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Abstract. A well-known result of Lyapunov on continuous linear systems asserts that a real

square matrix A is positive stable if and only if for some symmetric positive definite matrix X,

AX + XAT is also positive definite. A recent result of Moldovan-Gowda says that a Z-matrix A is

positive stable if and only if for some symmetric strictly copositive matrix X, AX + XAT is also

strictly copositive. In this paper, these results are unified/extended by replacing R
n and R

n
+

by a

closed convex cone C satisfying C−C = R
n. This is achieved by relating the Z-property of a matrix on

this cone with the Z-property of the corresponding Lyapunov transformation LA(X) := AX+XAT

on the completely positive cone of C and the Z-property of L
AT on the copositive cone of C in Sn

(the space of all real n × n symmetric matrices). A similar analysis is carried out for the Stein

transformation SA(X) = X − AXAT .

Key words. Copositive matrix, Copositive and completely positive cones, Z-transformation,

Lyapunov and Stein transformations.
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1. Introduction. Given a closed convex cone K in a real finite dimensional

Hilbert space (H, 〈·, ·〉), and a linear transformation L on H , we say that L has the

Z-property on K (or that it is a Z-transformation on K) and write L ∈ Z(K) if

[x ∈ K, y ∈ K∗, and 〈x, y〉 = 0] ⇒ 〈L(x), y〉 ≤ 0,(1.1)

where K∗ denotes the dual cone of K. As a generalization of a Z-matrix (which is a

real square matrix with nonpositive off-diagonal entries), such transformations were

introduced in [19] in the form of cross-positive matrices. Z-matrices/transformations

have numerous properties and appear in many areas, e.g., see [3], [13]. Our motivation

for this article comes from dynamical systems. Consider Sn, the space of all n × n

real symmetric matrices, with the inner product 〈X,Y 〉 = trace(XY ) and the cone

Sn
+ of all positive semidefinite matrices in Sn. Then for any matrix A ∈ R

n×n, the

Lyapunov transformation LA and Stein transformation SA, respectively defined on

Sn by

LA(X) := AX +XAT and SA(X) := X −AXAT ,
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are Z-transformations on Sn
+ [13]. These transformations have been well studied

in dynamical systems theory, starting from Lyapunov’s paper [16] on continuous dy-

namical systems and Stein’s paper [22] on discrete dynamical systems. The celebrated

result of Lyapunov deals with the stability of the linear system ẋ + Ax = 0, and, in

particular with the equivalence of the following statements [7]:

(i) The system ẋ + Ax = 0 is asymptotically stable in R
n (which means that

the trajectory of the system from any starting point in R
n converges to the

origin as t → ∞).

(ii) A is positive stable (that is, all eigenvalues of A lie in the open right-half

plane).

(iii) There exists X ∈ Sn such that X and LA(X) are positive definite.

(iv) For every positive definite Y ∈ Sn, the equation LA(X) = Y has a (unique)

positive definite solution X in Sn.

For a discrete system of the form x(k + 1) = Ax(k), k = 1, 2, . . ., similar equivalent

statements can be made by replacing the positive stability of A with Schur stability

of A (which means that all eigenvalues of A lie in the open unit disk) and LA by SA.

Now consider a linear system ẋ + Ax = 0 whose trajectories are constrained to

lie in the nonnegative orthant Rn
+. It is well known that this can happen if and only

if A is a Z-matrix. Analogous to Lyapunov’s result, we have the equivalence of the

following when A is a Z-matrix:

(i) The system ẋ+Ax = 0 is asymptotically stable in R
n
+.

(ii) A is positive stable.

(iii) There exists X ∈ Sn such that X and LA(X) are strictly copositive on R
n
+.

(iv) For every Y ∈ Sn that is strictly copositive on R
n
+, the equation LA(X) = Y

has a (unique) strictly copositive solution X in Sn.

(v) There exists a vector d > 0 (i.e., d belongs to the interior of Rn
+) such that

Ad > 0.

Here, the strict copositivity (copositivity) of X on R
n
+ is defined by: xTXx > 0 (≥ 0),

for all 0 6= x ∈ R
n
+. The equivalence of Items (i), (ii), and (v) is well known in the

literature, e.g., see [17]. The new items (iii) and (iv) were proved by Moldovan

and Gowda [18] by relying on the equivalence of the following statements for any

A ∈ R
n×n:

(a) A is a Z-matrix.

