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ON COPOSITIVE AND COMPLETELY POSITIVE CONES,
AND Z-TRANSFORMATIONS*

M. SEETHARAMA GOWDAT

Abstract. A well-known result of Lyapunov on continuous linear systems asserts that a real
square matrix A is positive stable if and only if for some symmetric positive definite matrix X,
AX + X AT is also positive definite. A recent result of Moldovan-Gowda says that a Z-matrix A is
positive stable if and only if for some symmetric strictly copositive matrix X, AX + X AT is also
strictly copositive. In this paper, these results are unified/extended by replacing R™ and R? by a
closed convex cone C satisfying C—C = R". This is achieved by relating the Z-property of a matrix on
this cone with the Z-property of the corresponding Lyapunov transformation L4 (X) := AX + XAT
on the completely positive cone of C and the Z-property of L 4r on the copositive cone of C in S™
(the space of all real n X n symmetric matrices). A similar analysis is carried out for the Stein
transformation S4(X) = X — AXAT.

Key words. Copositive matrix, Copositive and completely positive cones, Z-transformation,
Lyapunov and Stein transformations.
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1. Introduction. Given a closed convex cone K in a real finite dimensional
Hilbert space (H, (,-)), and a linear transformation L on H, we say that L has the
Z-property on K (or that it is a Z-transformation on K) and write L € Z(K) if

(1.1) [xe K,y e K*, and (z,y) = 0] = (L(x),y) <0,

where K* denotes the dual cone of K. As a generalization of a Z-matrix (which is a
real square matrix with nonpositive off-diagonal entries), such transformations were
introduced in [I9] in the form of cross-positive matrices. Z-matrices/transformations
have numerous properties and appear in many areas, e.g., see [3], [I3]. Our motivation
for this article comes from dynamical systems. Consider S™, the space of all n x n
real symmetric matrices, with the inner product (X,Y) = trace(XY) and the cone
S% of all positive semidefinite matrices in S". Then for any matrix A € R"*", the
Lyapunov transformation L4 and Stein transformation Sa, respectively defined on
S" by

La(X):=AX +XAT and Ss(X):=X - AXA",
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are Z-transformations on St [13]. These transformations have been well studied
in dynamical systems theory, starting from Lyapunov’s paper [I6] on continuous dy-
namical systems and Stein’s paper [22] on discrete dynamical systems. The celebrated
result of Lyapunov deals with the stability of the linear system & + Az = 0, and, in
particular with the equivalence of the following statements [7]:

(i) The system & + Az = 0 is asymptotically stable in R™ (which means that
the trajectory of the system from any starting point in R™ converges to the
origin as t — 00).

(i) A is positive stable (that is, all eigenvalues of A lie in the open right-half
plane).

(#9) There exists X € 8™ such that X and L4(X) are positive definite.
(i) For every positive definite Y € 8™, the equation L4(X) =Y has a (unique)
positive definite solution X in S".

For a discrete system of the form z(k 4+ 1) = Az(k), k = 1,2, ..., similar equivalent
statements can be made by replacing the positive stability of A with Schur stability
of A (which means that all eigenvalues of A lie in the open unit disk) and L4 by S4.

Now consider a linear system & + Ax = 0 whose trajectories are constrained to
lie in the nonnegative orthant R’} . It is well known that this can happen if and only
if A is a Z-matrix. Analogous to Lyapunov’s result, we have the equivalence of the
following when A is a Z-matrix:

(7) The system @ + Az = 0 is asymptotically stable in R}.
(i) A is positive stable.
(i) There exists X € S™ such that X and L4(X) are strictly copositive on R}.
(i) For every Y € S™ that is strictly copositive on R}, the equation La(X) =Y
has a (unique) strictly copositive solution X in S™.
(v) There exists a vector d > 0 (i.e., d belongs to the interior of R’) such that
Ad > 0.

Here, the strict copositivity (copositivity) of X on R} is defined by: 2T Xz >0 (>0),
for all 0 # = € R’}. The equivalence of Items (i), (i), and (v) is well known in the
literature, e.g., see [I7]. The new items (iii) and (iv) were proved by Moldovan

and Gowda [18] by relying on the equivalence of the following statements for any
A € R™*m™:

(a) A is a Z-matrix.
(b) L4 has the Z-property on the cone of completely positive matrices in S™.
(¢) Lr has the Z-property on the cone of copositive matrices in S™.

