ON COPOSITIVE AND COMPLETELY POSITIVE CONES, AND Z-TRANSFORMATIONS*

M. SEETHARAMA GOWDA ${ }^{\dagger}$

Abstract

A well-known result of Lyapunov on continuous linear systems asserts that a real square matrix A is positive stable if and only if for some symmetric positive definite matrix X, $A X+X A^{T}$ is also positive definite. A recent result of Moldovan-Gowda says that a Z-matrix A is positive stable if and only if for some symmetric strictly copositive matrix $X, A X+X A^{T}$ is also strictly copositive. In this paper, these results are unified/extended by replacing \mathbb{R}^{n} and \mathbb{R}_{+}^{n} by a closed convex cone \mathcal{C} satisfying $\mathcal{C}-\mathcal{C}=\mathbb{R}^{n}$. This is achieved by relating the \mathbf{Z}-property of a matrix on this cone with the \mathbf{Z}-property of the corresponding Lyapunov transformation $L_{A}(X):=A X+X A^{T}$ on the completely positive cone of \mathcal{C} and the \mathbf{Z}-property of $L_{A^{T}}$ on the copositive cone of \mathcal{C} in \mathcal{S}^{n} (the space of all real $n \times n$ symmetric matrices). A similar analysis is carried out for the Stein transformation $S_{A}(X)=X-A X A^{T}$.

Key words. Copositive matrix, Copositive and completely positive cones, Z-transformation, Lyapunov and Stein transformations.

AMS subject classifications. 15A48, 34A30, 34D23, 17B45.

1. Introduction. Given a closed convex cone K in a real finite dimensional Hilbert space $(H,\langle\cdot, \cdot\rangle)$, and a linear transformation L on H, we say that L has the Z-property on K (or that it is a Z-transformation on K) and write $L \in \mathbf{Z}(K)$ if

$$
\begin{equation*}
\left[x \in K, y \in K^{*}, \text { and }\langle x, y\rangle=0\right] \Rightarrow\langle L(x), y\rangle \leq 0 \tag{1.1}
\end{equation*}
$$

where K^{*} denotes the dual cone of K. As a generalization of a Z-matrix (which is a real square matrix with nonpositive off-diagonal entries), such transformations were introduced in [19] in the form of cross-positive matrices. Z-matrices/transformations have numerous properties and appear in many areas, e.g., see [3], 13]. Our motivation for this article comes from dynamical systems. Consider \mathcal{S}^{n}, the space of all $n \times n$ real symmetric matrices, with the inner product $\langle X, Y\rangle=\operatorname{trace}(X Y)$ and the cone \mathcal{S}_{+}^{n} of all positive semidefinite matrices in \mathcal{S}^{n}. Then for any matrix $A \in \mathbb{R}^{n \times n}$, the Lyapunov transformation L_{A} and Stein transformation S_{A}, respectively defined on \mathcal{S}^{n} by

$$
L_{A}(X):=A X+X A^{T} \quad \text { and } \quad S_{A}(X):=X-A X A^{T},
$$

[^0]are Z-transformations on \mathcal{S}_{+}^{n} [13]. These transformations have been well studied in dynamical systems theory, starting from Lyapunov's paper [16] on continuous dynamical systems and Stein's paper [22] on discrete dynamical systems. The celebrated result of Lyapunov deals with the stability of the linear system $\dot{x}+A x=0$, and, in particular with the equivalence of the following statements [7]:
(i) The system $\dot{x}+A x=0$ is asymptotically stable in \mathbb{R}^{n} (which means that the trajectory of the system from any starting point in \mathbb{R}^{n} converges to the origin as $t \rightarrow \infty)$.
(ii) A is positive stable (that is, all eigenvalues of A lie in the open right-half plane).
(iii) There exists $X \in \mathcal{S}^{n}$ such that X and $L_{A}(X)$ are positive definite.
(iv) For every positive definite $Y \in \mathcal{S}^{n}$, the equation $L_{A}(X)=Y$ has a (unique) positive definite solution X in \mathcal{S}^{n}.

For a discrete system of the form $x(k+1)=A x(k), k=1,2, \ldots$, similar equivalent statements can be made by replacing the positive stability of A with Schur stability of A (which means that all eigenvalues of A lie in the open unit disk) and L_{A} by S_{A}.

Now consider a linear system $\dot{x}+A x=0$ whose trajectories are constrained to lie in the nonnegative orthant \mathbb{R}_{+}^{n}. It is well known that this can happen if and only if A is a Z-matrix. Analogous to Lyapunov's result, we have the equivalence of the following when A is a \mathbf{Z}-matrix:
(i) The system $\dot{x}+A x=0$ is asymptotically stable in \mathbb{R}_{+}^{n}.
(ii) A is positive stable.
(iii) There exists $X \in \mathcal{S}^{n}$ such that X and $L_{A}(X)$ are strictly copositive on \mathbb{R}_{+}^{n}.
(iv) For every $Y \in \mathcal{S}^{n}$ that is strictly copositive on \mathbb{R}_{+}^{n}, the equation $L_{A}(X)=Y$ has a (unique) strictly copositive solution X in \mathcal{S}^{n}.
(v) There exists a vector $d>0$ (i.e., d belongs to the interior of \mathbb{R}_{+}^{n}) such that $A d>0$.

Here, the strict copositivity (copositivity) of X on \mathbb{R}_{+}^{n} is defined by: $x^{T} X x>0(\geq 0)$, for all $0 \neq x \in \mathbb{R}_{+}^{n}$. The equivalence of Items (i), $(i i)$, and (v) is well known in the literature, e.g., see [17. The new items (iii) and (iv) were proved by Moldovan and Gowda [18] by relying on the equivalence of the following statements for any $A \in \mathbb{R}^{n \times n}$:
(a) A is a Z-matrix.
(b) L_{A} has the \mathbf{Z}-property on the cone of completely positive matrices in \mathcal{S}^{n}.
(c) $L_{A^{T}}$ has the \mathbf{Z}-property on the cone of copositive matrices in \mathcal{S}^{n}.

