

ON COPOSITIVE AND COMPLETELY POSITIVE CONES, AND Z-TRANSFORMATIONS*

M. SEETHARAMA GOWDA[†]

Abstract. A well-known result of Lyapunov on continuous linear systems asserts that a real square matrix A is positive stable if and only if for some symmetric positive definite matrix X, $AX + XA^T$ is also positive definite. A recent result of Moldovan-Gowda says that a **Z**-matrix A is positive stable if and only if for some symmetric strictly copositive matrix X, $AX + XA^T$ is also strictly copositive. In this paper, these results are unified/extended by replacing \mathbb{R}^n and \mathbb{R}^n_+ by a closed convex cone C satisfying $C - C = \mathbb{R}^n$. This is achieved by relating the **Z**-property of a matrix on this cone with the **Z**-property of the corresponding Lyapunov transformation $L_A(X) := AX + XA^T$ on the completely positive cone of C and the **Z**-property of L_{AT} on the copositive cone of C in S^n (the space of all real $n \times n$ symmetric matrices). A similar analysis is carried out for the Stein transformation $S_A(X) = X - AXA^T$.

Key words. Copositive matrix, Copositive and completely positive cones, **Z**-transformation, Lyapunov and Stein transformations.

AMS subject classifications. 15A48, 34A30, 34D23, 17B45.

1. Introduction. Given a closed convex cone K in a real finite dimensional Hilbert space $(H, \langle \cdot, \cdot \rangle)$, and a linear transformation L on H, we say that L has the **Z**-property on K (or that it is a **Z**-transformation on K) and write $L \in \mathbf{Z}(K)$ if

(1.1)
$$[x \in K, y \in K^*, \text{ and } \langle x, y \rangle = 0] \Rightarrow \langle L(x), y \rangle \le 0,$$

where K^* denotes the dual cone of K. As a generalization of a **Z**-matrix (which is a real square matrix with nonpositive off-diagonal entries), such transformations were introduced in [19] in the form of cross-positive matrices. **Z**-matrices/transformations have numerous properties and appear in many areas, e.g., see [3], [13]. Our motivation for this article comes from dynamical systems. Consider S^n , the space of all $n \times n$ real symmetric matrices, with the inner product $\langle X, Y \rangle = trace(XY)$ and the cone S^n_+ of all positive semidefinite matrices in S^n . Then for any matrix $A \in \mathbb{R}^{n \times n}$, the Lyapunov transformation L_A and Stein transformation S_A , respectively defined on S^n by

$$L_A(X) := AX + XA^T$$
 and $S_A(X) := X - AXA^T$,

^{*}Received by the editors on April 15, 2011. Accepted for publication on November 20, 2011. Handling Editor: Bit-Shun Tam.

[†]Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA (gowda@math.umbc.edu).

ELA

Copositive and Completely Positive Cones

are **Z**-transformations on S^n_+ [13]. These transformations have been well studied in dynamical systems theory, starting from Lyapunov's paper [16] on continuous dynamical systems and Stein's paper [22] on discrete dynamical systems. The celebrated result of Lyapunov deals with the stability of the linear system $\dot{x} + Ax = 0$, and, in particular with the equivalence of the following statements [7]:

- (i) The system $\dot{x} + Ax = 0$ is asymptotically stable in \mathbb{R}^n (which means that the trajectory of the system from any starting point in \mathbb{R}^n converges to the origin as $t \to \infty$).
- (*ii*) A is positive stable (that is, all eigenvalues of A lie in the open right-half plane).
- (*iii*) There exists $X \in S^n$ such that X and $L_A(X)$ are positive definite.
- (*iv*) For every positive definite $Y \in S^n$, the equation $L_A(X) = Y$ has a (unique) positive definite solution X in S^n .

For a discrete system of the form x(k+1) = Ax(k), k = 1, 2, ..., similar equivalent statements can be made by replacing the positive stability of A with Schur stability of A (which means that all eigenvalues of A lie in the open unit disk) and L_A by S_A .

Now consider a linear system $\dot{x} + Ax = 0$ whose trajectories are constrained to lie in the nonnegative orthant \mathbb{R}^n_+ . It is well known that this can happen if and only if A is a **Z**-matrix. Analogous to Lyapunov's result, we have the equivalence of the following when A is a **Z**-matrix:

- (i) The system $\dot{x} + Ax = 0$ is asymptotically stable in \mathbb{R}^n_+ .
- (ii) A is positive stable.
- (*iii*) There exists $X \in \mathcal{S}^n$ such that X and $L_A(X)$ are strictly copositive on \mathbb{R}^n_+ .
- (*iv*) For every $Y \in S^n$ that is strictly copositive on \mathbb{R}^n_+ , the equation $L_A(X) = Y$ has a (unique) strictly copositive solution X in S^n .
- (v) There exists a vector d > 0 (i.e., d belongs to the interior of \mathbb{R}^n_+) such that Ad > 0.

Here, the strict copositivity (copositivity) of X on \mathbb{R}^n_+ is defined by: $x^T X x > 0 \ (\geq 0)$, for all $0 \neq x \in \mathbb{R}^n_+$. The equivalence of Items (i), (ii), and (v) is well known in the literature, e.g., see [17]. The new items (iii) and (iv) were proved by Moldovan and Gowda [18] by relying on the equivalence of the following statements for any $A \in \mathbb{R}^{n \times n}$:

- (a) A is a **Z**-matrix.
- (b) L_A has the **Z**-property on the cone of completely positive matrices in \mathcal{S}^n .
- (c) L_{A^T} has the **Z**-property on the cone of copositive matrices in \mathcal{S}^n .