In a recent article [5], Bundfuss and Diir raise the question of studying the dynamics
of &+ Az = 0 which is constrained to a (polyhedral) cone K by asking for the existence
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of a symmetric matrix X that is strictly copositive on K for which AX + X AT is
also strictly copositive on K. Motivated by the similarities in the above results of
Lyapunov and Moldovan-Gowda, and the question of Bundfuss and Diir, in this paper,
we present a unifying result (Theorem B.8)) by relating the Z-property of a matrix A
on a closed convex cone in R™ with the Z-property of L4 (L 4r) on the corresponding
completely positive cone (respectively, copositive cone) in S™.

Consider R™ with the usual inner product. Given a closed convex cone C in R"
with dual C*, we consider two related cones in S™: The copositive cone of C defined
by

(1.2) & = copos(C) := {A € 8" : A copositive on C}
and the completely positive cone of C defined by
(1.3) K = compos(C) := {BB" : columns of B belong to C }.

When C = R", these two cones reduce to St which is the underlying cone in semidef-
inite programming and semidefinite linear complementarity problems [I], [10], [I1].
In the case of C = R”}, these cones reduce, respectively, to the cones of copositive
matrices and completely positive matrices which have appeared prominently in sta-
tistical and graph theoretic literature [4] and (recently) in the study of (combinatorial)
optimization problems [6], []].

With the notation L € Z(K) to mean that the transformation L has the Z-
property on K and L € II(K) to mean that L(K) C K, we show in this article (see
Theorems B3] and E]) that

A€Z(C)=LaceZ(K)& Lyr €Z(€) and
AeTI(C) = Sa € Z(K) & Sar € Z(E).

These results, along with the properties of Z-transformations, will allow us to extend
the results of Lyapunov and Moldovan-Gowda, and (partially) answer the question of
Bundfuss and Diir.

Here is an outline of the paper. Section 2 deals with the preliminaries. The
Z-property of L4 is covered in Section 3 and that of S4 is covered in Section 5. In
Section 4, we study Lyapunov-like transformations. Finally, Section 6 deals with some
results relating Z-property, cone spectrum, and copositivity.

2. Preliminaries. Throughout this paper, H denotes a finite dimensional real
Hilbert space with inner product given by (z,y). For aset K in H, K° and K denote,
respectively, the interior and orthogonal complement of K. For a closed convex cone
K in H the dual is given by

K*:={yeH:(yz)>0Vre K}.
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We use the notation
K>z 1l ye K* tomean that x € K, y € K*, and (z,y) = 0.

Recall [3] that a closed convex cone K in H is a proper cone if K is reproducing (that
is, K — K = H) and pointed (that is, K " —K = {0}) (or equivalently, K and K*
have nonempty interiors [3]).

For a linear transformation L on H, L* denotes its adjoint. It said to be

e copositive on K (strictly copositive on K) if (L(x),z) > 0 (> 0) for all 0 #
z e K;

e monotone if (L(x),z) >0 for all z € H;

e positive stable (Schur stable) if all the eigenvalues of L lie in the open right-
half plane (respectively, in the open unit disk).

In the space H = R™, vectors are written as column vectors and the usual inner
product is written as (x,y) or as 27y. Following standard terminology,

e Copositive matrices (positive semidefinite matrices) are those which are copos-
itive on R"} (respectively, on R™);

e Completely positive matrices are of the form BBT with columns of B coming
from R’} .

Throughout this paper, K denotes a closed conver cone in H and C denotes a
closed convex cone in R™. Corresponding to C, the copositive cone £ and the completely
positive cone K in 8™ are defined, respectively, by ([[2) and (L3).

PROPOSITION 2.1. Let L be a self-adjoint linear transformation on H that is
copositive on K. Then

x € K,(L(z),z) =0= L(z) € K*.

Proof. Suppose x € K and (L(z),z) = 0. Then for any y € K,

0< lim%<L(:E +ty), x +ty) = 2(L(x),y).

£10
This shows that L(z) € K*. O
PROPOSITION 2.2. The following statements hold:

(i) &€ is a closed convex cone in 8™ and K C S} C E.
(i1) K is a closed convexr cone; moreover, K is the dual of €.
(ti1) & (likewise, K) is proper if and only if C — C = R™.
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Proof. Ttem (i) is obvious and Item (i¢) is well known, see [24]. We prove Item
(i17). As S C £ and ST — St = S™, we have £ — & = S™. So, to see (iii), it is enough
to show that £ N —& = {0} if and only if C — C = R".