In a recent article [5], Bundfuss and Dür raise the question of studying the dynamics of $\dot{x}+A x=0$ which is constrained to a (polyhedral) cone K by asking for the existence
of a symmetric matrix X that is strictly copositive on K for which $A X+X A^{T}$ is also strictly copositive on K. Motivated by the similarities in the above results of Lyapunov and Moldovan-Gowda, and the question of Bundfuss and Dür, in this paper, we present a unifying result (Theorem 3.8) by relating the Z-property of a matrix A on a closed convex cone in \mathbb{R}^{n} with the \mathbf{Z}-property of $L_{A}\left(L_{A^{T}}\right)$ on the corresponding completely positive cone (respectively, copositive cone) in \mathcal{S}^{n}.

Consider \mathbb{R}^{n} with the usual inner product. Given a closed convex cone \mathcal{C} in \mathbb{R}^{n} with dual \mathcal{C}^{*}, we consider two related cones in \mathcal{S}^{n} : The copositive cone of \mathcal{C} defined by

$$
\begin{equation*}
\mathcal{E}=\operatorname{copos}(\mathcal{C}):=\left\{A \in \mathcal{S}^{n}: A \text { copositive on } \mathcal{C}\right\} \tag{1.2}
\end{equation*}
$$

and the completely positive cone of \mathcal{C} defined by

$$
\begin{equation*}
\mathcal{K}=\operatorname{compos}(\mathcal{C}):=\left\{B B^{T}: \text { columns of } B \text { belong to } \mathcal{C}\right\} . \tag{1.3}
\end{equation*}
$$

When $\mathcal{C}=\mathbb{R}^{n}$, these two cones reduce to \mathcal{S}_{+}^{n} which is the underlying cone in semidefinite programming and semidefinite linear complementarity problems [1], 10, [11]. In the case of $\mathcal{C}=\mathbb{R}_{+}^{n}$, these cones reduce, respectively, to the cones of copositive matrices and completely positive matrices which have appeared prominently in statistical and graph theoretic literature [4] and (recently) in the study of (combinatorial) optimization problems [6], 8].

With the notation $L \in \mathbf{Z}(K)$ to mean that the transformation L has the \mathbf{Z} property on K and $L \in \Pi(K)$ to mean that $L(K) \subseteq K$, we show in this article (see Theorems 3.3 and 5.1) that

$$
\begin{aligned}
& A \in \mathbf{Z}(\mathcal{C}) \Rightarrow L_{A} \in \mathbf{Z}(\mathcal{K}) \Leftrightarrow L_{A^{T}} \in \mathbf{Z}(\mathcal{E}) \quad \text { and } \\
& A \in \Pi(\mathcal{C}) \Rightarrow S_{A} \in \mathbf{Z}(\mathcal{K}) \Leftrightarrow S_{A^{T}} \in \mathbf{Z}(\mathcal{E}) .
\end{aligned}
$$

These results, along with the properties of \mathbf{Z}-transformations, will allow us to extend the results of Lyapunov and Moldovan-Gowda, and (partially) answer the question of Bundfuss and Dür.

Here is an outline of the paper. Section 2 deals with the preliminaries. The Z-property of L_{A} is covered in Section 3 and that of S_{A} is covered in Section 5. In Section 4, we study Lyapunov-like transformations. Finally, Section 6 deals with some results relating Z-property, cone spectrum, and copositivity.
2. Preliminaries. Throughout this paper, H denotes a finite dimensional real Hilbert space with inner product given by $\langle x, y\rangle$. For a set K in H, K° and K^{\perp} denote, respectively, the interior and orthogonal complement of K. For a closed convex cone K in H the dual is given by

$$
K^{*}:=\{y \in H:\langle y, x\rangle \geq 0 \forall x \in K\} .
$$

We use the notation

$$
K \ni x \perp y \in K^{*} \text { to mean that } x \in K, y \in K^{*}, \text { and }\langle x, y\rangle=0 .
$$

Recall [3] that a closed convex cone K in H is a proper cone if K is reproducing (that is, $K-K=H$) and pointed (that is, $K \cap-K=\{0\}$) (or equivalently, K and K^{*} have nonempty interiors [3]).

For a linear transformation L on H, L^{*} denotes its adjoint. It said to be

- copositive on $K($ strictly copositive on $K)$ if $\langle L(x), x\rangle \geq 0(>0)$ for all $0 \neq$ $x \in K$;
- monotone if $\langle L(x), x\rangle \geq 0$ for all $x \in H$;
- positive stable (Schur stable) if all the eigenvalues of L lie in the open righthalf plane (respectively, in the open unit disk).

In the space $H=\mathbb{R}^{n}$, vectors are written as column vectors and the usual inner product is written as $\langle x, y\rangle$ or as $x^{T} y$. Following standard terminology,

- Copositive matrices (positive semidefinite matrices) are those which are copositive on \mathbb{R}_{+}^{n} (respectively, on \mathbb{R}^{n});
- Completely positive matrices are of the form $B B^{T}$ with columns of B coming from \mathbb{R}_{+}^{n}.

Throughout this paper, K denotes a closed convex cone in H and \mathcal{C} denotes a closed convex cone in \mathbb{R}^{n}. Corresponding to \mathcal{C}, the copositive cone \mathcal{E} and the completely positive cone \mathcal{K} in \mathcal{S}^{n} are defined, respectively, by (1.2) and (1.3).

Proposition 2.1. Let L be a self-adjoint linear transformation on H that is copositive on K. Then

$$
x \in K,\langle L(x), x\rangle=0 \Rightarrow L(x) \in K^{*}
$$

Proof. Suppose $x \in K$ and $\langle L(x), x\rangle=0$. Then for any $y \in K$,

$$
0 \leq \lim _{t \downarrow 0} \frac{1}{t}\langle L(x+t y), x+t y\rangle=2\langle L(x), y\rangle
$$

This shows that $L(x) \in K^{*}$. \square
Proposition 2.2. The following statements hold:
(i) \mathcal{E} is a closed convex cone in \mathcal{S}^{n} and $\mathcal{K} \subseteq \mathcal{S}_{+}^{n} \subseteq \mathcal{E}$.
(ii) \mathcal{K} is a closed convex cone; moreover, \mathcal{K} is the dual of \mathcal{E}.
(iii) \mathcal{E} (likewise, \mathcal{K}) is proper if and only if $\mathcal{C}-\mathcal{C}=\mathbb{R}^{n}$.