In a recent article [5], Bundfuss and Dür raise the question of studying the dynamics of $\dot{x} + Ax = 0$ which is constrained to a (polyhedral) cone K by asking for the existence

200 M.S. Gowda

of a symmetric matrix X that is strictly copositive on K for which $AX + XA^T$ is also strictly copositive on K. Motivated by the similarities in the above results of Lyapunov and Moldovan-Gowda, and the question of Bundfuss and Dür, in this paper, we present a unifying result (Theorem 3.8) by relating the **Z**-property of a matrix A on a closed convex cone in \mathbb{R}^n with the **Z**-property of $L_A(L_{A^T})$ on the corresponding completely positive cone (respectively, copositive cone) in \mathcal{S}^n .

Consider \mathbb{R}^n with the usual inner product. Given a closed convex cone \mathcal{C} in \mathbb{R}^n with dual \mathcal{C}^* , we consider two related cones in \mathcal{S}^n : The *copositive cone* of \mathcal{C} defined by

(1.2)
$$\mathcal{E} = copos(\mathcal{C}) := \{A \in \mathcal{S}^n : A \text{ copositive on } \mathcal{C}\}$$

and the *completely positive cone of* \mathcal{C} defined by

(1.3)
$$\mathcal{K} = compos(\mathcal{C}) := \{BB^T : \text{columns of } B \text{ belong to } \mathcal{C}\}.$$

When $C = \mathbb{R}^n$, these two cones reduce to S^n_+ which is the underlying cone in semidefinite programming and semidefinite linear complementarity problems [1], [10], [11]. In the case of $C = \mathbb{R}^n_+$, these cones reduce, respectively, to the cones of copositive matrices and completely positive matrices which have appeared prominently in statistical and graph theoretic literature [4] and (recently) in the study of (combinatorial) optimization problems [6], [8].

With the notation $L \in \mathbf{Z}(K)$ to mean that the transformation L has the **Z**-property on K and $L \in \Pi(K)$ to mean that $L(K) \subseteq K$, we show in this article (see Theorems 3.3 and 5.1) that

$$A \in \mathbf{Z}(\mathcal{C}) \Rightarrow L_A \in \mathbf{Z}(\mathcal{K}) \Leftrightarrow L_{A^T} \in \mathbf{Z}(\mathcal{E}) \quad \text{and} \\ A \in \Pi(\mathcal{C}) \Rightarrow S_A \in \mathbf{Z}(\mathcal{K}) \Leftrightarrow S_{A^T} \in \mathbf{Z}(\mathcal{E}).$$

These results, along with the properties of \mathbf{Z} -transformations, will allow us to extend the results of Lyapunov and Moldovan-Gowda, and (partially) answer the question of Bundfuss and Dür.

Here is an outline of the paper. Section 2 deals with the preliminaries. The **Z**-property of L_A is covered in Section 3 and that of S_A is covered in Section 5. In Section 4, we study Lyapunov-like transformations. Finally, Section 6 deals with some results relating **Z**-property, cone spectrum, and copositivity.

2. Preliminaries. Throughout this paper, H denotes a finite dimensional real Hilbert space with inner product given by $\langle x, y \rangle$. For a set K in H, K° and K^{\perp} denote, respectively, the interior and orthogonal complement of K. For a closed convex cone K in H the dual is given by

$$K^* := \{ y \in H : \langle y, x \rangle \ge 0 \ \forall x \in K \}.$$

Copositive and Completely Positive Cones

We use the notation

 $K \ni x \perp y \in K^*$ to mean that $x \in K, y \in K^*$, and $\langle x, y \rangle = 0$.

Recall [3] that a closed convex cone K in H is a proper cone if K is reproducing (that is, K - K = H) and pointed (that is, $K \cap -K = \{0\}$) (or equivalently, K and K^* have nonempty interiors [3]).

For a linear transformation L on H, L^* denotes its adjoint. It said to be

- copositive on K (strictly copositive on K) if $\langle L(x), x \rangle \ge 0$ (> 0) for all $0 \ne x \in K$;
- monotone if $\langle L(x), x \rangle \ge 0$ for all $x \in H$;
- *positive stable* (*Schur stable*) if all the eigenvalues of *L* lie in the open right-half plane (respectively, in the open unit disk).

In the space $H = \mathbb{R}^n$, vectors are written as column vectors and the usual inner product is written as $\langle x, y \rangle$ or as $x^T y$. Following standard terminology,

- Completely positive matrices are of the form BB^T with columns of B coming from \mathbb{R}^n_+ .

Throughout this paper, K denotes a closed convex cone in H and C denotes a closed convex cone in \mathbb{R}^n . Corresponding to C, the copositive cone \mathcal{E} and the completely positive cone \mathcal{K} in \mathcal{S}^n are defined, respectively, by (1.2) and (1.3).

PROPOSITION 2.1. Let L be a self-adjoint linear transformation on H that is copositive on K. Then

$$x \in K, \langle L(x), x \rangle = 0 \Rightarrow L(x) \in K^*.$$

Proof. Suppose $x \in K$ and $\langle L(x), x \rangle = 0$. Then for any $y \in K$,

$$0 \le \lim_{t \downarrow 0} \frac{1}{t} \langle L(x+ty), x+ty \rangle = 2 \langle L(x), y \rangle$$

This shows that $L(x) \in K^*$.

PROPOSITION 2.2. The following statements hold:

- (i) \mathcal{E} is a closed convex cone in \mathcal{S}^n and $\mathcal{K} \subseteq \mathcal{S}^n_+ \subseteq \mathcal{E}$.
- (ii) \mathcal{K} is a closed convex cone; moreover, \mathcal{K} is the dual of \mathcal{E} .
- (iii) \mathcal{E} (likewise, \mathcal{K}) is proper if and only if $\mathcal{C} \mathcal{C} = \mathbb{R}^n$.

