TheElectronic Journal of Linear Algebra.

A publication of the International Linear Algebra Society. E L A

Volume 7, pp. 112-151, September 2000.
I1SSN 1081-3810.

CANONICAL FORMS FOR DOUBLY STRUCTURED
MATRICES AND PENCILS*

CHRISTIAN MEHLf, VOLKER MEHRMANN#, AND HONGGUO XU}

Abstract. In this paper, canonical forms under structure-preserving equivalence transforma-
tions are presented for matrices and matrix pencils that have a multiple structure, which is either an
H-self-adjoint or H-skew-adjoint structure, where the matrix H is a complex nonsingular Hermitian
or skew-Hermitian matrix. Matrices and pencils of such multiple structures arise, for example, in
quantum chemistry in Hartree-Fock models or random phase approximation.
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1. Introduction. Canonical forms for matrices and matrix pencils have been
studied for more than a hundred years since the work of Jordan, Kronecker, and
Weierstrass; see [5]. In recent years, motivated by applications in control theory as
well as quantum physics and quantum chemistry, there has been a revived interest in
such canonical forms for matrices and pencils that have algebraic structures, such as
Lie groups and Lie algebras. While the possible invariants were characterized some
time ago [2], the emphasis in the new results lies on structure-preserving equivalence
transformations; see, e.g., [1, 13, 14, 15, 16].

In this paper, we derive canonical forms under structure-preserving equivalence
transformations for matrices and matrix pencils with multiple structure.

DEFINITION 1.1. Let H € C™*" be a nonsingular Hermitian or skew-Hermitian
matrix, and let X € C™*".

1. X is called H-self-adjoint if X*H = HX.

2. X is called H-skew-adjoint if X*H = —HX.

Canonical forms for pairs (A, H), where H is Hermitian or skew-Hermitian non-
singular and A is H-self-adjoint or H-skew-adjoint, are well known in the literature;
see, e.g., [7, 11]. These forms are obtained under transformations of the form

(A,H) s (P"'AP, P*HP),
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where P is nonsingular. Here, we are interested in canonical forms for matrix triples
(A, H,G), where G and H are Hermitian or skew-Hermitian nonsingular and A is
doubly structured with respect to G and H, i.e., A is H-self-adjoint or H-skew-
adjoint and at the same time G-self-adjoint or G-skew-adjoint. We are also interested
in the pencil case, i.e., we will also consider pencils pA — B, where both A and B are
doubly structured with respect to H and G.

The main motivation for our interest in these types of matrices and pencils arises
from quantum chemistry. Response function models lead to the problem of solving
the generalized eigenvalue problem with a matrix pencil of the form
(1) ASO—AO::A[_CZ _ZC]_[ﬁ g]
where E,F,C,Z € C"™*"E = E*,F = F*,C = C*,Z = —Z*; see [8, 17]. Further-
more, there are important special cases in which the pencil has even further structure.
For example, the simplest response function model is the time-dependent Hartree—
Fock model, also called the random phase approximation (RPA). In this case, C is
the identity and Z is the zero matrix; see [8, 17]. Thus, the generalized eigenvalue
problem (1) reduces to the problem of finding the eigenvalues of the matrix
(2) ‘CO = |: _EF _FE :| ’
where E, F are as in (1). For stable Hartree-Fock ground-state wave-functions, it is
furthermore known that £ — F' and E + F are positive definite; see [8].

In other applications, however, such as in multiconfigurational RPA [8], it is not
even guaranteed that the matrix & in (1) is nonsingular.

It is easy to see that the matrices &, Ap in (1) and Lo in (2) are doubly structured.

With
I, 0 0 I, 0 I,
-5 5] o=l G e[ T
we have that & is I-self-adjoint and H-skew-adjoint, Ag is I-self-adjoint and H-self-
adjoint, while £y is G-self-adjoint and J-skew-adjoint.

When designing structure-preserving numerical methods for large-scale structure
eigenvalue problems, difficulties in the convergence of the methods were sometimes
observed in [3, 4] that have to do with the invariants of these pencils under structure-
preserving equivalence transformations; see also [1]. It is another motivation for our
work to derive canonical forms that allow a better understanding of those properties
of the pencils that lead to these difficulties.