Now, let A € 8. By an application of Proposition 2] with L = A and K = C,
we have

Acén-Ee 2TAz=0vzeC
& —An,AzeC*VreC
& AC)ccrn-cr=Ct=(-0)*
& AlC-C)C(C-0C)* .

Hence, when C — C = R™, we have A = 0 for any A € £ N —&. On the other
hand, when C — C # R™, (as C — C is a subspace) there exists 0 # v € (C —C)*1. Then
2T (vvT)z =0 forall z € Cand so 0 # A = vvT € EN €.

Finally, £ is proper if and only if its dual K is proper. Thus, K is proper if and
onlyif C—C=R". 0O

3. The Z-property and Lyapunov transformations. The Z-property of a
matrix or a linear transformation with respect to a cone is defined by (IIl). The
following result shows the importance of studying this property in dynamical systems.

ProrosiTION 3.1. ([9], [19]) Suppose L is a linear transformation on H and K
be a proper cone in H. Then the following are equivalent:

(a) L € Z(K).

(b) e "(K) C K for allt >0 in R.

(c) The trajectory of the dynamical system &+ L(x) = 0 with any initial point in
K stays in K.

As noted in the Introduction, when C = R%, A € Z(C) if and only if all the
off-diagonal entries of A are nonpositive. Here is a non-trivial example.

ExaMpPLE 3.2. Consider R™ with n > 1 and write any element in the form
x = [t,uT}T, where ¢t € R and v € R*7L. Let

czci:{xz{i}ﬁzHW}-

This is a symmetric cone (that is, a self-dual, homogeneous, closed convex cone) in
the Jordan spin algebra £", called the Lorentz cone (or the second order cone or the
ice-cream cone). For this (proper) cone, the copositive cone £, the completely positive
cone K, and Z(L" ) are described below.

Let J :=diag(1,—1,-1,...,—1) e R™*™ and A € R"*". Then
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(1) A€ & if and only if A — pJ is positive semidefinite for some p > 0, see [15],
Lemma 2.2;

T

2 T
(t4) A € Kif and only if A is a (finite) sum of matrices of the form { fu f;; ] ;

where t € R, u € R"~! with ¢ > ||ull;

(iii) A € Z(L7) if and only if aJ — (JA+ ATJ) is positive semidefinite for some
a € R, see Example 4 in [13];

(iv) A,—A € Z(L") if and only if JA + AT J = aJ for some «a € R.

Note: Item (i7) follows from the definition and Item (4v) is a simple consequence
of (it7).

We now come to one of the main results of the paper. Before stating this, we
observe that for any A € R"*",

LaeZ(K) s Lar € Z(E).
This follows easily as (La)* = Lar and £* = K in S™.
THEOREM 3.3. For any closed convex cone C in R™,
AcZ(C)= L e Z(K).
The reverse implication holds under the following condition on C:

(3.1) Coulvel u#0 = 3Y €& such that Yu = .

Proof. Let A€ Z(C) and L5 X LY € K* = £. Writing X = Ziv u;ul, with

7

u; € C for all ¢, we have
N
0=(X,Y) =trace(XY) = Z ulYu,.
1

This implies, as Y is copositive on C, ulYu; = 0 for all i. From Proposition 2]
v = Yu; €C*. So, for all i, C > u; L v; € C*. As A € Z(C), vl Au; = (Auy,v;) <0
for all i. Now,

N N
(La(X),Y) =2 trace(AXY) = 2Ztrace(AuiuiTY) = 2ZviTAui <0.
1 1
Thus, La € Z(K).

Now to see the reverse implication, assume that C satisfies 3.1I), L4 € Z(K), and
let w € C, v €C* and (u,v) = 0. We have to show that (Au,v) < 0. We may assume



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 23, pp. 198-211, February 2012

204 M.S. Gowda

without loss of generality, that u is nonzero. Then there exists a Y € &£ such that
Yu =wv. We have

X=uwl ek, Yek*=¢& and (X, Y)=u'Yu=uTv=0.
Hence trace(La(X)Y) < 0. This leads to trace(AXY) < 0 and (Au,v) = vTAu =
trace(AXY) < 0. Thus, A € Z(C). O

EXAMPLE 3.4. When C = R", we have C* = {0} and K = S . In this case, every
matrix A € R"*™ belongs to Z(C) and consequently, for any A € R™*" both L4 and
—L g = L_4 belong to Z(SY). Hence,

SI32X 1LY e8! = (La(X),Y)=0.
(This motivates the definition of Lyapunov-like transformations, see Section 4.)

The following example shows that the reverse implication in Theorem may
not always hold.