202

M.S. Gowda

Proof. Item (i) is obvious and Item (ii) is well known, see [24]. We prove Item (iii). As $S_+^n \subseteq \mathcal{E}$ and $S_+^n - S_+^n = \mathcal{S}^n$, we have $\mathcal{E} - \mathcal{E} = \mathcal{S}^n$. So, to see (iii), it is enough to show that $\mathcal{E} \cap -\mathcal{E} = \{0\}$ if and only if $\mathcal{C} - \mathcal{C} = \mathbb{R}^n$.

Now, let $A \in S^n$. By an application of Proposition 2.1 with L = A and K = C, we have

$$\begin{aligned} A \in \mathcal{E} \cap -\mathcal{E} \Leftrightarrow & x^T A x = 0 \ \forall x \in \mathcal{C} \\ \Leftrightarrow & -Ax, Ax \in \mathcal{C}^* \ \forall x \in \mathcal{C} \\ \Leftrightarrow & A(\mathcal{C}) \subseteq \mathcal{C}^* \cap -\mathcal{C}^* = \mathcal{C}^{\perp} = (\mathcal{C} - \mathcal{C})^{\perp} \\ \Leftrightarrow & A(\mathcal{C} - \mathcal{C}) \subseteq (\mathcal{C} - \mathcal{C})^{\perp}. \end{aligned}$$

Hence, when $\mathcal{C} - \mathcal{C} = \mathbb{R}^n$, we have A = 0 for any $A \in \mathcal{E} \cap -\mathcal{E}$. On the other hand, when $\mathcal{C} - \mathcal{C} \neq \mathbb{R}^n$, (as $\mathcal{C} - \mathcal{C}$ is a subspace) there exists $0 \neq v \in (\mathcal{C} - \mathcal{C})^{\perp}$. Then $x^T(vv^T)x = 0$ for all $x \in \mathcal{C}$ and so $0 \neq A = vv^T \in \mathcal{E} \cap -\mathcal{E}$.

Finally, \mathcal{E} is proper if and only if its dual \mathcal{K} is proper. Thus, \mathcal{K} is proper if and only if $\mathcal{C} - \mathcal{C} = \mathbb{R}^n$. \square

3. The Z-property and Lyapunov transformations. The Z-property of a matrix or a linear transformation with respect to a cone is defined by (1.1). The following result shows the importance of studying this property in dynamical systems.

PROPOSITION 3.1. ([9], [19]) Suppose L is a linear transformation on H and K be a proper cone in H. Then the following are equivalent:

- (a) $L \in \mathbf{Z}(K)$.
- (b) $e^{-tL}(K) \subseteq K$ for all $t \ge 0$ in \mathbb{R} .
- (c) The trajectory of the dynamical system $\dot{x} + L(x) = 0$ with any initial point in K stays in K.

As noted in the Introduction, when $\mathcal{C} = \mathbb{R}^n_+$, $A \in \mathbf{Z}(\mathcal{C})$ if and only if all the off-diagonal entries of A are nonpositive. Here is a non-trivial example.

EXAMPLE 3.2. Consider \mathbb{R}^n with n > 1 and write any element in the form $x = [t, u^T]^T$, where $t \in \mathbb{R}$ and $u \in \mathbb{R}^{n-1}$. Let

$$\mathcal{C} = \mathcal{L}^n_+ := \left\{ x = \left[\begin{array}{c} t \\ u \end{array} \right] : t \ge ||u|| \right\}.$$

This is a symmetric cone (that is, a self-dual, homogeneous, closed convex cone) in the Jordan spin algebra \mathcal{L}^n , called the Lorentz cone (or the second order cone or the ice-cream cone). For this (proper) cone, the copositive cone \mathcal{E} , the completely positive cone \mathcal{K} , and $\mathbf{Z}(\mathcal{L}^n_+)$ are described below.

Let $J := \text{diag}(1, -1, -1, \dots, -1) \in \mathbb{R}^{n \times n}$ and $A \in \mathbb{R}^{n \times n}$. Then

Copositive and Completely Positive Cones

- (i) $A \in \mathcal{E}$ if and only if $A \mu J$ is positive semidefinite for some $\mu \ge 0$, see [15], Lemma 2.2;
- (*ii*) $A \in \mathcal{K}$ if and only if A is a (finite) sum of matrices of the form $\begin{bmatrix} t^2 & tu^T \\ tu & uu^T \end{bmatrix}$, where $t \in \mathbb{R}, u \in \mathbb{R}^{n-1}$ with $t \ge ||u||$;
- (*iii*) $A \in \mathbf{Z}(\mathcal{L}^n_+)$ if and only if $\alpha J (JA + A^T J)$ is positive semidefinite for some $\alpha \in \mathbb{R}$, see Example 4 in [13];
- $(iv) A, -A \in \mathbf{Z}(\mathcal{L}^n_+)$ if and only if $JA + A^T J = \alpha J$ for some $\alpha \in \mathbb{R}$.

Note: Item (ii) follows from the definition and Item (iv) is a simple consequence of (iii).

We now come to one of the main results of the paper. Before stating this, we observe that for any $A \in \mathbb{R}^{n \times n}$,

$$L_A \in \mathbf{Z}(\mathcal{K}) \Leftrightarrow L_{A^T} \in \mathbf{Z}(\mathcal{E}).$$

This follows easily as $(L_A)^* = L_{A^T}$ and $\mathcal{E}^* = \mathcal{K}$ in \mathcal{S}^n .

