\dagger} V\right)=0, \quad \mathrm{r}(C) \geq n-\mathrm{r}(A) \quad \text { and } \quad k-\mathrm{r}(B) \geq n-\mathrm{r}(A)
$$

Hence, $(A B)\{1,3\} \subseteq B\{1,3\} \cdot A\{1,3\}$ is not satisfied while $(A B)\{1,4\} \subseteq B\{1,4\}$. $A\{1,4\}$.

Example 2.2. Let

$$
A=\left[\begin{array}{cccccc}
5 & 5 & 5 & 5 & 5 & 6 \\
5 & 1 & 111 & 0 & 2 & 3 \\
1111 & 23450 & -4 & -4 & 3 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 1543 & 1 \\
1 & 1234 & 213 \\
1 & -1 & 1 \\
-1 & -1 & -1 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right]
$$

We have that $\mathrm{r}(A)=\mathrm{r}(B)=3$ and $\mathrm{r}(C)=0$. Furthermore, all the conditions in Theorem 1.14 are satisfied and hence,

$$
(A B)\{1,3\} \subseteq B\{1,3\} \cdot A\{1,3\} \quad \text { and } \quad(A B)\{1,4\} \subseteq B\{1,4\} \cdot A\{1,4\}
$$

Acknowledgement. The author would like to thank the anonymous referees for their very useful comments that helped to improve the presentation of this paper.

REFERENCES

[1] A. Ben-Israel and T.N.E. Greville. Generalized Inverses: Theory and Applications. WileyInterscience, New York, 1974.
[2] D.S. Cvetković-Ilić and R. Harte. Reverse order laws in C*-algebras. Linear Algebra Appl., 434(5):1388-1394, 2011.
[3] D.S. Djordjević. Further results on the reverse order law for generalized inverses. SIAM J. Matrix Anal. Appl., 29(4):1242-1246, 2007.
[4] D.S. Djordjević and N.C. Dinčić. Reverse order law for the Moore-Penrose inverse. J. Math. Anal. Appl., 361(1):252-261, 2010.
[5] T.N.E. Greville. Note on the generalized inverse of a matrix product. SIAM Rev., 8:518-521, 1966.
[6] R.E. Hartwig. The reverse order law revisited. Linear Algebra Appl., 76:241-246, 1986.
[7] D. Liu and H. Yang. Further results on the reverse order law for $\{1,3\}$-inverse and $\{1,4\}$-inverse of a matrix product. J. Inequal. Appl., Article ID 312767, 13 pages, 2010.
[8] G. Marsaglia and G.P.H. Styan. When does $\operatorname{rank}(A+B)=\operatorname{rank}(A)+\operatorname{rank}(B)$? Canad. Math. Bull., 15(3):451-452, 1972.
[9] G. Marsaglia and G.P.H. Styan. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra, 2:269-292, 1974.
[10] R. Penrose. A generalized inverse for matrices. Math. Proc. Cambridge Philos. Soc., 51:406413, 1955
[11] W. Sun and Y. Wei. Inverse order rule for weighted generalized inverse. SIAM J. Matrix Anal. Appl., 19:772-775, 1998.
[12] Y. Takane, Y. Tian, and H. Yanai. On reverse-order laws for least-squares g-inverses and minimum norm g-inverses of a matrix product. Aequationes Math., 73:56-70, 2007.
[13] Y. Tian. The Moore-Penrose inverse of a triple matrix product. Math. Practice Theory, 1:64-70, 1992.
[14] Y. Tian. Reverse order laws for the generalized inverses of multiple matrix products. Linear Algebra Appl., 211:85-100, 1994.
[15] M. Wang, M. Wei, and Z. Jia. Mixed-type reverse order law of $(A B)^{(1,3)}$. Linear Algebra Appl., 430:1691-1699, 2009.
[16] M. Wei and W. Guo. Reverse order laws for least squares g-inverses and minimum norm g-inverses of products of two matrices. Linear Algebra Appl., 342:117-132, 2002.

[^0]: *Received by the editors on June 20, 2011. Accepted for publication on December 26, 2011. Handling Editor: Oskar Maria Baksalary.
 ${ }^{\dagger}$ Department of Mathematics, University of Nis, Faculty of Science and Mathematics, 18000 Nis, Serbia (gagamaka@ptt.rs). Supported by grant no. 174007 of the Ministry of Science, Technology and Development, Republic of Serbia. Dragana Cvetković-Ilić is the recipient of UNESCO LOREAL National Scholarships Program "For Women in Science".