Proof. Item (i) is obvious and Item (ii) is well known, see [24. We prove Item (iii). As $\mathcal{S}_{+}^{n} \subseteq \mathcal{E}$ and $\mathcal{S}_{+}^{n}-\mathcal{S}_{+}^{n}=\mathcal{S}^{n}$, we have $\mathcal{E}-\mathcal{E}=\mathcal{S}^{n}$. So, to see (iii), it is enough to show that $\mathcal{E} \cap-\mathcal{E}=\{0\}$ if and only if $\mathcal{C}-\mathcal{C}=\mathbb{R}^{n}$.

Now, let $A \in \mathcal{S}^{n}$. By an application of Proposition 2.1 with $L=A$ and $K=\mathcal{C}$, we have

$$
\begin{aligned}
A \in \mathcal{E} \cap-\mathcal{E} & \Leftrightarrow x^{T} A x=0 \forall x \in \mathcal{C} \\
& \Leftrightarrow-A x, A x \in \mathcal{C}^{*} \forall x \in \mathcal{C} \\
& \Leftrightarrow A(\mathcal{C}) \subseteq \mathcal{C}^{*} \cap-\mathcal{C}^{*}=\mathcal{C}^{\perp}=(\mathcal{C}-\mathcal{C})^{\perp} \\
& \Leftrightarrow A(\mathcal{C}-\mathcal{C}) \subseteq(\mathcal{C}-\mathcal{C})^{\perp} .
\end{aligned}
$$

Hence, when $\mathcal{C}-\mathcal{C}=\mathbb{R}^{n}$, we have $A=0$ for any $A \in \mathcal{E} \cap-\mathcal{E}$. On the other hand, when $\mathcal{C}-\mathcal{C} \neq \mathbb{R}^{n}$, (as $\mathcal{C}-\mathcal{C}$ is a subspace) there exists $0 \neq v \in(\mathcal{C}-\mathcal{C})^{\perp}$. Then $x^{T}\left(v v^{T}\right) x=0$ for all $x \in \mathcal{C}$ and so $0 \neq A=v v^{T} \in \mathcal{E} \cap-\mathcal{E}$.

Finally, \mathcal{E} is proper if and only if its dual \mathcal{K} is proper. Thus, \mathcal{K} is proper if and only if $\mathcal{C}-\mathcal{C}=\mathbb{R}^{n}$.
3. The Z-property and Lyapunov transformations. The Z-property of a matrix or a linear transformation with respect to a cone is defined by (1.1). The following result shows the importance of studying this property in dynamical systems.

Proposition 3.1. (9], [19) Suppose L is a linear transformation on H and K be a proper cone in H. Then the following are equivalent:
(a) $L \in \mathbf{Z}(K)$.
(b) $e^{-t L}(K) \subseteq K$ for all $t \geq 0$ in \mathbb{R}.
(c) The trajectory of the dynamical system $\dot{x}+L(x)=0$ with any initial point in K stays in K.

As noted in the Introduction, when $\mathcal{C}=\mathbb{R}_{+}^{n}, A \in \mathbf{Z}(\mathcal{C})$ if and only if all the off-diagonal entries of A are nonpositive. Here is a non-trivial example.

Example 3.2. Consider \mathbb{R}^{n} with $n>1$ and write any element in the form $x=\left[t, u^{T}\right]^{T}$, where $t \in \mathbb{R}$ and $u \in \mathbb{R}^{n-1}$. Let

$$
\mathcal{C}=\mathcal{L}_{+}^{n}:=\left\{x=\left[\begin{array}{c}
t \\
u
\end{array}\right]: t \geq\|u\|\right\} .
$$

This is a symmetric cone (that is, a self-dual, homogeneous, closed convex cone) in the Jordan spin algebra \mathcal{L}^{n}, called the Lorentz cone (or the second order cone or the ice-cream cone). For this (proper) cone, the copositive cone \mathcal{E}, the completely positive cone \mathcal{K}, and $\mathbf{Z}\left(\mathcal{L}_{+}^{n}\right)$ are described below.

Let $J:=\operatorname{diag}(1,-1,-1, \ldots,-1) \in \mathbb{R}^{n \times n}$ and $A \in \mathbb{R}^{n \times n}$. Then
(i) $A \in \mathcal{E}$ if and only if $A-\mu J$ is positive semidefinite for some $\mu \geq 0$, see [15, Lemma 2.2;
(ii) $A \in \mathcal{K}$ if and only if A is a (finite) sum of matrices of the form $\left[\begin{array}{cc}t^{2} & t u^{T} \\ t u & u u^{T}\end{array}\right]$, where $t \in \mathbb{R}, u \in \mathbb{R}^{n-1}$ with $t \geq\|u\| ;$
(iii) $A \in \mathbf{Z}\left(\mathcal{L}_{+}^{n}\right)$ if and only if $\alpha J-\left(J A+A^{T} J\right)$ is positive semidefinite for some $\alpha \in \mathbb{R}$, see Example 4 in [13];
(iv) $A,-A \in \mathbf{Z}\left(\mathcal{L}_{+}^{n}\right)$ if and only if $J A+A^{T} J=\alpha J$ for some $\alpha \in \mathbb{R}$.

Note: Item (ii) follows from the definition and Item $(i v)$ is a simple consequence of (iii).