We will derive the canonical form for matrix triples (A, H,G) under structure-
preserving transformations of the form

(A,H,G) — (P~AP, P*HP, P*GP),

where P is nonsingular. This preserves the (skew-) Hermitian structure of H and G
and also the structure of A with respect to H and G. Based on the classical results (see
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Section 2), we clearly have canonical forms for (A, H), (4, G), or the pencil pH — G,
and hence the invariants of the pairs (A4, H) and (A, G) as well as the invariants of
the pencil pH — G under congruence are invariants of the triple (A, H,G).

It is our goal to obtain a canonical form that displays simultaneously the Jordan
structure of A and the invariants of the canonical forms of (4, H) and (4,G). In
general this is a very difficult problem; such a form may not even exist. Consider the
following example.

ExamPLE 1.2. Consider matrices

1 01 0 01 0 01
A= 10|, G=|10 1 0, and H=|0 1 1
0 1 1 00 110
Then A is G-self-adjoint and H-self-adjoint. But it is impossible to simultaneously
decompose A, H, and G further into smaller block-diagonal forms. This follows from

the obvious fact that the pencil oG — H cannot be decomposed further. On the other
hand, A has the Jordan canonical form

110
010
0 01

Hence, both (A,G) and (A, H) are decomposable into smaller blocks (see Theo-
rems 3.1 and 3.3 below).

Due to this difficulty, we restrict ourselves to an important special case. In most
applications, the matrices H and G that induce the structure are contained in the set

Sl G A o O ) P RS
If this is the case, then the pencil pH — G is nondefective.

DEFINITION 1.3. Let pA — B € C™*™ be a matrix pencil. We say that pA — B
is nondefective if there exist nonsingular matrices P,Q € C™*" such that both PAQ
and PB(Q are diagonal.

We will show that if G, H are Hermitian nonsingular such that the pencil pH —G'is
nondefective, then a canonical form for the triple (A, H, G) exists, which is also unique
except for the permutation of blocks. In particular, this canonical form includes the
Jordan structure of A, and also the canonical forms of the pairs (4, H) and (4, G)
and the pencil pH — G can be easily read off.

The paper is organized as follows. After providing some preliminary results in
Section 2, we review canonical forms for matrices that are structured with respect to
only one Hermitian matrix in Section 3. In Section 4, we discuss doubly structured
matrices, and in Section 5, we discuss canonical forms for structured pencils of the
form AA — B, where both A and B are singly or doubly structured matrices.

2. Preliminaries. Throughout the paper, we use the following notation.
By o(A) we denote the spectrum of the matrix A. 7,(\) denotes the p x p upper-
triangular Jordan block with eigenvalue A. By sign(¢) we mean the sign of a real
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number ¢t € R\{0}. A = A; & --- ® A,,, stands for the block-diagonal matrix A with
diagonal blocks Ay, ..., A,;,. Moreover, we use the abbreviation A=* for (4*)~!.
Furthermore, we introduce the following p x p matrices:

0 1 (=1)? 0
Zy = , Dp:i= )
1 0 0 (—1)pt!
0 (—1)2
and Fj:= .
(=1)p+t 0

Note that F, € RP*? is symmetric if p is odd and skew-symmetric if p is even,
whereas Z, and D,, are symmetric for all p. We list some properties of these matrices
and the matrix 7,(0), which can be easily verified, and will be used in what follows.

LEMMA 2.1. Let p € N.

1. ZX=1I, D2=1I, F;=(-1)PL,.

FyZy =Dy = (_1)p+1Zpra DyFy = 7, = (_1)p+1Fpr'
DyZy, = F, = (_1)p+1Zpr7 FpZpyFy = Zy.

Z;ljp(O)Zp = jp(o)*-

D;17,(0)Dp = = T,(0).

Fp_ljp(O)Fp = _jp(o)*-

Another important and well-known result that will frequently be used throughout
the paper is the following [5].

LEMMA 2.2. Let A, B, X be square matrices such that the spectra of A and B are
disjoint. If AX = XB, then X =0.