(b) LA has the Z-property on the cone of completely positive matrices in Sn.

(c) LAT has the Z-property on the cone of copositive matrices in Sn.

In a recent article [5], Bundfuss and Dür raise the question of studying the dynamics

of ẋ+Ax = 0 which is constrained to a (polyhedral) coneK by asking for the existence
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of a symmetric matrix X that is strictly copositive on K for which AX + XAT is

also strictly copositive on K. Motivated by the similarities in the above results of

Lyapunov and Moldovan-Gowda, and the question of Bundfuss and Dür, in this paper,

we present a unifying result (Theorem 3.8) by relating the Z-property of a matrix A

on a closed convex cone in R
n with the Z-property of LA (LAT ) on the corresponding

completely positive cone (respectively, copositive cone) in Sn.

Consider Rn with the usual inner product. Given a closed convex cone C in R
n

with dual C∗, we consider two related cones in Sn: The copositive cone of C defined

by

E = copos(C) := {A ∈ Sn : A copositive on C}(1.2)

and the completely positive cone of C defined by

K = compos(C) := {BBT : columns of B belong to C }.(1.3)

When C = R
n, these two cones reduce to Sn

+ which is the underlying cone in semidef-

inite programming and semidefinite linear complementarity problems [1], [10], [11].

In the case of C = R
n
+, these cones reduce, respectively, to the cones of copositive

matrices and completely positive matrices which have appeared prominently in sta-

tistical and graph theoretic literature [4] and (recently) in the study of (combinatorial)

optimization problems [6], [8].

With the notation L ∈ Z(K) to mean that the transformation L has the Z-

property on K and L ∈ Π(K) to mean that L(K) ⊆ K, we show in this article (see

Theorems 3.3 and 5.1) that

A ∈ Z(C) ⇒ LA ∈ Z(K) ⇔ LAT ∈ Z(E) and

A ∈ Π(C) ⇒ SA ∈ Z(K) ⇔ SAT ∈ Z(E).

These results, along with the properties of Z-transformations, will allow us to extend

the results of Lyapunov and Moldovan-Gowda, and (partially) answer the question of

Bundfuss and Dür.

Here is an outline of the paper. Section 2 deals with the preliminaries. The

Z-property of LA is covered in Section 3 and that of SA is covered in Section 5. In

Section 4, we study Lyapunov-like transformations. Finally, Section 6 deals with some

results relating Z-property, cone spectrum, and copositivity.

2. Preliminaries. Throughout this paper, H denotes a finite dimensional real

Hilbert space with inner product given by 〈x, y〉. For a setK inH , K◦ andK⊥ denote,

respectively, the interior and orthogonal complement of K. For a closed convex cone

K in H the dual is given by

K∗ := {y ∈ H : 〈y, x〉 ≥ 0 ∀x ∈ K}.
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We use the notation

K ∋ x ⊥ y ∈ K∗ to mean that x ∈ K, y ∈ K∗, and 〈x, y〉 = 0.

Recall [3] that a closed convex cone K in H is a proper cone if K is reproducing (that

is, K − K = H) and pointed (that is, K ∩ −K = {0}) (or equivalently, K and K∗

have nonempty interiors [3]).

For a linear transformation L on H , L∗ denotes its adjoint. It said to be

• copositive on K (strictly copositive on K) if 〈L(x), x〉 ≥ 0 (> 0) for all 0 6=

x ∈ K;

• monotone if 〈L(x), x〉 ≥ 0 for all x ∈ H ;

• positive stable (Schur stable) if all the eigenvalues of L lie in the open right-

half plane (respectively, in the open unit disk).

In the space H = R
n, vectors are written as column vectors and the usual inner

product is written as 〈x, y〉 or as xT y. Following standard terminology,

• Copositive matrices (positive semidefinitematrices) are those which are copos-

itive on R
n
+ (respectively, on R

n);

• Completely positive matrices are of the form BBT with columns of B coming

from R
n
+.

Throughout this paper, K denotes a closed convex cone in H and C denotes a

closed convex cone in R
n. Corresponding to C, the copositive cone E and the completely

positive cone K in Sn are defined, respectively, by (1.2) and (1.3).

Proposition 2.1. Let L be a self-adjoint linear transformation on H that is

copositive on K. Then

x ∈ K, 〈L(x), x〉 = 0 ⇒ L(x) ∈ K∗.