We now come to one of the main results of the paper. Before stating this, we observe that for any $A \in \mathbb{R}^{n \times n}$,

$$
L_{A} \in \mathbf{Z}(\mathcal{K}) \Leftrightarrow L_{A^{T}} \in \mathbf{Z}(\mathcal{E}) .
$$

This follows easily as $\left(L_{A}\right)^{*}=L_{A^{T}}$ and $\mathcal{E}^{*}=\mathcal{K}$ in \mathcal{S}^{n}.
Theorem 3.3. For any closed convex cone \mathcal{C} in \mathbb{R}^{n},

$$
A \in \mathbf{Z}(\mathcal{C}) \Rightarrow L_{A} \in \mathbf{Z}(\mathcal{K})
$$

The reverse implication holds under the following condition on \mathcal{C} :

$$
\begin{equation*}
\mathcal{C} \ni u \perp v \in \mathcal{C}^{*}, u \neq 0 \Rightarrow \exists Y \in \mathcal{E} \text { such that } Y u=v \tag{3.1}
\end{equation*}
$$

Proof. Let $A \in \mathbf{Z}(\mathcal{C})$ and $\mathcal{K} \ni X \perp Y \in \mathcal{K}^{*}=\mathcal{E}$. Writing $X=\sum_{1}^{N} u_{i} u_{i}^{T}$, with $u_{i} \in \mathcal{C}$ for all i, we have

$$
0=\langle X, Y\rangle=\operatorname{trace}(X Y)=\sum_{1}^{N} u_{i}^{T} Y u_{i} .
$$

This implies, as Y is copositive on $\mathcal{C}, u_{i}^{T} Y u_{i}=0$ for all i. From Proposition 2.1, $v_{i}:=Y u_{i} \in \mathcal{C}^{*}$. So, for all $i, \mathcal{C} \ni u_{i} \perp v_{i} \in \mathcal{C}^{*}$. As $A \in \mathbf{Z}(\mathcal{C}), v_{i}^{T} A u_{i}=\left\langle A u_{i}, v_{i}\right\rangle \leq 0$ for all i. Now,

$$
\left\langle L_{A}(X), Y\right\rangle=2 \operatorname{trace}(A X Y)=2 \sum_{1}^{N} \operatorname{trace}\left(A u_{i} u_{i}^{T} Y\right)=2 \sum_{1}^{N} v_{i}^{T} A u_{i} \leq 0
$$

Thus, $L_{A} \in \mathbf{Z}(\mathcal{K})$.
Now to see the reverse implication, assume that \mathcal{C} satisfies (3.1), $L_{A} \in \mathbf{Z}(\mathcal{K})$, and let $u \in \mathcal{C}, v \in \mathcal{C}^{*}$ and $\langle u, v\rangle=0$. We have to show that $\langle A u, v\rangle \leq 0$. We may assume
without loss of generality, that u is nonzero. Then there exists a $Y \in \mathcal{E}$ such that $Y u=v$. We have

$$
X=u u^{T} \in \mathcal{K}, Y \in \mathcal{K}^{*}=\mathcal{E}, \quad \text { and } \quad\langle X, Y\rangle=u^{T} Y u=u^{T} v=0
$$

Hence $\operatorname{trace}\left(L_{A}(X) Y\right) \leq 0$. This leads to $\operatorname{trace}(A X Y) \leq 0$ and $\langle A u, v\rangle=v^{T} A u=$ $\operatorname{trace}(A X Y) \leq 0$. Thus, $A \in \mathbf{Z}(\mathcal{C})$.

Example 3.4. When $\mathcal{C}=\mathbb{R}^{n}$, we have $\mathcal{C}^{*}=\{0\}$ and $\mathcal{K}=\mathcal{S}_{+}^{n}$. In this case, every matrix $A \in \mathbb{R}^{n \times n}$ belongs to $\mathbf{Z}(\mathcal{C})$ and consequently, for any $A \in \mathbb{R}^{n \times n}$, both L_{A} and $-L_{A}=L_{-A}$ belong to $\mathbf{Z}\left(\mathcal{S}_{+}^{n}\right)$. Hence,

$$
\mathcal{S}_{+}^{n} \ni X \perp Y \in \mathcal{S}_{+}^{n} \Rightarrow\left\langle L_{A}(X), Y\right\rangle=0
$$

(This motivates the definition of Lyapunov-like transformations, see Section 4.)
The following example shows that the reverse implication in Theorem 3.3 may not always hold.

Example 3.5. In \mathbb{R}^{2}, let \mathcal{C} be the closed upper half-plane. In this case, \mathcal{C}^{*} is the nonnegative y-axis and $\mathcal{E}=\mathcal{S}_{+}^{2}$; hence $\mathcal{K}=\mathcal{S}_{+}^{2}$. Now consider a matrix $A \in \mathbb{R}^{2 \times 2}$ whose $(2,1)$ entry is one. Then for the standard coordinate vectors e_{1} and e_{2}, we have $\mathcal{C} \ni e_{1} \perp e_{2} \in \mathcal{C}^{*}$. However, $\left\langle A e_{1}, e_{2}\right\rangle=1$. Therefore, $A \notin \mathbf{Z}(\mathcal{C})$ while $L_{A} \in \mathbf{Z}(\mathcal{K})$.

Corollary 3.6. Suppose \mathcal{C} is a closed convex pointed cone in \mathbb{R}^{n}. Then

$$
A \in \mathbf{Z}(\mathcal{C}) \Leftrightarrow L_{A} \in \mathbf{Z}(\mathcal{K})
$$

Proof. We show that the given \mathcal{C} satisfies condition (3.1) and quote the previous theorem. To this end, let $\mathcal{C} \ni u \perp v \in \mathcal{C}^{*}, u \neq 0$. Since \mathcal{C} is pointed, \mathcal{C}^{*} has nonempty interior. Let $w \in\left(\mathcal{C}^{*}\right)^{\circ}$ such that $w^{T} u=1$. Define $Y:=v w^{T}+w v^{T}$. Clearly $Y \in \mathcal{S}^{n}$ and for all $x \in \mathcal{C}$,

$$
x^{T} Y x=x^{T} v w^{T} x+x^{T} w v^{T} x \geq 0
$$

thus, $Y \in \mathcal{E}$. Also, $Y u=v w^{T} u+w v^{T} u=v$.

Our next objective is to present a result that extends the results of Lyapunov and Moldovan-Gowda. First, we recall a basic result on Z-transformations.