THEOREM 3.3. For any closed convex cone \mathcal{C} in \mathbb{R}^n ,

$$A \in \mathbf{Z}(\mathcal{C}) \Rightarrow L_A \in \mathbf{Z}(\mathcal{K}).$$

The reverse implication holds under the following condition on C:

$$(3.1) \qquad \qquad \mathcal{C} \ni u \perp v \in \mathcal{C}^*, \, u \neq 0 \, \Rightarrow \, \exists \, Y \in \mathcal{E} \, such \, that \, Yu = v.$$

Proof. Let $A \in \mathbf{Z}(\mathcal{C})$ and $\mathcal{K} \ni X \perp Y \in \mathcal{K}^* = \mathcal{E}$. Writing $X = \sum_{i=1}^{N} u_i u_i^T$, with $u_i \in \mathcal{C}$ for all i, we have

$$0 = \langle X, Y \rangle = trace(XY) = \sum_{1}^{N} u_i^T Y u_i.$$

This implies, as Y is copositive on \mathcal{C} , $u_i^T Y u_i = 0$ for all *i*. From Proposition 2.1, $v_i := Y u_i \in \mathcal{C}^*$. So, for all $i, \mathcal{C} \ni u_i \perp v_i \in \mathcal{C}^*$. As $A \in \mathbf{Z}(\mathcal{C}), v_i^T A u_i = \langle A u_i, v_i \rangle \leq 0$ for all *i*. Now,

$$\langle L_A(X), Y \rangle = 2 \ trace(AXY) = 2 \sum_{i=1}^{N} trace(Au_i u_i^T Y) = 2 \sum_{i=1}^{N} v_i^T Au_i \le 0.$$

Thus, $L_A \in \mathbf{Z}(\mathcal{K})$.

Now to see the reverse implication, assume that C satisfies (3.1), $L_A \in \mathbf{Z}(\mathcal{K})$, and let $u \in C$, $v \in C^*$ and $\langle u, v \rangle = 0$. We have to show that $\langle Au, v \rangle \leq 0$. We may assume

204 M.S. Gowda

without loss of generality, that u is nonzero. Then there exists a $Y \in \mathcal{E}$ such that Yu = v. We have

$$X = uu^T \in \mathcal{K}, Y \in \mathcal{K}^* = \mathcal{E}, \text{ and } \langle X, Y \rangle = u^T Y u = u^T v = 0.$$

Hence $trace(L_A(X)Y) \leq 0$. This leads to $trace(AXY) \leq 0$ and $\langle Au, v \rangle = v^T Au = trace(AXY) \leq 0$. Thus, $A \in \mathbf{Z}(\mathcal{C})$. \Box

EXAMPLE 3.4. When $\mathcal{C} = \mathbb{R}^n$, we have $\mathcal{C}^* = \{0\}$ and $\mathcal{K} = \mathcal{S}^n_+$. In this case, every matrix $A \in \mathbb{R}^{n \times n}$ belongs to $\mathbf{Z}(\mathcal{C})$ and consequently, for any $A \in \mathbb{R}^{n \times n}$, both L_A and $-L_A = L_{-A}$ belong to $\mathbf{Z}(\mathcal{S}^n_+)$. Hence,

$$\mathcal{S}^n_+ \ni X \perp Y \in \mathcal{S}^n_+ \Rightarrow \langle L_A(X), Y \rangle = 0.$$

(This motivates the definition of Lyapunov-like transformations, see Section 4.)

The following example shows that the reverse implication in Theorem 3.3 may not always hold.

EXAMPLE 3.5. In \mathbb{R}^2 , let \mathcal{C} be the closed upper half-plane. In this case, \mathcal{C}^* is the nonnegative y-axis and $\mathcal{E} = \mathcal{S}^2_+$; hence $\mathcal{K} = \mathcal{S}^2_+$. Now consider a matrix $A \in \mathbb{R}^{2 \times 2}$ whose (2, 1) entry is one. Then for the standard coordinate vectors e_1 and e_2 , we have $\mathcal{C} \ni e_1 \perp e_2 \in \mathcal{C}^*$. However, $\langle Ae_1, e_2 \rangle = 1$. Therefore, $A \notin \mathbf{Z}(\mathcal{C})$ while $L_A \in \mathbf{Z}(\mathcal{K})$.

COROLLARY 3.6. Suppose C is a closed convex pointed cone in \mathbb{R}^n . Then

$$A \in \mathbf{Z}(\mathcal{C}) \Leftrightarrow L_A \in \mathbf{Z}(\mathcal{K})$$

Proof. We show that the given \mathcal{C} satisfies condition (3.1) and quote the previous theorem. To this end, let $\mathcal{C} \ni u \perp v \in \mathcal{C}^*$, $u \neq 0$. Since \mathcal{C} is pointed, \mathcal{C}^* has nonempty interior. Let $w \in (\mathcal{C}^*)^\circ$ such that $w^T u = 1$. Define $Y := vw^T + wv^T$. Clearly $Y \in \mathcal{S}^n$ and for all $x \in \mathcal{C}$,

$$x^T Y x = x^T v \ w^T x + x^T w \ v^T x \ge 0;$$

thus, $Y \in \mathcal{E}$. Also, $Yu = v w^T u + w v^T u = v$.

Our next objective is to present a result that extends the results of Lyapunov and Moldovan-Gowda. First, we recall a basic result on \mathbf{Z} -transformations.

PROPOSITION 3.7. ([3], [13]) Suppose L is a linear transformation on H, K a proper cone in H, and $L \in \mathbb{Z}(K)$. Then the following are equivalent:

- (1) There exists $d \in K^{\circ}$ such that $L(d) \in K^{\circ}$.
- (2) L is invertible with $L^{-1}(K^{\circ}) \subseteq K^{\circ}$.