Finally, we review the canonical forms for regular Hermitian pencils, i.e., regular
pencils pH — G, where both H and G are Hermitian. An arbitrary matrix pencil
AA — B is called regular if det(pA — B) #Z 0. In this case, it makes sense to speak
of eigenvalues of a pencil. Introducing homogeneous parameters a A — B [6], the
eigenvalues of a4 — B can be defined as pairs (a,3) € C*\{0} such that

S ;A o e

aAx — BBz =0 for an z € C"\{0}.

Obviously, (ta,tf8) represents the same eigenvalue for all t € C\{0}; thus, we denote
them by A = % if 8 # 0. Pairs (a,0),a # 0, represent the eigenvalue infinity of
aA — BB that we will denote by oc.
The following result goes back to results from Weierstrass [19] and Kronecker [10].
THEOREM 2.3. Let pH — G be a regular Hermitian pencil. Then there exists a

nonsingular matrizx P € C™*" such that

3) P*(eH — G)P = (oH1 — G1) ®--- @ (eHi — i),

where the blocks oH; — Gj have one and only one of the following forms:
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1. blocks associated with paired nonreal eigenvalues A, X, where Im(\) > 0:

(4) QHj—GJ':Q[})T .8]_[%(0)\)* jré)‘) ;

2. blocks associated with real eigenvalues A and sign € € {1,—1}:

0 A
0 1 1

(5) QHJ'_GJ':QEZT_EZTJT()‘):QE —& )
1 0 P 0

3. blocks associated with the eigenvalue oo and sign € € {1,—1}:

SIS I
oH; — Gj = 0eZ,J:(0) —eZ, = ¢e —c
0 1 0 ! 0

Moreover, the decomposition (3) is unique up to a block permutation that exchanges
blocks pH; — G;.

Proof. For a full proof, see [18], Lemmas 1-4. There, the result is shown without
the additional condition Im(A) > 0 for the blocks associated with nonreal eigenvalues,
but applying a permutation, we may always place the block that is associated with
the eigenvalue A in the (1,2)-block position of the form in (4). O

If pH — G is nondefective, then we immediately have the following corollary.

COROLLARY 2.4. Let pH — G be a nondefective Hermitian pencil, where both H
and G are nonsingular. Then there exists a nonsingular matriz P € C™*" such that

P*(oH — G)P = (¢H, — G1) @ --- @ (oH; — Gv),

where the spectra of oH; — G; and oH; — G are disjoint for j # 1, and where each
block oH; — G has either only one pair of complex conjugate eigenvalues or only one
single real eigenvalue. Moreover, the block oH; — G; has one and only one of the
following forms:

1. blocks with nonreal eigenvalues X, X, where Im\ > 0 and ¢ € N:

_ 0 I, 0 A, |
(6) QHJ_GJ_Q[LI 0]_[X1q 0 ],
2. blocks with real eigenvalue A\, where q,p € N,p < gq:
P I Y 0 _ I, 0
(7) QH] GJ B [ 0 _Iq—p ] A [ 0 _Iq—p ] -

Moreover, the decomposition is unique up to a block permutation.
Proof. By Theorem 2.3, there exists a nonsingular matrix P € C"*" such that
the pencil P*(¢pH — G)P is in canonical form (3). Since the pencil is nondefective and
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H is nonsingular, only blocks of the forms (4) and (5) can appear and the parameters
r in these blocks all have to be equal to one. A number of g blocks of the form (4) with
the same eigenvalue A € C\R produce one block of the form (6) after an appropriate
permutation that combines the ¢ blocks in a single block is applied. On the other
hand, g blocks of the form (5) with the same eigenvalue A € R (p blocks with sign
€ = +1 and g — p blocks with sign € = —1) produce a block of the form (7), again
after an appropriate permutation is applied. O

REMARK 2.5. Following Theorem 2.3 and Corollary 2.4, it is obvious that if
) € C\R is an eigenvalue of pH — G, then so is ), and both eigenvalues have the same
Jordan structure.

3. Singly structured matrices. In this section, we review the well-known
canonical forms for H-self-adjoint matrices and H-skew-adjoint matrices, where H
always denotes a complex nonsingular Hermitian n x n matrix.