Proposition 3.7. ([3], [13]) Suppose L is a linear transformation on $H, K a$ proper cone in H, and $L \in \mathbf{Z}(K)$. Then the following are equivalent:
(1) There exists $d \in K^{\circ}$ such that $L(d) \in K^{\circ}$.
(2) L is invertible with $L^{-1}\left(K^{\circ}\right) \subseteq K^{\circ}$.
(3) L is positive stable.
(4) $L+t I$ is invertible for all $t \in[0, \infty)$.
(5) All real eigenvalues of L are positive.
(6) There exists $e \in\left(K^{*}\right)^{\circ}$ such that $L^{*}(e) \in\left(K^{*}\right)^{\circ}$.

Moreover, when $H=\mathbb{R}^{n}, K=\mathbb{R}_{+}^{n}$, and $L=A$, the above properties (for a \mathbf{Z}-matrix A) are further equivalent to
(7) A is a \mathbf{P}-matrix, that is, all principal minors of A are positive.
(8) There exists a positive definite diagonal matrix D in \mathcal{S}^{n} such that $A D+D A^{T}$ is positive definite.

As a consequence, we have the following.
THEOREM 3.8. Suppose \mathcal{C} is a closed convex cone in \mathbb{R}^{n} such that $\mathcal{C}-\mathcal{C}=\mathbb{R}^{n}$. Then the following are equivalent:
(a) A is positive stable.
(b) The system $\dot{x}+A x=0$ is asymptotically stable in \mathcal{C} (that is, from any starting point in \mathcal{C}, its trajectory converges to the origin).

When $A \in \mathbf{Z}(\mathcal{C})$, these are further equivalent to:
(c) There exists $D \in \mathcal{K}^{\circ}$ such that $A D+D A^{T} \in \mathcal{K}^{\circ}$.
(d) There exists $D \in \mathcal{E}^{\circ}$ such that $A^{T} D+D A \in \mathcal{E}^{o}$.

If, in addition, \mathcal{C} is also proper, then the above conditions are equivalent to
(e) There exists $d \in \mathcal{C}^{\circ}$ such that $A d \in \mathcal{C}^{\circ}$.

Proof. The proof of $(a) \Rightarrow(b)$ is standard, see the proof of Theorem 3.1 in [7. The proof of $(b) \Rightarrow(a)$ is as in [7, except that the starting point should be allowed to vary in the interior of \mathcal{C} (which is nonempty because $\mathcal{C}-\mathcal{C}=\mathbb{R}^{n}$).

Now assume that $A \in \mathbf{Z}(\mathcal{C})$. Since $\mathcal{C}-\mathcal{C}=\mathbb{R}^{n}$, by Proposition 2.2, both \mathcal{E} and \mathcal{K} are proper; hence they have nonempty interiors. Also, since $A \in \mathbf{Z}(\mathcal{C})$, by Theorem 3.3, $L_{A} \in \mathbf{Z}(\mathcal{K})$ and $L_{A^{T}} \in \mathbf{Z}(\mathcal{E})$. Since the eigenvalues of L_{A} on \mathcal{S}^{n} are of the form $\lambda+\bar{\mu}$, where λ and μ are eigenvalues of A, see [26], it follows that A is positive stable if and only if L_{A} is positive stable. Now the equivalence of Items $(a),(c)$, and (d) follows from the previous result applied to L_{A} on \mathcal{K}.

When \mathcal{C} is proper, the previous result can be applied to A and \mathcal{C} (note that $\mathbf{Z}(\mathcal{C})$) to get the equivalence of (a) and (e).

REmARK 3.9. (i) In Item (d) of the above theorem, the matrix $D \in \mathcal{E}^{o}$ is necessarily strictly copositive on \mathcal{C} : For any nonzero $u \in \mathcal{C}, u^{T}(D-\varepsilon I) u \geq 0$ for small $\varepsilon>0$.
(ii) When $\mathcal{C}-\mathcal{C}=\mathbb{R}^{n}$ and $A \in \mathbf{Z}(\mathcal{C})$, the equation

$$
A^{T} X+X A=Y, \quad Y \text { strictly copositive on } \mathcal{C}
$$

has a unique solution X which is also strictly copositive on \mathcal{C} for some Y (equivalently for all Y) if and only if A is positive stable. This follows from Items (1) and (2) in Proposition 3.7 with $K=\mathcal{E}$ and $L=L_{A^{T}}$. When \mathcal{C} is proper and A is positive stable, this unique solution is given by

$$
X=\int_{0}^{\infty} e^{-t A^{T}} Y e^{-t A} d t
$$

(iii) The results of Lyapunov and Moldovan-Gowda (stated in the Introduction) follow by taking $\mathcal{C}=\mathbb{R}^{n}$ and $\mathcal{C}=\mathbb{R}_{+}^{n}$ respectively.
(iv) Suppose \mathcal{C} is proper. When the conditions of the above result are in place, (any) trajectory of the system $\dot{x}+A x=0$ from any starting point in \mathcal{C} stays in \mathcal{C} and converges to the origin as $t \rightarrow \infty$. In this setting, $f(x):=d^{T} x$ (with d as in Item (e)) acts as a linear Lyapunov function and $g(x):=x^{T} D x$ (with D as in Item (d)) acts as a quadratic Lyapunov function.
(v) Instead of our condition $\mathcal{C}-\mathcal{C}=\mathbb{R}^{n}$ in Theorem 3.8, Stern 23] assumes that \mathcal{C} in \mathbb{R}^{n} satisfies $\mathcal{C} \cap-\mathcal{C}=\{0\}$. He proves that when $A \in \mathbf{Z}(\mathcal{C})$ and $\mathcal{C} \cap-\mathcal{C}=\{0\}$, the system $\dot{x}+A x=0$ is asymptotically stable if and only if the following implication holds:

$$
[x \in \mathcal{C},-A x \in \mathcal{C}] \Rightarrow x=0
$$

It may be noted that if, in addition, $\mathcal{C}-\mathcal{C}=\mathbb{R}^{n}$, that is, if \mathcal{C} is proper, then the above condition is equivalent to Item (e) in Theorem 3.8.