Copositive and Completely Positive Cones

- (3) L is positive stable.
- (4) L + tI is invertible for all $t \in [0, \infty)$.
- (5) All real eigenvalues of L are positive.
- (6) There exists $e \in (K^*)^\circ$ such that $L^*(e) \in (K^*)^\circ$.

Moreover, when $H = \mathbb{R}^n$, $K = \mathbb{R}^n_+$, and L = A, the above properties (for a **Z**-matrix A) are further equivalent to

- (7) A is a \mathbf{P} -matrix, that is, all principal minors of A are positive.
- (8) There exists a positive definite diagonal matrix D in S^n such that $AD + DA^T$ is positive definite.

As a consequence, we have the following.

THEOREM 3.8. Suppose C is a closed convex cone in \mathbb{R}^n such that $C - C = \mathbb{R}^n$. Then the following are equivalent:

- (a) A is positive stable.
- (b) The system $\dot{x} + Ax = 0$ is asymptotically stable in C (that is, from any starting point in C, its trajectory converges to the origin).

When $A \in \mathbf{Z}(\mathcal{C})$, these are further equivalent to:

- (c) There exists $D \in \mathcal{K}^{\circ}$ such that $AD + DA^T \in \mathcal{K}^{\circ}$.
- (d) There exists $D \in \mathcal{E}^{\circ}$ such that $A^T D + DA \in \mathcal{E}^{\circ}$.

If, in addition, $\mathcal C$ is also proper, then the above conditions are equivalent to

(e) There exists $d \in \mathcal{C}^{\circ}$ such that $Ad \in \mathcal{C}^{\circ}$.

Proof. The proof of $(a) \Rightarrow (b)$ is standard, see the proof of Theorem 3.1 in [7]. The proof of $(b) \Rightarrow (a)$ is as in [7], except that the starting point should be allowed to vary in the interior of \mathcal{C} (which is nonempty because $\mathcal{C} - \mathcal{C} = \mathbb{R}^n$).

Now assume that $A \in \mathbf{Z}(\mathcal{C})$. Since $\mathcal{C} - \mathcal{C} = \mathbb{R}^n$, by Proposition 2.2, both \mathcal{E} and \mathcal{K} are proper; hence they have nonempty interiors. Also, since $A \in \mathbf{Z}(\mathcal{C})$, by Theorem 3.3, $L_A \in \mathbf{Z}(\mathcal{K})$ and $L_{A^T} \in \mathbf{Z}(\mathcal{E})$. Since the eigenvalues of L_A on \mathcal{S}^n are of the form $\lambda + \overline{\mu}$, where λ and μ are eigenvalues of A, see [26], it follows that A is positive stable if and only if L_A is positive stable. Now the equivalence of Items (a), (c), and (d) follows from the previous result applied to L_A on \mathcal{K} .

When C is proper, the previous result can be applied to A and C (note that $\mathbf{Z}(C)$) to get the equivalence of (a) and (e). \square

REMARK 3.9. (i) In Item (d) of the above theorem, the matrix $D \in \mathcal{E}^{o}$ is necessarily strictly copositive on \mathcal{C} : For any nonzero $u \in \mathcal{C}$, $u^{T}(D - \varepsilon I)u \geq 0$ for small $\varepsilon > 0$.

206

M.S. Gowda

(ii) When $\mathcal{C} - \mathcal{C} = \mathbb{R}^n$ and $A \in \mathbf{Z}(\mathcal{C})$, the equation

 $A^T X + X A = Y$, Y strictly copositive on C

has a unique solution X which is also strictly copositive on \mathcal{C} for some Y (equivalently for all Y) if and only if A is positive stable. This follows from Items (1) and (2) in Proposition 3.7 with $K = \mathcal{E}$ and $L = L_{A^T}$. When \mathcal{C} is proper and A is positive stable, this unique solution is given by

$$X = \int_0^\infty e^{-tA^T} Y e^{-tA} dt.$$

(iii) The results of Lyapunov and Moldovan-Gowda (stated in the Introduction) follow by taking $\mathcal{C} = \mathbb{R}^n$ and $\mathcal{C} = \mathbb{R}^n_+$ respectively.

(iv) Suppose C is proper. When the conditions of the above result are in place, (any) trajectory of the system $\dot{x} + Ax = 0$ from any starting point in C stays in C and converges to the origin as $t \to \infty$. In this setting, $f(x) := d^T x$ (with d as in Item (e)) acts as a linear Lyapunov function and $g(x) := x^T Dx$ (with D as in Item (d)) acts as a quadratic Lyapunov function.

(v) Instead of our condition $\mathcal{C} - \mathcal{C} = \mathbb{R}^n$ in Theorem 3.8, Stern [23] assumes that \mathcal{C} in \mathbb{R}^n satisfies $\mathcal{C} \cap -\mathcal{C} = \{0\}$. He proves that when $A \in \mathbf{Z}(\mathcal{C})$ and $\mathcal{C} \cap -\mathcal{C} = \{0\}$, the system $\dot{x} + Ax = 0$ is asymptotically stable if and only if the following implication holds:

$$[x \in \mathcal{C}, -Ax \in \mathcal{C}] \Rightarrow x = 0.$$

It may be noted that if, in addition, $C - C = \mathbb{R}^n$, that is, if C is proper, then the above condition is equivalent to Item (e) in Theorem 3.8.

The following result (partially) answers a question of Bundfuss and Dür [5]:

COROLLARY 3.10. Suppose $\mathcal{C} = M(\mathbb{R}^m_+)$ is a polyhedral cone in \mathbb{R}^n , where M is an $n \times m$ -matrix. Assume that M has rank n and $A \in \mathbb{Z}(\mathcal{C})$. Then there exists a symmetric matrix D such that D and $A^T D + DA$ are strictly copositive on \mathcal{C} if and only if A is positive stable.