ExXAMPLE 3.5. In R2, let C be the closed upper half-plane. In this case, C* is
the nonnegative y-axis and £ = Sf_; hence K = Sf_. Now consider a matrix A € R?*2
whose (2,1) entry is one. Then for the standard coordinate vectors e; and ez, we have
C >ey L ey €C*. However, (Aey,es) = 1. Therefore, A ¢ Z(C) while L € Z(K).

COROLLARY 3.6. Suppose C is a closed convex pointed cone in R™. Then

A€eZ(C)e Ly e ZL(K).

Proof. We show that the given C satisfies condition ([BJ) and quote the previous
theorem. To this end, let C > u L v € C*, u # 0. Since C is pointed, C* has nonempty
interior. Let w € (C*)° such that w”u = 1. Define Y := vw’ +wv?. Clearly Y € 8"
and for all x € C,

7Y =aTv wla + 27w olz > 0;
thus, Y € £. Also, Yu = vw v+ woTu =v. 0
Our next objective is to present a result that extends the results of Lyapunov and

Moldovan-Gowda. First, we recall a basic result on Z-transformations.

ProrosiTION 3.7. ([3], [13]) Suppose L is a linear transformation on H, K a
proper cone in H, and L € Z(K). Then the following are equivalent:

(1) There exists d € K° such that L(d) € K°.
(2) L is invertible with L=*(K°) C K°.
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(3) L is positive stable.
(4) L+ tI is invertible for all t € [0, 00).
(5)  All real eigenvalues of L are positive.
(6) There exists e € (K*)° such that L*(e) € (K*)°.

Moreover, when H = R", K =R", and L = A, the above properties (for a Z-matriz
A) are further equivalent to

(7) A is a P-matriz, that is, all principal minors of A are positive.
(8)  There exists a positive definite diagonal matriz D in S" such that AD+DAT
is positive definite.

As a consequence, we have the following.

THEOREM 3.8. Suppose C is a closed convex cone in R™ such that C —C = R".
Then the following are equivalent:

(a) A is positive stable.
(b) The system &+ Ax = 0 is asymptotically stable in C (that is, from any starting
point in C, its trajectory converges to the origin).

When A € Z(C), these are further equivalent to:

(¢) There exists D € K° such that AD + DA™ € K°.
(d) There exists D € £° such that ATD + DA € &°.

If, in addition, C is also proper, then the above conditions are equivalent to
(e) There exists d € C° such that Ad € C°.

Proof. The proof of (a) = (b) is standard, see the proof of Theorem 3.1 in [7].
The proof of (b) = (a) is as in [7], except that the starting point should be allowed
to vary in the interior of C (which is nonempty because C — C = R").

Now assume that A € Z(C). Since C —C = R", by Proposition 22 both £ and K
are proper; hence they have nonempty interiors. Also, since A € Z(C), by Theorem
B3 L€ Z(K) and Lar € Z(E). Since the eigenvalues of L4 on 8™ are of the form
A+ T, where A and p are eigenvalues of A, see [26], it follows that A is positive stable
if and only if L, is positive stable. Now the equivalence of ITtems (a), (¢), and (d)
follows from the previous result applied to L4 on K.

When C is proper, the previous result can be applied to A and C (note that Z(C))
to get the equivalence of (a) and (e). O

REMARK 3.9. (i) In Item (d) of the above theorem, the matrix D € £° is
necessarily strictly copositive on C: For any nonzero u € C, u? (D —el)u > 0 for small
e > 0.
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(ii) When C — C = R™ and A € Z(C), the equation
ATX + XA =Y, Y strictly copositive on C

has a unique solution X which is also strictly copositive on C for some Y (equivalently
for all ) if and only if A is positive stable. This follows from Items (1) and (2) in
Proposition B with K = & and L = L 4r. When C is proper and A is positive stable,
this unique solution is given by

X:/ e*tATYeftAdt.
0

(iii) The results of Lyapunov and Moldovan-Gowda (stated in the Introduction)
follow by taking C = R™ and C = R’} respectively.

(iv) Suppose C is proper. When the conditions of the above result are in place,
(any) trajectory of the system & + Az = 0 from any starting point in C stays in C and
converges to the origin as t — oco. In this setting, f(x) := d”x (with d as in Item (e))
acts as a linear Lyapunov function and g(z) := 27 Dz (with D as in Item (d)) acts as
a quadratic Lyapunov function.