The following result (partially) answers a question of Bundfuss and Dür [5]:
Corollary 3.10. Suppose $\mathcal{C}=M\left(\mathbb{R}_{+}^{m}\right)$ is a polyhedral cone in \mathbb{R}^{n}, where M is an $n \times m$-matrix. Assume that M has rank n and $A \in \mathbf{Z}(\mathcal{C})$. Then there exists a symmetric matrix D such that D and $A^{T} D+D A$ are strictly copositive on \mathcal{C} if and only if A is positive stable.
4. Lyapunov-like transformations. Motivated by Example 3.4, a linear transformation L on H is said to be Lyapunov-like with respect to a closed convex cone K in H if both L and $-L$ have the Z-property on K. This simply means that

$$
K \ni x \perp y \in K^{*} \Rightarrow\langle L(x), y\rangle=0
$$

For any matrix $A \in \mathbb{R}^{n \times n}$, the Lyapunov transformation L_{A} is Lyapunov-like with respect to \mathcal{S}_{+}^{n} in \mathcal{S}^{n} (see Example 3.4). In the setting of the cone \mathbb{R}_{+}^{n} in \mathbb{R}^{n}, Lyapunov-
like matrices are just diagonal matrices. Because of Proposition 3.1, Lyapunov-like transformations are intimately connected to automorphism groups and Lie algebras.

In the rest of this section, we assume that \mathcal{C} is a proper cone in \mathbb{R}^{n} and use the notation $\mathcal{B}\left(\mathcal{S}^{n}, \mathcal{S}^{n}\right)$ to denote the set of all (bounded) linear transformations on \mathcal{S}^{n}. We consider two automorphism groups:

- $\operatorname{Aut}(\mathcal{C}):=\left\{A \in \mathbb{R}^{n \times n}: A(\mathcal{C})=\mathcal{C}\right\}$.
- $\operatorname{Aut}(\mathcal{K}):=\left\{L \in \mathcal{B}\left(\mathcal{S}^{n}, \mathcal{S}^{n}\right): L(\mathcal{K})=\mathcal{K}\right\}$.
(Note that elements of these groups are necessarily invertible, as \mathcal{C} and \mathcal{K} have nonempty interiors.) Since these groups can be regarded as matrix groups, the corresponding Lie algebras are given, see [2], by:
- $\operatorname{Lie}(\operatorname{Aut}(\mathcal{C})):=\left\{A \in \mathbb{R}^{n \times n}: e^{t A} \in \operatorname{Aut}(\mathcal{C}) \forall t \in \mathbb{R}\right\}$.
- $\operatorname{Lie}(A u t(\mathcal{K})):=\left\{L \in \mathcal{B}\left(\mathcal{S}^{n}, \mathcal{S}^{n}\right): e^{t L} \in \operatorname{Aut}(\mathcal{K}) \forall t \in \mathbb{R}\right\}$.

Note that in these Lie algebras, the Lie bracket is the one induced by the (associative) product of matrices/transformations: $[A, B]=A B-B A$, etc.
In view of Proposition 3.1 we have

$$
A,-A \in \mathbf{Z}(\mathcal{C}) \Leftrightarrow A \in \operatorname{Lie}(A u t(\mathcal{C})) \quad \text { and } \quad L,-L \in \mathbf{Z}(\mathcal{K})) \Leftrightarrow L \in \operatorname{Lie}(\operatorname{Aut}(\mathcal{K}))
$$

Theorem 4.1. For any proper cone \mathcal{C} in \mathbb{R}^{n}, the mapping $A \mapsto L_{A}$ is an injective Lie algebra homomorphism from Lie $(\operatorname{Aut}(\mathcal{C}))$ to $\operatorname{Lie}(\operatorname{Aut}(\mathcal{K}))$.

Proof. For $A \in \operatorname{Lie}(\operatorname{Aut}(\mathcal{C}))$, we have $A,-A \in \mathbf{Z}(\mathcal{C})$. By Theorem 3.3, $L_{A},-L_{A} \in$ $\mathbf{Z}(\mathcal{K})$, that is, $L_{A} \in \operatorname{Lie}(\operatorname{Aut}(\mathcal{K}))$. Clearly, the mapping $A \mapsto L_{A}$ is linear. That it is a Lie algebra homomorphism follows from the identity $L_{[A, B]}=\left[L_{A}, L_{B}\right]$. To show that this is injective, suppose $L_{A}=0$, that is, $A X+X A^{T}=0$ for all $X \in \mathcal{S}^{n}$. By taking $X=I$ (Identity), we see that $A+A^{T}=0$, that is, A is skew-symmetric. By taking X to be a diagonal matrix with distinct elements, we see that $A=0$.
5. The Z-property of Stein transformations. Recall that for a matrix $A \in$ $\mathbb{R}^{n \times n}$, the corresponding Stein transformation S_{A} is defined on \mathcal{S}^{n} by $S_{A}(X):=$ $X-A X A^{T}$. We also recall that $\Pi(\mathcal{C}):=\left\{A \in \mathbb{R}^{n \times n}: A(\mathcal{C}) \subseteq \mathcal{C}\right\}$. As in the case of Lyapunov transformations, we have $S_{A} \in \mathbf{Z}(\mathcal{K}) \Leftrightarrow S_{A^{T}} \in \mathbf{Z}(\mathcal{E})$.

Theorem 5.1. Let \mathcal{C} be any closed convex cone in \mathbb{R}^{n}. Then

$$
\pm A \in \Pi(\mathcal{C}) \Rightarrow S_{A} \in \mathbf{Z}(\mathcal{K})
$$

Proof. Without loss of generality, let $A \in \Pi(\mathcal{C})$. Let $X=\sum_{1}^{N} u_{i} u_{i}^{T} \in \mathcal{K}$, $Y \in \mathcal{K}^{*}=\mathcal{E}$, and $\langle X, Y\rangle=0$, where $u_{i} \in \mathcal{C}$ for all i. Then $w_{i}:=A u_{i} \in \mathcal{C}$ for all i.