4. Lyapunov-like transformations. Motivated by Example 3.4, a linear transformation L on H is said to be Lyapunov-like with respect to a closed convex cone K in H if both L and -L have the **Z**-property on K. This simply means that

$$K \ni x \perp y \in K^* \Rightarrow \langle L(x), y \rangle = 0$$

For any matrix $A \in \mathbb{R}^{n \times n}$, the Lyapunov transformation L_A is Lyapunov-like with respect to \mathcal{S}^n_+ in \mathcal{S}^n (see Example 3.4). In the setting of the cone \mathbb{R}^n_+ in \mathbb{R}^n , Lyapunov-

Copositive and Completely Positive Cones

like matrices are just diagonal matrices. Because of Proposition 3.1, Lyapunov-like transformations are intimately connected to automorphism groups and Lie algebras.

In the rest of this section, we assume that C is a *proper cone* in \mathbb{R}^n and use the notation $\mathcal{B}(\mathcal{S}^n, \mathcal{S}^n)$ to denote the set of all (bounded) linear transformations on \mathcal{S}^n . We consider two automorphism groups:

•
$$Aut(\mathcal{C}) := \{A \in \mathbb{R}^{n \times n} : A(\mathcal{C}) = \mathcal{C}\}.$$

• $Aut(\mathcal{K}) := \{L \in \mathcal{B}(\mathcal{S}^n, \mathcal{S}^n) : L(\mathcal{K}) = \mathcal{K}\}.$

(Note that elements of these groups are necessarily invertible, as C and K have nonempty interiors.) Since these groups can be regarded as matrix groups, the corresponding Lie algebras are given, see [2], by:

•
$$\operatorname{Lie}(\operatorname{Aut}(\mathcal{C})) := \{ A \in \mathbb{R}^{n \times n} : e^{tA} \in \operatorname{Aut}(\mathcal{C}) \ \forall t \in \mathbb{R} \}.$$

• $\operatorname{Lie}(\operatorname{Aut}(\mathcal{K})) := \{ L \in \mathcal{B}(\mathcal{S}^n, \mathcal{S}^n) : e^{tL} \in \operatorname{Aut}(\mathcal{K}) \ \forall t \in \mathbb{R} \}.$

Note that in these Lie algebras, the Lie bracket is the one induced by the (associative) product of matrices/transformations: [A, B] = AB - BA, etc. In view of Proposition 3.1, we have

 $A, -A \in \mathbf{Z}(\mathcal{C}) \Leftrightarrow A \in Lie(Aut(\mathcal{C})) \text{ and } L, -L \in \mathbf{Z}(\mathcal{K})) \Leftrightarrow L \in Lie(Aut(\mathcal{K})).$

THEOREM 4.1. For any proper cone \mathcal{C} in \mathbb{R}^n , the mapping $A \mapsto L_A$ is an injective Lie algebra homomorphism from $Lie(Aut(\mathcal{C}))$ to $Lie(Aut(\mathcal{K}))$.

Proof. For $A \in Lie(Aut(\mathcal{C}))$, we have $A, -A \in \mathbf{Z}(\mathcal{C})$. By Theorem 3.3, $L_A, -L_A \in \mathbf{Z}(\mathcal{K})$, that is, $L_A \in Lie(Aut(\mathcal{K}))$. Clearly, the mapping $A \mapsto L_A$ is linear. That it is a Lie algebra homomorphism follows from the identity $L_{[A,B]} = [L_A, L_B]$. To show that this is injective, suppose $L_A = 0$, that is, $AX + XA^T = 0$ for all $X \in S^n$. By taking X = I (Identity), we see that $A + A^T = 0$, that is, A is skew-symmetric. By taking X to be a diagonal matrix with distinct elements, we see that A = 0. \Box

5. The Z-property of Stein transformations. Recall that for a matrix $A \in \mathbb{R}^{n \times n}$, the corresponding Stein transformation S_A is defined on \mathcal{S}^n by $S_A(X) := X - AXA^T$. We also recall that $\Pi(\mathcal{C}) := \{A \in \mathbb{R}^{n \times n} : A(\mathcal{C}) \subseteq \mathcal{C}\}$. As in the case of Lyapunov transformations, we have $S_A \in \mathbf{Z}(\mathcal{K}) \Leftrightarrow S_{A^T} \in \mathbf{Z}(\mathcal{E})$.

THEOREM 5.1. Let C be any closed convex cone in \mathbb{R}^n . Then

$$\pm A \in \Pi(\mathcal{C}) \Rightarrow S_A \in \mathbf{Z}(\mathcal{K}).$$

Proof. Without loss of generality, let $A \in \Pi(\mathcal{C})$. Let $X = \sum_{i=1}^{N} u_i u_i^T \in \mathcal{K}$, $Y \in \mathcal{K}^* = \mathcal{E}$, and $\langle X, Y \rangle = 0$, where $u_i \in \mathcal{C}$ for all *i*. Then $w_i := Au_i \in \mathcal{C}$ for all *i*.

208

M.S. Gowda

Now, as Y is copositive on \mathcal{C} ,

$$trace(AXA^{T}Y) = \sum_{1}^{N} w_{i}^{T}Yw_{i} \ge 0$$

Hence

$$\langle S_A(X), Y \rangle = \langle X, Y \rangle - \langle AXA^T, Y \rangle = -trace(AXA^TY) \le 0.$$

This proves that $S_A \in \mathbf{Z}(\mathcal{K})$.