THEOREM 3.1. Let A € C™*" be H-self-adjoint. Then there exists a nonsingular
matriz P € C™*" such that

(8) Pl'AP=A@®---®A, and P*HP=H, &---® Hy,

where Aj and H; are of the same size and the pair (Aj, H;) has one and only one of
the following forms:
1. blocks associated with real eigenvalues:

A; =TJp(N) and Hj =eZp,

where \€ R, pe N, and ¢ € {1,—1};
2. blocks associated with a pair of nonreal eigenvalues:

9) Aj = [ j”é» jp%)] and  Hy = [ Zop Zop]’

where A € C\R with Im(X) > 0 and p € N.

Moreover, the form (P~ AP, P*HP) of (A, H) is uniquely determined up to the
permutation of blocks.

Proof. See, e.g., [7]. O

Even though (8) is unique only up to a permutation of blocks, we call it a canonical
form of the pair (A, H).

REMARK 3.2. In some instances, it will turn out be useful to use a slightly
different form for the blocks of type (9) in (8). Multiplying the matrices from both
sides by I, ® Z,, one finds that (9) takes the form

Using the same transformation, we can also get back from the form (10) to the
form (9). This transformation will frequently be used in the following and its appli-
cation will be called the Z-trick.

0
I

Tp(N) 0

(10) Aj = 0 jp()\)*

and H; = [

=Y
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Apart from the eigenvalues of an H-self-adjoint matrix A, the parameters ¢ that
are associated with blocks to real eigenvalues are invariants of the pair (4, H). The
collection of these parameters is sometimes referred to as the sign characteristic; see,
e.g., [7] and [11]. To highlight that these parameters are related to the matrix H (we
will soon have to deal with two structures), we will use the term H -structure indices
in what follows.

THEOREM 3.3. Let S € C™*"™ be H-skew-adjoint. Then there exists a nonsingular
matriz P € C™*" such that

(11) PSsP=S,&---®S, and P*HP=H, &---& Hy,

where S; and H; are of the same size and each pair (Sj, H;) has one and only one of
the following forms:
1. blocks associated with purely imaginary eigenvalues:

(12) S;=iJp(N) and H; =¢Z,,

where \€ R, pe N, and e € {1,-1};
2. blocks associated with a pair of non-purely imaginary eigenvalues:

i) 0 o z
5=\ aw | mm1=lg T

where A € C\R with Im(X) > 0 and p € N.

Moreover, the form (P~'SP,P*HP) of (S,H) is uniquely determined up to a
permutation of blocks.

Proof. This follows directly from Theorem 3.1, considering the H-self-adjoint
matrix ¢S. O

Again, we will call the parameter ¢ in (12) the H-structure index of the block S;
n (12). Moreover, the form (11) will be called the canonical form of the pair (S, H).

REMARK 3.4. From Theorems 3.1 and 3.3, it is easy to find the following sym-
metries in the spectra of H-self-adjoint and H-skew-adjoint matrices. If A ¢ R is an
eigenvalue of the H-self-adjoint matrix A, then so is A, and both eigenvalues have the
same Jordan structure. If A ¢ iR is an eigenvalue of the H-skew-adjoint matrix A,

then so is —A, and both eigenvalues have the same Jordan structure.

4. Doubly structured matrices. In this section, we give canonical forms for
matrices that are doubly structured with respect to Hermitian or skew-Hermitian
nonsingular matrices G and H. First, we note that by Theorem 3.1, Jordan blocks
associated with real eigenvalues in the self-adjoint case (or purely imaginary eigen-
values in the skew-adjoint case) have structure indices with respect to G and/or H.
We will call these indices the G- and H-structure indices of A, respectively.

Moreover, we may always assume that G and H are Hermitian. Otherwise, we
may consider iG or iH, respectively, keeping in mind the following remark.

REMARK 4.1. Let H € C™™" be nonsingular and Hermitian or skew-Hermitian
and let A € C™*™. Then the following conditions hold.

1. A is H-self-adjoint if and only if A is i H-self-adjoint.
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2. A is H-skew-adjoint if and only if A is ¢H-skew-adjoint.

3. A is H-self-adjoint if and only if ¢4 is H-skew-adjoint.

Remark 4.1 implies in particular that we may assume that the structure on A
induced by one of the matrices G and H, say H, is the structure of a self-adjoint
matrix. In other words, we may assume that A is H-self-adjoint. Otherwise, we may
consider 7A. Hence, it remains to discuss the following cases:

(i) matrices that are H-self-adjoint and G-self-adjoint (Section 4.1), and

(ii) matrices that are H-self-adjoint and G-skew-adjoint (Section 4.2).