Proof. Suppose x ∈ K and 〈L(x), x〉 = 0. Then for any y ∈ K,

0 ≤ lim
t↓0

1

t
〈L(x+ ty), x+ ty〉 = 2〈L(x), y〉.

This shows that L(x) ∈ K∗.

Proposition 2.2. The following statements hold:

(i) E is a closed convex cone in Sn and K ⊆ Sn
+ ⊆ E.

(ii) K is a closed convex cone; moreover, K is the dual of E.

(iii) E (likewise, K) is proper if and only if C − C = R
n.
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Proof. Item (i) is obvious and Item (ii) is well known, see [24]. We prove Item

(iii). As Sn
+ ⊆ E and Sn

+−Sn
+ = Sn, we have E −E = Sn. So, to see (iii), it is enough

to show that E ∩ −E = {0} if and only if C − C = R
n.

Now, let A ∈ Sn. By an application of Proposition 2.1 with L = A and K = C,

we have

A ∈ E ∩ −E ⇔ xTAx = 0 ∀x ∈ C

⇔ −Ax,Ax ∈ C∗ ∀x ∈ C

⇔ A(C) ⊆ C∗ ∩ −C∗ = C⊥ = (C − C)⊥

⇔ A(C − C) ⊆ (C − C)⊥.

Hence, when C − C = R
n, we have A = 0 for any A ∈ E ∩ −E . On the other

hand, when C − C 6= R
n, (as C −C is a subspace) there exists 0 6= v ∈ (C − C)⊥. Then

xT (vvT )x = 0 for all x ∈ C and so 0 6= A = vvT ∈ E ∩ −E .

Finally, E is proper if and only if its dual K is proper. Thus, K is proper if and

only if C − C = R
n.

3. The Z-property and Lyapunov transformations. The Z-property of a

matrix or a linear transformation with respect to a cone is defined by (1.1). The

following result shows the importance of studying this property in dynamical systems.

Proposition 3.1. ([9], [19]) Suppose L is a linear transformation on H and K

be a proper cone in H. Then the following are equivalent:

(a) L ∈ Z(K).

(b) e−tL(K) ⊆ K for all t ≥ 0 in R.

(c) The trajectory of the dynamical system ẋ+L(x) = 0 with any initial point in

K stays in K.

As noted in the Introduction, when C = R
n
+, A ∈ Z(C) if and only if all the

off-diagonal entries of A are nonpositive. Here is a non-trivial example.

Example 3.2. Consider R
n with n > 1 and write any element in the form

x =
[

t, uT
]T

, where t ∈ R and u ∈ R
n−1. Let

C = Ln
+ :=

{

x =

[

t

u

]

: t ≥ ||u||

}

.

This is a symmetric cone (that is, a self-dual, homogeneous, closed convex cone) in

the Jordan spin algebra Ln, called the Lorentz cone (or the second order cone or the

ice-cream cone). For this (proper) cone, the copositive cone E , the completely positive

cone K, and Z(Ln
+) are described below.

Let J := diag(1,−1,−1, . . . ,−1) ∈ R
n×n and A ∈ R

n×n. Then
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(i) A ∈ E if and only if A− µJ is positive semidefinite for some µ ≥ 0, see [15],

Lemma 2.2;

(ii) A ∈ K if and only if A is a (finite) sum of matrices of the form

[

t2 tuT

tu uuT

]

,

where t ∈ R, u ∈ R
n−1 with t ≥ ||u||;

(iii) A ∈ Z(Ln
+) if and only if αJ − (JA+AT J) is positive semidefinite for some

α ∈ R, see Example 4 in [13];

(iv) A,−A ∈ Z(Ln
+) if and only if JA+AT J = αJ for some α ∈ R.

Note: Item (ii) follows from the definition and Item (iv) is a simple consequence

of (iii).

We now come to one of the main results of the paper. Before stating this, we

observe that for any A ∈ R
n×n,

LA ∈ Z(K) ⇔ LAT ∈ Z(E).

This follows easily as (LA)
∗ = LAT and E∗ = K in Sn.

Theorem 3.3. For any closed convex cone C in R
n,

A ∈ Z(C) ⇒ LA ∈ Z(K).