(v) Instead of our condition ¢ —C = R" in Theorem 3.8 Stern [23] assumes that
C in R satisfies CN—C = {0}. He proves that when A € Z(C) and C N —C = {0}, the
system & + Ax = 0 is asymptotically stable if and only if the following implication
holds:

[rel, —Az eC]=z=0.

It may be noted that if, in addition, C —C = R, that is, if C is proper, then the above
condition is equivalent to Item (e) in Theorem B8

The following result (partially) answers a question of Bundfuss and Diir [5]:

COROLLARY 3.10. Suppose C = M(RT?) is a polyhedral cone in R™, where M
is an n X m-matriz. Assume that M has rank n and A € Z(C). Then there exists a
symmetric matriz D such that D and AT D + DA are strictly copositive on C if and
only if A is positive stable.

4. Lyapunov-like transformations. Motivated by Example B4l a linear
transformation L on H is said to be Lyapunov-like with respect to a closed convex
cone K in H if both L and —L have the Z-property on K. This simply means that

K>z lye K= (L(z),y) =0.

For any matrix A € R™*", the Lyapunov transformation L4 is Lyapunov-like with
respect to S} in 8™ (see Example[3.4). In the setting of the cone R in R™, Lyapunov-
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like matrices are just diagonal matrices. Because of Proposition B.I Lyapunov-like
transformations are intimately connected to automorphism groups and Lie algebras.

In the rest of this section, we assume that C is a proper cone in R™ and use the
notation B(S™,S™) to denote the set of all (bounded) linear transformations on S™.
We consider two automorphism groups:

o Aut(C) :={AeR"™": A(C) =C}.
o Aut(K) :={L € B(S",8"): L(K) =K}.

(Note that elements of these groups are necessarily invertible, as C and K have
nonempty interiors.) Since these groups can be regarded as matrix groups, the cor-
responding Lie algebras are given, see [2], by:

e Lie(Aut(C)) := {A € R™*" : e!4 € Aut(C) Vt € R}.
e Lie(Aut(K)) := {L € B(S",8") : et € Aut(K) Vt € R}.

Note that in these Lie algebras, the Lie bracket is the one induced by the (associative)
product of matrices/transformations: [A, B] = AB — BA, etc.
In view of Proposition B, we have

A, —A€Z(C) & A€ Lie(Aut(C)) and L,—L € Z(K)) < L € Lie(Aut(K)).

THEOREM 4.1. For any proper cone C in R"™, the mapping A — L 4 is an injective
Lie algebra homomorphism from Lie(Aut(C)) to Lie(Aut(K)).

Proof. For A € Lie(Aut(C)), we have A, —A € Z(C). By TheoremB3] L4, —L4 €
Z(K), that is, Ly € Lie(Aut(K)). Clearly, the mapping A +— L4 is linear. That it
is a Lie algebra homomorphism follows from the identity Liap = [La,Lg]. To show
that this is injective, suppose L4 = 0, that is, AX + XAT = 0 for all X € S". By
taking X = I (Identity), we see that A + AT = 0, that is, A is skew-symmetric. By
taking X to be a diagonal matrix with distinct elements, we see that A = 0. O

5. The Z-property of Stein transformations. Recall that for a matrix A €
R™*™ the corresponding Stein transformation S4 is defined on 8™ by Sa(X) :=
X — AX AT, We also recall that II(C) := {A € R"*" : A(C) C C}. As in the case of
Lyapunov transformations, we have Sy € Z(K) & Syr € Z(E).

THEOREM 5.1. Let C be any closed convex cone in R™. Then

+AeII(C) = Sa € Z(K).

Proof. Without loss of generality, let A € II(C). Let X = Ziv wul € K,

i

Y e K* =&, and (X,Y) = 0, where u; € C for all i. Then w; := Au; € C for all i.
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Now, as Y is copositive on C,
N
trace(AX ATY) = Z w] Yw; > 0.
1

Hence
(S4(X),Y)=(X,Y) — (AXATY) = —~trace(AXATY) < 0.
This proves that S4 € Z(K). O

EXAMPLE 5.2. By taking C = R"™ in the above theorem, we see that for any
matrix A € R"*", Sy € Z(S7). Now, let C be the closed upper half-plane in R? so
that £ =& = Sf_. Then for any 2 x 2 real matrix A, S4 € Z(Sf_), while it is easy to
construct a 2 x 2 real matrix which is not in II(C). Thus, the converse in the above
theorem does not hold.