Finally, we always assume that the pencil pH — G is nondefective.

REMARK 4.2. Instead of requiring pH — G to be nondefective, we may as well
consider the generalization of this case, that for the matrices A, G, H, at least one of
the three pencils pH — G, pH — HA, and 9G — G A is nondefective. For example, if
A is nonsingular and both H- and G-self-adjoint, then we can consider the matrix
triple (H~1G, H, HA) for which H, HA are Hermitian and H 'G is H- and H A-self-
adjoint, since (H~1G)* = GH~!. Thus, if oH — H A is nondefective, then we can get
the canonical form of this new triple. But once we have this, we can easily get the
canonical form of the original triple (4, H,G). So our results will cover more general
cases.

4.1. Matrices that are H-self-adjoint and G-self-adjoint. In this section,
we will derive a canonical form for matrices that are self-adjoint with respect to
nonsingular Hermitian matrices H and G such that the pencil pH — G is nondefective.
For the proof of our main result, the following lemma will be needed. Note that the
lemma is also true for the case that the pencil pH — G is not nondefective.

LEMMA 4.3. Let G, H € C™*" be Hermitian and nonsingular. Let A € C™*™ be
H-self-adjoint and G-self-adjoint. Then there exists a nonsingular matriz P € C™*"
such that

PlAP=A & - @ Ay,
P*HP=H, ®---® Hy,
P*GP =G, ® --- @ Gy,

where Aj, H;, and G; have corresponding sizes. Moreover, each pencil oH; — G has
as spectrum either {v;,75;} for some v; € C\R or {v;} for some v; € R, and the
spectra of two subpencils pH; — G; and oH; — Gy, j # 1, are disjoint.

Proof. By Theorem 2.3 and by applying an appropriate permutation that com-
bines blocks that display the same eigenvalues {v;,7%,} in one large block pH; — G4,
there exists a nonsingular matrix Q € C™*™ such that

s | Gt 0 « _ [ H 0 14 | A A
QGQ—[O é2];QHQ—[O HQ]’andQ AQ—[A21 A22]’

where the pencil pH; — G has as spectrum either {7;,7; } for some v, € (Q\lR or {m}
for some v, € R and such that the spectra of the pencils pH; — Gy and pHy — G5 are
disjoint. Since A is H-self-adjoint and G-self-adjoint, we obtain that

[ Al Ha Aélf:fz ] _ [ IiflAu If1A12 ]
AI2H1 A;2H2 H2A21 H2A22
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and A1 G A5G ] _ [ GiAin Gidis

Ar,Gy A%G G2An GrAy |’
Since with G also G is nonsingular, this implies that
A;lﬂQéz_l = H1A12é2_1 = HlGl_lGlAlgégl = HlGl_lAgl.

Since the pencils gH; —G1 and oH,—G5 have disjoint spectra, we obtain that A3 =0
and therefore A1 = Hy 1A§1H2 = 0. The remainder of the proof follows by induction.
O

THEOREM 4.4. Let G,H € C™*" be Hermitian and nonsingular such that the
pencil opH — G is nondefective. Let A € C™*" be H-self-adjoint and G-self-adjoint.
Then there exists a nonsingular matriz P € C™™™ such that

PlAP =A@ --- @ Ay,
(13) P*GP=G1®---® G,
P*HP=H,®---& Hy,

where the blocks Aj, G;, H; have corresponding sizes and are of one and only one of
the following forms.

Type (1):
Aj=7J,(N), Hj=¢Z,, and G;=evZy,

where A € R, p € N, ¢ € {1,-1}, and v € R\{0}. The H-structure indezx of A; is e
and the G-structure index of A; is sign(ey).
Type (2):

| TN 0 |1 0 Z o 0 ~Z
AJ_[ PO jp(/\)]’ H]_[Zp OP]’ and GJ_[WZP OP]’

where A € R, p €N, and v € C, Im(vy) > 0. The H-structure indices of A; are 1,—1
and the G-structure indices of A; are 1,—1.