The reverse implication holds under the following condition on C:

C ∋ u ⊥ v ∈ C∗, u 6= 0 ⇒ ∃ Y ∈ E such that Y u = v.(3.1)

Proof. Let A ∈ Z(C) and K ∋ X ⊥ Y ∈ K∗ = E . Writing X =
∑N

1 uiu
T
i , with

ui ∈ C for all i, we have

0 = 〈X,Y 〉 = trace(XY ) =

N
∑

1

uT
i Y ui.

This implies, as Y is copositive on C, uT
i Y ui = 0 for all i. From Proposition 2.1,

vi := Y ui ∈ C∗. So, for all i, C ∋ ui ⊥ vi ∈ C∗. As A ∈ Z(C), vTi Aui = 〈Aui, vi〉 ≤ 0

for all i. Now,

〈LA(X), Y 〉 = 2 trace(AXY ) = 2

N
∑

1

trace(Auiu
T
i Y ) = 2

N
∑

1

vTi Aui ≤ 0.

Thus, LA ∈ Z(K).

Now to see the reverse implication, assume that C satisfies (3.1), LA ∈ Z(K), and

let u ∈ C, v ∈ C∗ and 〈u, v〉 = 0. We have to show that 〈Au, v〉 ≤ 0. We may assume
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without loss of generality, that u is nonzero. Then there exists a Y ∈ E such that

Y u = v. We have

X = uuT ∈ K, Y ∈ K∗ = E , and 〈X,Y 〉 = uTY u = uT v = 0.

Hence trace(LA(X)Y ) ≤ 0. This leads to trace(AXY ) ≤ 0 and 〈Au, v〉 = vTAu =

trace(AXY ) ≤ 0. Thus, A ∈ Z(C).

Example 3.4. When C = R
n, we have C∗ = {0} and K = Sn

+. In this case, every

matrix A ∈ R
n×n belongs to Z(C) and consequently, for any A ∈ R

n×n, both LA and

−LA = L−A belong to Z(Sn
+). Hence,

Sn
+ ∋ X ⊥ Y ∈ Sn

+ ⇒ 〈LA(X), Y 〉 = 0.

(This motivates the definition of Lyapunov-like transformations, see Section 4.)

The following example shows that the reverse implication in Theorem 3.3 may

not always hold.

Example 3.5. In R
2, let C be the closed upper half-plane. In this case, C∗ is

the nonnegative y-axis and E = S2
+; hence K = S2

+. Now consider a matrix A ∈ R
2×2

whose (2, 1) entry is one. Then for the standard coordinate vectors e1 and e2, we have

C ∋ e1 ⊥ e2 ∈ C∗. However, 〈Ae1, e2〉 = 1. Therefore, A 6∈ Z(C) while LA ∈ Z(K).

Corollary 3.6. Suppose C is a closed convex pointed cone in R
n. Then

A ∈ Z(C) ⇔ LA ∈ Z(K).

Proof. We show that the given C satisfies condition (3.1) and quote the previous

theorem. To this end, let C ∋ u ⊥ v ∈ C∗, u 6= 0. Since C is pointed, C∗ has nonempty

interior. Let w ∈ (C∗)◦ such that wTu = 1. Define Y := vwT +wvT . Clearly Y ∈ Sn

and for all x ∈ C,

xTY x = xT v wTx+ xTw vTx ≥ 0;

thus, Y ∈ E . Also, Y u = v wTu+ w vTu = v.

Our next objective is to present a result that extends the results of Lyapunov and

Moldovan-Gowda. First, we recall a basic result on Z-transformations.

Proposition 3.7. ([3], [13]) Suppose L is a linear transformation on H, K a

proper cone in H, and L ∈ Z(K). Then the following are equivalent:

(1) There exists d ∈ K◦ such that L(d) ∈ K◦.

(2) L is invertible with L−1(K◦) ⊆ K◦.
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(3) L is positive stable.

(4) L+ tI is invertible for all t ∈ [0,∞).

(5) All real eigenvalues of L are positive.

(6) There exists e ∈ (K∗)◦ such that L∗(e) ∈ (K∗)◦.

Moreover, when H = R
n, K = R

n
+, and L = A, the above properties (for a Z-matrix

A) are further equivalent to

(7) A is a P-matrix, that is, all principal minors of A are positive.

(8) There exists a positive definite diagonal matrix D in Sn such that AD+DAT

is positive definite.

As a consequence, we have the following.

Theorem 3.8. Suppose C is a closed convex cone in R
n such that C − C = R

n.

Then the following are equivalent:

(a) A is positive stable.