EXAMPLE 5.2. By taking $C = \mathbb{R}^n$ in the above theorem, we see that for any matrix $A \in \mathbb{R}^{n \times n}$, $S_A \in \mathbf{Z}(\mathcal{S}^n_+)$. Now, let C be the closed upper half-plane in \mathbb{R}^2 so that $\mathcal{K} = \mathcal{E} = \mathcal{S}^2_+$. Then for any 2×2 real matrix A, $S_A \in \mathbf{Z}(\mathcal{S}^2_+)$, while it is easy to construct a 2×2 real matrix which is not in $\Pi(C)$. Thus, the converse in the above theorem does not hold.

Analogous to Theorem 3.8, we have

THEOREM 5.3. Suppose C is a closed convex cone in \mathbb{R}^n such that $C - C = \mathbb{R}^n$. Then the following are equivalent:

- (a) A is Schur stable.
- (b) The system x(k + 1) = Ax(k), k = 0, 1, 2, ... is asymptotically stable in C (that is, from any starting point in C, its trajectory converges to the origin).

When $\pm A \in \Pi(\mathcal{C})$, these are further equivalent to:

- (c) There exists $D \in \mathcal{K}^{\circ}$ such that $S_A(D) \in \mathcal{K}^{\circ}$.
- (d) There exists $D \in \mathcal{E}^{\circ}$ such that $S_{A^T}(D) \in \mathcal{E}^{\circ}$.

Note: S_A is positive stable if and only if A is Schur stable, see [10].

6. Cone spectrum, copositivity, and Z-transformations. In this section, we relate the Z-property, copositivity, and cone spectrum. Let L be a linear transformation on H and K be a *nonzero* closed convex cone in H. Then the *cone spectrum* [21] of L with respect to K is the set of all real λ for which there is an x such that

 $0 \neq x \in K, L(x) - \lambda x \in K^*$ and $\langle x, L(x) - \lambda x \rangle = 0.$

We denote this set by $\sigma(L, K)$.

The following result gives the nonemptyness of the cone spectrum.

PROPOSITION 6.1. Let K be a nonzero closed convex cone in H and L be linear on H.

(i) If K is proper, then $\sigma(L, K) \neq \emptyset$.

Copositive and Completely Positive Cones

(ii) If L is self-adjoint, then $\sigma(L, K) \neq \emptyset$; In fact,

 $\lambda^* := \min\{\langle L(x), x \rangle : x \in K, ||x|| = 1\} \in \sigma(L, K).$

Proof. The proof of (i) is given in [20], Corollary 2.1. While a proof of (ii) is given in [14], Corollary 2.4 and [21], Example 1, we offer a direct and simple proof. Let $\lambda^* = \langle L(x^*), x^* \rangle$, where $x^* \in K$ with $||x^*|| = 1$. Define $S := L - \lambda^* I$. Then for all $0 \neq x \in K$, we have

$$\langle S(x), x \rangle = ||x||^2 \left\{ \langle L(\frac{x}{||x||}), \frac{x}{||x||} \rangle - \lambda^* \right\} \ge 0.$$

This means that the self-adjoint transformation S is copositive on K. Since $\langle S(x^*), x^* \rangle = 0$, we have, from Proposition 2.1, $y^* = S(x^*) \in K^*$. Thus, we have

$$x^* \in K, \ y^* := L(x^*) - \lambda^* x^* \in K^* \text{ and } \langle x^*, y^* \rangle = 0.$$

Hence, $\lambda^* \in \sigma(L, K)$.

The above result, together with the observation that every $\lambda \in \sigma(L, K)$ is of the form $\lambda = \frac{\langle L(x), x \rangle}{||x||^2}$ for some nonzero $x \in K$, gives the following:

COROLLARY 6.2. Suppose $\sigma(L, K)$ is nonempty. If L is copositive on K, then $\lambda \geq 0$ for all $\lambda \in \sigma(L, K)$. The converse holds when L is self-adjoint.

In what follows, we write $\sigma(L)$ for the spectrum of L.

THEOREM 6.3. Suppose K is proper and $L \in \mathbf{Z}(K)$. Then

min $\operatorname{Re} \sigma(L) \in \sigma(L, K) \subseteq \sigma(L)$.

Proof. Let $\mu^* := \min\{Re \lambda : \lambda \in \sigma(L)\}$. Since K is proper and $L \in \mathbf{Z}(K)$, by Theorem 6 in [19], there exists a nonzero $u \in K$ such that $L(u) = \mu^* u$. Clearly, $\mu^* \in \sigma(L, K)$. This proves the first part of the inclusion. The second part is proved in Theorem 9, [27]; Here is its short proof: Let $\mu \in \sigma(L, K)$ so that for some nonzero $x \in K, y = L(x) - \mu x \in K^*$ and $\langle x, y \rangle = 0$. As $L - \mu I \in \mathbf{Z}(K), \langle (L - \mu I)x, y \rangle \leq 0$. This leads to y = 0, that is, $L(x) = \mu x$ proving $\mu \in \sigma(L)$. \Box

REMARK 6.4. In Theorem 3.8, the equivalence of (a) and (d) was proved under the assumptions that $\mathcal{C} - \mathcal{C} = \mathbb{R}^n$ and $A \in \mathbf{Z}(\mathcal{C})$. When \mathcal{C} is proper and $A \in \mathbf{Z}(\mathcal{C})$, the following simple proof (an adaptation of the standard argument) can be given. We only prove the implication $(d) \Rightarrow (a)$. Assume that for some (symmetric) Dthat is strictly copositive on \mathcal{C} , $A^T D + DA = Y$ is also strictly copositive on \mathcal{C} . Let $\mu^* = \min \operatorname{Re} \sigma(A)$ so that by Theorem 6 in [19], there is a nonzero $u \in \mathcal{C}$ such that $Au = \mu^* u$. Then $0 < u^T Y u = u^T (A^T D + DA)u = 2\mu^* u^T Du$. Since $u^T Du$ is also positive, we see that $\mu^* > 0$. This means that A is positive stable.