Type (3):

AJ‘[ 0 J,,(X)]’ HJ‘[ZP o 0 Ci=5z, o |

where A € C\R, p € N, and v € C\{0}, where Im(vy) > 0.

Moreover, the canonical form (13) is unique up to permutation of blocks.

Proof. By Lemma 4.3, we may assume that the pencil pH — G has as eigenvalues
either -, 7% for some v € C\R or « for some v € R.

Case 1: v € R.

Since the pencil pH — G is nondefective, by Corollary 2.4, there exists a nonsin-
gular matrix P € C™*" such that

. I 0 I 0
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i.e., in particular that G is a scalar multiple of H. Applying Theorem 3.1, we find
that there exists a nonsingular matrix Q € C™*" such that (Q 'AQ,Q*HQ) is in
canonical form (8). Since G = vH, we obtain that A, H, and G can be reduced
simultaneously to block-diagonal form with diagonal blocks of Types 1 and 3.

Case 2: v,7 € C\R.

In this case, we obtain from Corollary 2.4 that there exists a nonsingular matrix
P € C™™" such that

* 0 In 0 I,
p-ap=o 0 ][0 ],

where 2m = n and Im(v) > 0. Let

A A
A=
[ Az Az ]

be partitioned conformably. Then we obtain from A*H = HA and A*G = GA that
AIQ = A12 and ’YATZ = 71412.

Since v # 7, this implies that A;2 = 0. In an analogous way we show that Ay =0,
and moreover, we have Agss = A}, by symmetry. Let @); be such that 14110, is
in Jordan canonical form and set

_ Q1 0
Q=P [ 0 T
Then we obtain

-1 [ Q7 ALy 0 ]
te=| P o |

" | 0 I, " _ 0 ~I,
one=|f | i oee=| oy |
After an appropriate block permutation, we obtain that A, H, and G can be reduced
simultaneously to block-diagonal form with diagonal blocks of the forms

[ o - [0 1 - [0 ~I
S R B S A B R g

respectively, where p € N and A € C. The result then follows by applying the Z-trick;
see Remark 3.2.
Uniqueness: Suppose that

4 o R G o
[ 8] e ) e[ 4] -
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- [A o0 - H 0 . Gi 0
A = ~ H = ~ = ~
A A R

are in canonical form, where H, G, H, G are Hermitian nonsingular, A is H-self-
adjoint and G-self-adjoint, A is H-self-adjoint and G-self-adjoint, and all matrices have
corresponding block structures. If P~1AP = A, 0(A;) = 0(4;), and 0(4y) = o(Ay)
such that the spectra of A; and A, are disjoint, then it follows immediately that P
has a corresponding block-diagonal structure. Analogously, assuming that the spectra
of pH; — G1 and Q.E[Q — Gy (and of pHs — G5 and gﬁIl — él, respectively) are disjoint
and that P*HP = H and P*GP = G, where P is nonsingular, we obtain again that
P has a corresponding block-diagonal structure. Indeed, partitioning

Pll P12 —% Qll Q12 :|
|: P21 P22 :| an |: QZI Q22

conformably with H, we obtain that
G11Pi2 = Q12G22  and  HyPpy = QuoHs.
This implies that
HﬂlGuPu = P12FI2_21622;

and from that, we obtain P;5 = 0, since the spectra of HﬁlGn and ﬁ[;;ézz are
disjoint. Analogously, we show P2; = 0.

Hence, it is sufficient to prove the uniqueness for the case that A has only one
pair of eigenvalues A\, A and that oG — H has only a pair of eigenvalues v,7%. But
then the uniqueness is clear, since we obtain from Theorem 3.1 the uniqueness of the
canonical form for the pair (A, H). Note that the structure of G is then uniquely
defined by the invariant v with I'm(y) > 0.

In both cases, it is easy to verify that the H- and G-structure indices of each
block are as claimed in the theorem. O

An important special case is the case H = I, i.e., A is Hermitian and G-self-
adjoint. This leads to the well-known fact that two commuting Hermitian matrices
are simultaneously diagonalizable.

COROLLARY 4.5. Let G € C™*" be Hermitian nonsingular and let A € C"*"
be Hermitian and G-self-adjoint. Then there exists a unitary matriz U € C™*" such
that both U*GU and U*AU are diagonal.