(b) The system ẋ+Ax = 0 is asymptotically stable in C (that is, from any starting

point in C, its trajectory converges to the origin).

When A ∈ Z(C), these are further equivalent to:

(c) There exists D ∈ K◦ such that AD +DAT ∈ K◦.

(d) There exists D ∈ E◦ such that ATD +DA ∈ Eo.

If, in addition, C is also proper, then the above conditions are equivalent to

(e) There exists d ∈ C◦ such that Ad ∈ C◦.

Proof. The proof of (a) ⇒ (b) is standard, see the proof of Theorem 3.1 in [7].

The proof of (b) ⇒ (a) is as in [7], except that the starting point should be allowed

to vary in the interior of C (which is nonempty because C − C = R
n).

Now assume that A ∈ Z(C). Since C −C = R
n, by Proposition 2.2, both E and K

are proper; hence they have nonempty interiors. Also, since A ∈ Z(C), by Theorem

3.3, LA ∈ Z(K) and LAT ∈ Z(E). Since the eigenvalues of LA on Sn are of the form

λ+µ, where λ and µ are eigenvalues of A, see [26], it follows that A is positive stable

if and only if LA is positive stable. Now the equivalence of Items (a), (c), and (d)

follows from the previous result applied to LA on K.

When C is proper, the previous result can be applied to A and C (note that Z(C))

to get the equivalence of (a) and (e).

Remark 3.9. (i) In Item (d) of the above theorem, the matrix D ∈ Eo is

necessarily strictly copositive on C: For any nonzero u ∈ C, uT (D−εI)u ≥ 0 for small

ε > 0.
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(ii) When C − C = R
n and A ∈ Z(C), the equation

ATX +XA = Y, Y strictly copositive on C

has a unique solution X which is also strictly copositive on C for some Y (equivalently

for all Y ) if and only if A is positive stable. This follows from Items (1) and (2) in

Proposition 3.7 with K = E and L = LAT . When C is proper and A is positive stable,

this unique solution is given by

X =

∫ ∞

0

e−tAT

Y e−tAdt.

(iii) The results of Lyapunov and Moldovan-Gowda (stated in the Introduction)

follow by taking C = R
n and C = R

n
+ respectively.

(iv) Suppose C is proper. When the conditions of the above result are in place,

(any) trajectory of the system ẋ+Ax = 0 from any starting point in C stays in C and

converges to the origin as t → ∞. In this setting, f(x) := dTx (with d as in Item (e))

acts as a linear Lyapunov function and g(x) := xTDx (with D as in Item (d)) acts as

a quadratic Lyapunov function.

(v) Instead of our condition C − C = R
n in Theorem 3.8, Stern [23] assumes that

C in R
n satisfies C ∩−C = {0}. He proves that when A ∈ Z(C) and C ∩−C = {0}, the

system ẋ + Ax = 0 is asymptotically stable if and only if the following implication

holds:

[x ∈ C, −Ax ∈ C] ⇒ x = 0.

It may be noted that if, in addition, C−C = R
n, that is, if C is proper, then the above

condition is equivalent to Item (e) in Theorem 3.8.

The following result (partially) answers a question of Bundfuss and Dür [5]:

Corollary 3.10. Suppose C = M(Rm
+ ) is a polyhedral cone in R

n, where M

is an n ×m-matrix. Assume that M has rank n and A ∈ Z(C). Then there exists a

symmetric matrix D such that D and ATD +DA are strictly copositive on C if and

only if A is positive stable.

4. Lyapunov-like transformations. Motivated by Example 3.4, a linear

transformation L on H is said to be Lyapunov-like with respect to a closed convex

cone K in H if both L and −L have the Z-property on K. This simply means that

K ∋ x ⊥ y ∈ K∗ ⇒ 〈L(x), y〉 = 0.

For any matrix A ∈ R
n×n, the Lyapunov transformation LA is Lyapunov-like with

respect to Sn
+ in Sn (see Example 3.4). In the setting of the cone Rn

+ in R
n, Lyapunov-
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like matrices are just diagonal matrices. Because of Proposition 3.1, Lyapunov-like

transformations are intimately connected to automorphism groups and Lie algebras.

In the rest of this section, we assume that C is a proper cone in R
n and use the

notation B(Sn,Sn) to denote the set of all (bounded) linear transformations on Sn.

We consider two automorphism groups:

• Aut(C) := {A ∈ R
n×n : A(C) = C}.