210

M.S. Gowda

The following result extends a result of J. Tao [25] proved in the setting of symmetric cones.

COROLLARY 6.5. Let K be proper, $L \in \mathbf{Z}(K)$ and copositive on K. Then L is semi-positive stable (that is, all eigenvalues of L lie in the closed right-half plane). If, in addition, L is self-adjoint or K is self-dual, then L is monotone.

Proof. That L is semi-positive stable follows from Corollary 6.2 and Theorem 6.3. If L is self-adjoint, then all eigenvalues of L are nonnegative, and hence L is monotone. When K is self dual, $L \in \mathbf{Z}(K) \Leftrightarrow L^* \in \mathbf{Z}(K^*) \Leftrightarrow L^* \in \mathbf{Z}(K)$. In this case, $L + L^*$ is self-adjoint, copositive on K, and belongs to $\mathbf{Z}(K)$. By the previous case, $L + L^*$ (and hence L) is monotone. \square

A concluding remark. In a follow up paper [12], it is shown that the mapping $A \mapsto L_A$ in Theorem 4.1 is actually a bijection.

Acknowledgments. Thanks are due to a referee for his/her comments and suggestions.

REFERENCES

- F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim., 5:13–51, 1995.
- [2] A. Baker. Matrix Groups. Springer, London, 2002.
- [3] A. Berman and R.J. Plemmons. Nonnegative Matrices in Mathematical Sciences. SIAM, Philadelphia, 1994.
- [4] A. Berman and N. Shaked-Monderer. Completely Positive Matrices. World Scientific, New Jersey, 2003.
- [5] S. Bundfuss and M. Dür. Copositive Lyapunov functions for switched systems over cones. Systems Control Lett., 58:342–345, 2009.
- [6] S. Burer. On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program., Ser. A, 120:479–495, 2009.
- [7] B.N. Datta. Stability and inertia. Linear Algebra Appl., 302/303:563-600, 1999.
- [8] G. Eichfelder and J. Povh. On reformulations of nonconvex quadratic programs over convex cones by set-semidefinite constraints. *Research Report*, Department of Mathematics, University of Erlangen-Nuremberg, Erlangen, Germany, December 9, 2010.
- [9] L. Elsner. Quasimonotonie und Ungleishchungen in halbgeordneten Räumen. Linear Algebra Appl., 8:249–261, 1974.
- [10] M.S. Gowda and T. Parthasarathy. Complementarity forms of theorems of Lyapunov and Stein, and related results. *Linear Algebra Appl.*, 320:131–144, 2000.
- M.S. Gowda and Y. Song. On semidefinite linear complementarity problems. Math. Program., Ser. A, 88:575–587, 2000.
- [12] M.S. Gowda, R. Sznajder, and J. Tao. The automorphism group of a completely positive cone and its Lie algebra. *Linear Algebra Appl.*, to appear. Available at http://dx.doi.org/10.1016/j.laa.2011.10.006.

211

Copositive and Completely Positive Cones

- [13] M.S. Gowda and J. Tao. Z-transformations on proper and symmetric cones. Math. Program., Ser. B, 117:195–221, 2009.
- [14] P. Lavilledieu and A. Seeger. Existence de valeurs propres pour les systèmes multivoques: Résultats anciens et nouveaux. Ann. Sci. Math. Québec., 25:47–70, 2001.
- [15] R. Loewy and H. Schneider. Positive operators on the n-dimensional ice cream cone. J. Math. Anal. Appl., 49:375–392, 1975.
- [16] A.M. Lyapunov. Probléme général de la stabilité du mouvement. Ann. Fac. Sci. Toulouse, 9:203–474, 1907.
- [17] O. Mason and R. Shorten. On linear copositive Lyapunov functions and the stability of switched positive linear systems. *IEEE Trans. Automat. Control*, 52:1346–1349, 2007.
- [18] M.M. Moldovan and M.S. Gowda. On common linear/quadratic Lyapunov functions for switched linear systems. Nonlinear Analysis and Variational Problems, Springer Optim. Appl., Springer, New York, 35:415–429, 2010.
- [19] H. Schneider and M. Vidyasagar. Cross-positive matrices. SIAM J. Numer. Anal., 7:508–519, 1970.
- [20] A. Seeger. Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. *Linear Algebra Appl.*, 292:1–14, 1999.
- [21] A. Seeger and M. Torki. On eigenvalues induced by a cone constraint. Linear Algebra Appl., 372:181–206, 2003.
- [22] P. Stein. Some general theorems on iterants. J. Research Nat. Bur. Standards, 48:82–83, 1952.
- [23] R. Stern. A note on positively invariant cones, Appl. Math. Optim., 9:67–72, 1982.
- [24] J.F. Sturm and S. Zhang. On cones of nonnegative quadratic functions. Math. Oper. Res., 28:246-267, 2003.
- [25] J. Tao. Pseudomonotonicity and related properties in Euclidean Jordan algebras. Electron. J. Linear Algebra, 22:225–251, 2011.
- [26] O. Taussky and H. Wielandt. On the matrix function AX + X'A'. Arch. Rational Mech. Anal., 9:93–96, 1962.
- [27] Y. Zhou and M.S. Gowda. On the finiteness of the cone spectrum of certain linear transformations on Euclidean Jordan algebras. *Linear Algebra Appl.*, 431:772–782, 2009.