Now, as Y is copositive on \mathcal{C},

$$
\operatorname{trace}\left(A X A^{T} Y\right)=\sum_{1}^{N} w_{i}^{T} Y w_{i} \geq 0
$$

Hence

$$
\left\langle S_{A}(X), Y\right\rangle=\langle X, Y\rangle-\left\langle A X A^{T}, Y\right\rangle=-\operatorname{trace}\left(A X A^{T} Y\right) \leq 0
$$

This proves that $S_{A} \in \mathbf{Z}(\mathcal{K})$.
Example 5.2. By taking $\mathcal{C}=\mathbb{R}^{n}$ in the above theorem, we see that for any matrix $A \in \mathbb{R}^{n \times n}, S_{A} \in \mathbf{Z}\left(\mathcal{S}_{+}^{n}\right)$. Now, let \mathcal{C} be the closed upper half-plane in \mathbb{R}^{2} so that $\mathcal{K}=\mathcal{E}=\mathcal{S}_{+}^{2}$. Then for any 2×2 real matrix $A, S_{A} \in \mathbf{Z}\left(\mathcal{S}_{+}^{2}\right)$, while it is easy to construct a 2×2 real matrix which is not in $\Pi(\mathcal{C})$. Thus, the converse in the above theorem does not hold.

Analogous to Theorem 3.8 we have
TheOrem 5.3. Suppose \mathcal{C} is a closed convex cone in \mathbb{R}^{n} such that $\mathcal{C}-\mathcal{C}=\mathbb{R}^{n}$. Then the following are equivalent:
(a) A is Schur stable.
(b) The system $x(k+1)=A x(k), k=0,1,2, \ldots$ is asymptotically stable in \mathcal{C} (that is, from any starting point in \mathcal{C}, its trajectory converges to the origin).

When $\pm A \in \Pi(\mathcal{C})$, these are further equivalent to:
(c) There exists $D \in \mathcal{K}^{\circ}$ such that $S_{A}(D) \in \mathcal{K}^{\circ}$.
(d) There exists $D \in \mathcal{E}^{\circ}$ such that $S_{A^{T}}(D) \in \mathcal{E}^{o}$.

Note: S_{A} is positive stable if and only if A is Schur stable, see 10 .
6. Cone spectrum, copositivity, and Z-transformations. In this section, we relate the Z-property, copositivity, and cone spectrum. Let L be a linear transformation on H and K be a nonzero closed convex cone in H. Then the cone spectrum [21] of L with respect to K is the set of all real λ for which there is an x such that

$$
0 \neq x \in K, L(x)-\lambda x \in K^{*} \quad \text { and } \quad\langle x, L(x)-\lambda x\rangle=0 .
$$

We denote this set by $\sigma(L, K)$.
The following result gives the nonemptyness of the cone spectrum.
Proposition 6.1. Let K be a nonzero closed convex cone in H and L be linear on H.
(i) If K is proper, then $\sigma(L, K) \neq \emptyset$.
(ii) If L is self-adjoint, then $\sigma(L, K) \neq \emptyset$; In fact,

$$
\lambda^{*}:=\min \{\langle L(x), x\rangle: x \in K,\|x\|=1\} \in \sigma(L, K) .
$$

Proof. The proof of (i) is given in [20], Corollary 2.1. While a proof of $(i i)$ is given in [14, Corollary 2.4 and [21, Example 1, we offer a direct and simple proof. Let $\lambda^{*}=\left\langle L\left(x^{*}\right), x^{*}\right\rangle$, where $x^{*} \in K$ with $\left\|x^{*}\right\|=1$. Define $S:=L-\lambda^{*} I$. Then for all $0 \neq x \in K$, we have

$$
\langle S(x), x\rangle=\|x\|^{2}\left\{\left\langle L\left(\frac{x}{\|x\|}\right), \frac{x}{\|x\|}\right\rangle-\lambda^{*}\right\} \geq 0 .
$$

This means that the self-adjoint transformation S is copositive on K. Since $\left\langle S\left(x^{*}\right), x^{*}\right\rangle=0$, we have, from Proposition 2.1, $y^{*}=S\left(x^{*}\right) \in K^{*}$. Thus, we have

$$
x^{*} \in K, y^{*}:=L\left(x^{*}\right)-\lambda^{*} x^{*} \in K^{*} \quad \text { and } \quad\left\langle x^{*}, y^{*}\right\rangle=0 .
$$

Hence, $\lambda^{*} \in \sigma(L, K)$.
The above result, together with the observation that every $\lambda \in \sigma(L, K)$ is of the form $\lambda=\frac{\langle L(x), x\rangle}{\|x\|^{2}}$ for some nonzero $x \in K$, gives the following:

Corollary 6.2. Suppose $\sigma(L, K)$ is nonempty. If L is copositive on K, then $\lambda \geq 0 \quad$ for all $\quad \lambda \in \sigma(L, K)$. The converse holds when L is self-adjoint.

In what follows, we write $\sigma(L)$ for the spectrum of L.
Theorem 6.3. Suppose K is proper and $L \in \mathbf{Z}(K)$. Then

$$
\min \operatorname{Re} \sigma(L) \in \sigma(L, K) \subseteq \sigma(L)
$$

Proof. Let $\mu^{*}:=\min \{\operatorname{Re} \lambda: \lambda \in \sigma(L)\}$. Since K is proper and $L \in \mathbf{Z}(K)$, by Theorem 6 in [19], there exists a nonzero $u \in K$ such that $L(u)=\mu^{*} u$. Clearly, $\mu^{*} \in \sigma(L, K)$. This proves the first part of the inclusion. The second part is proved in Theorem 9, [27]; Here is its short proof: Let $\mu \in \sigma(L, K)$ so that for some nonzero $x \in K, y=L(x)-\mu x \in K^{*}$ and $\langle x, y\rangle=0$. As $L-\mu I \in \mathbf{Z}(K),\langle(L-\mu I) x, y\rangle \leq 0$. This leads to $y=0$, that is, $L(x)=\mu x$ proving $\mu \in \sigma(L)$.