• Aut(K) := {L ∈ B(Sn,Sn) : L(K) = K}.

(Note that elements of these groups are necessarily invertible, as C and K have

nonempty interiors.) Since these groups can be regarded as matrix groups, the cor-

responding Lie algebras are given, see [2], by:

• Lie(Aut(C)) := {A ∈ R
n×n : etA ∈ Aut(C) ∀ t ∈ R}.

• Lie(Aut(K)) := {L ∈ B(Sn,Sn) : etL ∈ Aut(K) ∀ t ∈ R}.

Note that in these Lie algebras, the Lie bracket is the one induced by the (associative)

product of matrices/transformations: [A,B] = AB −BA, etc.

In view of Proposition 3.1, we have

A,−A ∈ Z(C) ⇔ A ∈ Lie(Aut(C)) and L,−L ∈ Z(K)) ⇔ L ∈ Lie(Aut(K)).

Theorem 4.1. For any proper cone C in R
n, the mapping A 7→ LA is an injective

Lie algebra homomorphism from Lie(Aut(C)) to Lie(Aut(K)).

Proof. For A ∈ Lie(Aut(C)), we have A,−A ∈ Z(C). By Theorem 3.3, LA,−LA ∈

Z(K), that is, LA ∈ Lie(Aut(K)). Clearly, the mapping A 7→ LA is linear. That it

is a Lie algebra homomorphism follows from the identity L[A,B] = [LA, LB]. To show

that this is injective, suppose LA = 0, that is, AX +XAT = 0 for all X ∈ Sn. By

taking X = I (Identity), we see that A + AT = 0, that is, A is skew-symmetric. By

taking X to be a diagonal matrix with distinct elements, we see that A = 0.

5. The Z-property of Stein transformations. Recall that for a matrix A ∈

R
n×n, the corresponding Stein transformation SA is defined on Sn by SA(X) :=

X − AXAT . We also recall that Π(C) := {A ∈ R
n×n : A(C) ⊆ C}. As in the case of

Lyapunov transformations, we have SA ∈ Z(K) ⇔ SAT ∈ Z(E).

Theorem 5.1. Let C be any closed convex cone in R
n. Then

±A ∈ Π(C) ⇒ SA ∈ Z(K).

Proof. Without loss of generality, let A ∈ Π(C). Let X =
∑N

1 uiu
T
i ∈ K,

Y ∈ K∗ = E , and 〈X,Y 〉 = 0, where ui ∈ C for all i. Then wi := Aui ∈ C for all i.
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Now, as Y is copositive on C,

trace(AXATY ) =

N
∑

1

wT
i Y wi ≥ 0.

Hence

〈SA(X), Y 〉 = 〈X,Y 〉 − 〈AXAT , Y 〉 = −trace(AXATY ) ≤ 0.

This proves that SA ∈ Z(K).

Example 5.2. By taking C = R
n in the above theorem, we see that for any

matrix A ∈ R
n×n, SA ∈ Z(Sn

+). Now, let C be the closed upper half-plane in R
2 so

that K = E = S2
+. Then for any 2× 2 real matrix A, SA ∈ Z(S2

+), while it is easy to

construct a 2 × 2 real matrix which is not in Π(C). Thus, the converse in the above

theorem does not hold.

Analogous to Theorem 3.8, we have

Theorem 5.3. Suppose C is a closed convex cone in R
n such that C − C = R

n.

Then the following are equivalent:

(a) A is Schur stable.

(b) The system x(k + 1) = Ax(k), k = 0, 1, 2, . . . is asymptotically stable in C

(that is, from any starting point in C, its trajectory converges to the origin).

When ±A ∈ Π(C), these are further equivalent to:

(c) There exists D ∈ K◦ such that SA(D) ∈ K◦.

(d) There exists D ∈ E◦ such that SAT (D) ∈ Eo.

Note: SA is positive stable if and only if A is Schur stable, see [10].

6. Cone spectrum, copositivity, and Z-transformations. In this section,

we relate the Z-property, copositivity, and cone spectrum. Let L be a linear transfor-

mation on H and K be a nonzero closed convex cone in H . Then the cone spectrum

[21] of L with respect to K is the set of all real λ for which there is an x such that

0 6= x ∈ K, L(x)− λx ∈ K∗ and 〈x, L(x) − λx〉 = 0.

We denote this set by σ(L,K).