Analogous to Theorem [3.8 we have

THEOREM 5.3. Suppose C is a closed convex cone in R™ such that C — C = R™.
Then the following are equivalent:

(a) A is Schur stable.
(b) The system z(k + 1) = Ax(k), k = 0,1,2,... is asymptotically stable in C
(that is, from any starting point in C, its trajectory converges to the origin,).

When £A € TI(C), these are further equivalent to:

(¢) There exists D € K° such that Sa(D) € K°.
(d) There exists D € £° such that Sar(D) € £°.

Note: Sy is positive stable if and only if A is Schur stable, see [10].

6. Cone spectrum, copositivity, and Z-transformations. In this section,
we relate the Z-property, copositivity, and cone spectrum. Let L be a linear transfor-
mation on H and K be a nonzero closed convex cone in H. Then the cone spectrum
[21] of L with respect to K is the set of all real A for which there is an x such that

0#£ze K, L(x)— A e K* and (x,L(z) — Az) =0.
We denote this set by o(L, K).
The following result gives the nonemptyness of the cone spectrum.

PROPOSITION 6.1. Let K be a nonzero closed convex cone in H and L be linear
on H.

(i) If K is proper, then o(L, K) # 0.
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(i1) If L is self-adjoint, then o(L, K) # (; In fact,
N =min{(L(z),z) : z € K, ||z|| = 1} € o(L, K).

Proof. The proof of (i) is given in [20], Corollary 2.1. While a proof of (i) is
given in [I4], Corollary 2.4 and [21], Example 1, we offer a direct and simple proof.
Let \* = (L(x*),z*), where z* € K with ||z*|| = 1. Define S := L — A*I. Then for
all 0 # z € K, we have

This means that the self-adjoint transformation S is copositive on K. Since
(S(z*),z*) = 0, we have, from Proposition 2] y* = S(z*) € K*. Thus, we have

€ K, y*:=L(x*) - \'z* € K* and (2*,y*) =0.
Hence, \* € o(L, K). O

The above result, together with the observation that every A € o(L, K) is of the

form A\ = <L||(f|)|’f> for some nonzero = € K, gives the following:

COROLLARY 6.2. Suppose o(L, K) is nonempty. If L is copositive on K, then
A>0 forall Ne€o(L,K). The converse holds when L is self-adjoint.

In what follows, we write o(L) for the spectrum of L.
THEOREM 6.3. Suppose K is proper and L € Z(K). Then

min Reo(L) € o(L,K) C o(L).

Proof. Let p* := min{Re X : A € ¢(L)}. Since K is proper and L € Z(K), by
Theorem 6 in [19], there exists a nonzero v € K such that L(u) = p*u. Clearly,
u* € o(L, K). This proves the first part of the inclusion. The second part is proved
in Theorem 9, [27]; Here is its short proof: Let u € (L, K) so that for some nonzero
x €K, y=L(x)—pxr € K* and (x,y) =0. As L — pl € Z(K), (L — pl)z,y) < 0.
This leads to y = 0, that is, L(z) = ux proving p € o(L). O

REMARK 6.4. In Theorem B8 the equivalence of (a) and (d) was proved under
the assumptions that C —C = R™ and A € Z(C). When C is proper and A € Z(C),
the following simple proof (an adaptation of the standard argument) can be given.
We only prove the implication (d) = (a). Assume that for some (symmetric) D
that is strictly copositive on C, ATD + DA =Y is also strictly copositive on C. Let
#* = min Reo(A) so that by Theorem 6 in [19], there is a nonzero u € C such that
Au = p*u. Then 0 < uTYu = uT(ATD + DA)u = 2u* u?' Du. Since u” Du is also
positive, we see that p* > 0. This means that A is positive stable.
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The following result extends a result of J. Tao [25] proved in the setting of sym-
metric cones.

COROLLARY 6.5. Let K be proper, L € Z(K) and copositive on K. Then L is
semi-positive stable (that is, all eigenvalues of L lie in the closed right-half plane). If,
in addition, L is self-adjoint or K is self-dual, then L is monotone.

Proof. That L is semi-positive stable follows from Corollary and Theorem
63 If L is self-adjoint, then all eigenvalues of L are nonnegative, and hence L is
monotone. When K is self dual, L € Z(K) & L* € Z(K*) & L* € Z(K). In this
case, L + L* is self-adjoint, copositive on K, and belongs to Z(K). By the previous
case, L + L* (and hence L) is monotone. O

A concluding remark. In a follow up paper [12], it is shown that the mapping
A — L, in Theorem 4.1 is actually a bijection.

Acknowledgments. Thanks are due to a referee for his/her comments and
suggestions.
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