Remark 6.4. In Theorem 3.8, the equivalence of (a) and (d) was proved under the assumptions that $\mathcal{C}-\mathcal{C}=\mathbb{R}^{n}$ and $A \in \mathbf{Z}(\mathcal{C})$. When \mathcal{C} is proper and $A \in \mathbf{Z}(\mathcal{C})$, the following simple proof (an adaptation of the standard argument) can be given. We only prove the implication $(d) \Rightarrow(a)$. Assume that for some (symmetric) D that is strictly copositive on $\mathcal{C}, A^{T} D+D A=Y$ is also strictly copositive on \mathcal{C}. Let $\mu^{*}=\min \operatorname{Re} \sigma(A)$ so that by Theorem 6 in [19, there is a nonzero $u \in \mathcal{C}$ such that $A u=\mu^{*} u$. Then $0<u^{T} Y u=u^{T}\left(A^{T} D+D A\right) u=2 \mu^{*} u^{T} D u$. Since $u^{T} D u$ is also positive, we see that $\mu^{*}>0$. This means that A is positive stable.

The following result extends a result of J. Tao [25] proved in the setting of symmetric cones.

Corollary 6.5. Let K be proper, $L \in \mathbf{Z}(K)$ and copositive on K. Then L is semi-positive stable (that is, all eigenvalues of L lie in the closed right-half plane). If, in addition, L is self-adjoint or K is self-dual, then L is monotone.

Proof. That L is semi-positive stable follows from Corollary 6.2 and Theorem 6.3. If L is self-adjoint, then all eigenvalues of L are nonnegative, and hence L is monotone. When K is self dual, $L \in \mathbf{Z}(K) \Leftrightarrow L^{*} \in \mathbf{Z}\left(K^{*}\right) \Leftrightarrow L^{*} \in \mathbf{Z}(K)$. In this case, $L+L^{*}$ is self-adjoint, copositive on K, and belongs to $\mathbf{Z}(K)$. By the previous case, $L+L^{*}$ (and hence L) is monotone.

A concluding remark. In a follow up paper [12], it is shown that the mapping $A \mapsto L_{A}$ in Theorem 4.1 is actually a bijection.

Acknowledgments. Thanks are due to a referee for his/her comments and suggestions.

REFERENCES

[1] F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim., 5:13-51, 1995.
[2] A. Baker. Matrix Groups. Springer, London, 2002.
[3] A. Berman and R.J. Plemmons. Nonnegative Matrices in Mathematical Sciences. SIAM, Philadelphia, 1994.
4] A. Berman and N. Shaked-Monderer. Completely Positive Matrices. World Scientific, New Jersey, 2003.
[5] S. Bundfuss and M. Dür. Copositive Lyapunov functions for switched systems over cones. Systems Control Lett., 58:342-345, 2009.
[6] S. Burer. On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program., Ser. A, 120:479-495, 2009.
[7] B.N. Datta. Stability and inertia. Linear Algebra Appl., 302/303:563-600, 1999.
[8] G. Eichfelder and J. Povh. On reformulations of nonconvex quadratic programs over convex cones by set-semidefinite constraints. Research Report, Department of Mathematics, University of Erlangen-Nuremberg, Erlangen, Germany, December 9, 2010.
[9] L. Elsner. Quasimonotonie und Ungleishchungen in halbgeordneten Räumen. Linear Algebra Appl., 8:249-261, 1974.
[10] M.S. Gowda and T. Parthasarathy. Complementarity forms of theorems of Lyapunov and Stein, and related results. Linear Algebra Appl., 320:131-144, 2000.
[11] M.S. Gowda and Y. Song. On semidefinite linear complementarity problems. Math. Program., Ser. A, 88:575-587, 2000.
[12] M.S. Gowda, R. Sznajder, and J. Tao. The automorphism group of a completely positive cone and its Lie algebra. Linear Algebra Appl., to appear. Availiable at http://dx.doi.org/10.1016/j.laa.2011.10.006.
[13] M.S. Gowda and J. Tao. Z-transformations on proper and symmetric cones. Math. Program., Ser. B, 117:195-221, 2009.
[14] P. Lavilledieu and A. Seeger. Existence de valeurs propres pour les systémes multivoques: Résultats anciens et nouveaux. Ann. Sci. Math. Québec., 25:47-70, 2001.
[15] R. Loewy and H. Schneider. Positive operators on the n-dimensional ice cream cone. J. Math. Anal. Appl., 49:375-392, 1975.
[16] A.M. Lyapunov. Probléme général de la stabilité du mouvement. Ann. Fac. Sci. Toulouse, 9:203-474, 1907.
[17] O. Mason and R. Shorten. On linear copositive Lyapunov functions and the stability of switched positive linear systems. IEEE Trans. Automat. Control, 52:1346-1349, 2007.
[18] M.M. Moldovan and M.S. Gowda. On common linear/quadratic Lyapunov functions for switched linear systems. Nonlinear Analysis and Variational Problems, Springer Optim. Appl., Springer, New York, 35:415-429, 2010.
[19] H. Schneider and M. Vidyasagar. Cross-positive matrices. SIAM J. Numer. Anal., 7:508-519, 1970.
[20] A. Seeger. Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl., 292:1-14, 1999.
[21] A. Seeger and M. Torki. On eigenvalues induced by a cone constraint. Linear Algebra Appl., 372:181-206, 2003.
[22] P. Stein. Some general theorems on iterants. J. Research Nat. Bur. Standards, 48:82-83, 1952.
[23] R. Stern. A note on positively invariant cones, Appl. Math. Optim., 9:67-72, 1982.
[24] J.F. Sturm and S. Zhang. On cones of nonnegative quadratic functions. Math. Oper. Res., 28:246-267, 2003.
[25] J. Tao. Pseudomonotonicity and related properties in Euclidean Jordan algebras. Electron. J. Linear Algebra, 22:225-251, 2011.
[26] O. Taussky and H. Wielandt. On the matrix function $A X+X^{\prime} A^{\prime}$. Arch. Rational Mech. Anal., 9:93-96, 1962.
[27] Y. Zhou and M.S. Gowda. On the finiteness of the cone spectrum of certain linear transformations on Euclidean Jordan algebras. Linear Algebra Appl., 431:772-782, 2009.

[^0]: *Received by the editors on April 15, 2011. Accepted for publication on November 20, 2011. Handling Editor: Bit-Shun Tam.
 ${ }^{\dagger}$ Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA (gowda@math.umbc.edu).