The following result gives the nonemptyness of the cone spectrum.

Proposition 6.1. Let K be a nonzero closed convex cone in H and L be linear

on H.

(i) If K is proper, then σ(L,K) 6= ∅.
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(ii) If L is self-adjoint, then σ(L,K) 6= ∅; In fact,

λ∗ := min{〈L(x), x〉 : x ∈ K, ||x|| = 1} ∈ σ(L,K).

Proof. The proof of (i) is given in [20], Corollary 2.1. While a proof of (ii) is

given in [14], Corollary 2.4 and [21], Example 1, we offer a direct and simple proof.

Let λ∗ = 〈L(x∗), x∗〉, where x∗ ∈ K with ||x∗|| = 1. Define S := L − λ∗I. Then for

all 0 6= x ∈ K, we have

〈S(x), x〉 = ||x||2
{

〈L(
x

||x||
),

x

||x||
〉 − λ∗

}

≥ 0.

This means that the self-adjoint transformation S is copositive on K. Since

〈S(x∗), x∗〉 = 0, we have, from Proposition 2.1, y∗ = S(x∗) ∈ K∗. Thus, we have

x∗ ∈ K, y∗ := L(x∗)− λ∗x∗ ∈ K∗ and 〈x∗, y∗〉 = 0.

Hence, λ∗ ∈ σ(L,K).

The above result, together with the observation that every λ ∈ σ(L,K) is of the

form λ = 〈L(x),x〉
||x||2 for some nonzero x ∈ K, gives the following:

Corollary 6.2. Suppose σ(L,K) is nonempty. If L is copositive on K, then

λ ≥ 0 for all λ ∈ σ(L,K). The converse holds when L is self-adjoint.

In what follows, we write σ(L) for the spectrum of L.

Theorem 6.3. Suppose K is proper and L ∈ Z(K). Then

min Reσ(L) ∈ σ(L,K) ⊆ σ(L).

Proof. Let µ∗ := min{Reλ : λ ∈ σ(L)}. Since K is proper and L ∈ Z(K), by

Theorem 6 in [19], there exists a nonzero u ∈ K such that L(u) = µ∗u. Clearly,

µ∗ ∈ σ(L,K). This proves the first part of the inclusion. The second part is proved

in Theorem 9, [27]; Here is its short proof: Let µ ∈ σ(L,K) so that for some nonzero

x ∈ K, y = L(x) − µx ∈ K∗ and 〈x, y〉 = 0. As L − µI ∈ Z(K), 〈(L − µI)x, y〉 ≤ 0.

This leads to y = 0, that is, L(x) = µx proving µ ∈ σ(L).

Remark 6.4. In Theorem 3.8, the equivalence of (a) and (d) was proved under

the assumptions that C − C = R
n and A ∈ Z(C). When C is proper and A ∈ Z(C),

the following simple proof (an adaptation of the standard argument) can be given.

We only prove the implication (d) ⇒ (a). Assume that for some (symmetric) D

that is strictly copositive on C, ATD +DA = Y is also strictly copositive on C. Let

µ∗ = min Reσ(A) so that by Theorem 6 in [19], there is a nonzero u ∈ C such that

Au = µ∗ u. Then 0 < uTY u = uT (ATD +DA)u = 2µ∗ uTDu. Since uTDu is also

positive, we see that µ∗ > 0. This means that A is positive stable.
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The following result extends a result of J. Tao [25] proved in the setting of sym-

metric cones.

Corollary 6.5. Let K be proper, L ∈ Z(K) and copositive on K. Then L is

semi-positive stable (that is, all eigenvalues of L lie in the closed right-half plane). If,

in addition, L is self-adjoint or K is self-dual, then L is monotone.

Proof. That L is semi-positive stable follows from Corollary 6.2 and Theorem

6.3. If L is self-adjoint, then all eigenvalues of L are nonnegative, and hence L is

monotone. When K is self dual, L ∈ Z(K) ⇔ L∗ ∈ Z(K∗) ⇔ L∗ ∈ Z(K). In this

case, L + L∗ is self-adjoint, copositive on K, and belongs to Z(K). By the previous

case, L+ L∗ (and hence L) is monotone.

A concluding remark. In a follow up paper [12], it is shown that the mapping

A 7→ LA in Theorem 4.1 is actually a bijection.

Acknowledgments. Thanks are due to a referee for his/her comments and

suggestions.
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