Proof. Every Hermitian, G-self-adjoint matrix A satisfies AG = A*G = GA.
Then, it is well known that A and G are simultaneously unitarily diagonalizable. But
the result is also a special case of Theorem 4.4. To see this, we first note that it follows
from Sylvester’s law of inertia (see, e.g., [5]) applied to H = I that only blocks of
Theorem 4.4 may appear in which the matrix H; has only positive eigenvalues. Thus,
the only possible blocks are those of Type (1), where the parameters p,e satisfy
€ = +1 and p = 1. Then Theorem 4.4 implies that there exists a nonsingular matrix
U € C™*™ such that U1 AU and U*GU are diagonal and that U*HU = H = I. The
latter condition says that U is unitary. O
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REMARK 4.6. The result can be generalized to the case that H is positive definite.
In this case, there exists a nonsingular matrix P such that P*HP = I. Then we can
apply Corollary 4.5 to P"1AP and P*GP.

4.2. Matrices that are H-self-adjoint and G-skew-adjoint. In this section,
we present a canonical form for a matrix A that is H-self-adjoint and G-skew-adjoint,
where H and G are Hermitian nonsingular matrices such that the pencil pH — G is
nondefective. By Remark 3.4, the eigenvalues of A satisfy more symmetry properties.
If A € C is an eigenvalue of A, then, because A is G-skew-adjoint, so is —\, having the
same Jordan structure as A\. On the other hand, A is H-self-adjoint and thus, with A,
—\ also A, —\ are eigenvalues of A, having the same Jordan structures as A. Thus,
the eigenvalues of A occur in quadruples {/\,X, -\, —\}, where all these eigenvalues
have the same Jordan structure. If A is real or purely imaginary, this set is equal to
{A, =A}, and if A = 0, this set is just {0}.

The following lemmas will be needed for constructing the canonical form.

LEMMA 4.7. Let G,H € C™*" be Hermitian and nonsingular. Furthermore, let
A € C™" be H-self-adjoint and G-skew-adjoint. Then there exists a nonsingular
matriz P € C™*" such that

PIAP =A@ - @ Ay,
P*HP=H, ®---® Hy,
P*GP =G, ® ---® Gy,

where Aj, Hj, and G; have corresponding sizes. Moreover, each matriz A; has the
spectrum {,\j,Xj, -5, —Xj} and the spectra of two matrices A; and A;, where j # 1,
are disjoint.

Proof. By using the eigenvalue properties of A mentioned above, one can find a
matrix € C™*" such that

% G Gio " Hy1 Hjs _1 A 0
QR*'GQ = Q*HQ = nd Q "AQ = -
[ (;E Gao :| ’ [ Hikz Hys :| » @ [ 0 A, :| ’

where A; has the spectrum {M, A1, =A1, =1} for some A; € C such that the spectra
of A; and A, are disjoint. Then we obtain from A*H = HA and —A*G = GA that

ATle = leziz and - AIG12 = G12142.

By construction, the spectra of A} and flg are disjoint. This implies H12 = 0 and
G12 = 0. The proof then follows by induction. O

LEMMA 4.8. Let G,H € C™*" be Hermitian and nonsingular. Furthermore, let
A € C"™" be H-self-adjoint and G-skew-adjoint. Then there exists a nonsingular
matriz P € C™*" such that

PlAP =A@ - @ Ay,
P*HP=H, ®---® Hy,
P*GP =G, ® -+ ® Gy,
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where A;, H;, and G; have corresponding sizes. The spectrum of each pencil oH; —G;
is contained in {v;, S TRlT —Vj} for some v; € C and the spectrum of oH; — Gy is
disjoint from the set {v;, —;,7;, —7;} if § # L.

Proof. The proof proceeds analogously to the proof of Lemma 4.3 using the
equations A*H = HA and —A*G =GA. O

Note that, in contrast to the eigenvalues of A, the eigenvalues of the pencil pH —G
need not occur in quadruples {v;, —7;,7;,—7;}- If 7; is an eigenvalue of oH — G,
then from Theorem 2.3, we only know that 7; is also an eigenvalue, but —v; and —7;
need not be. However, to get corresponding block-diagonal forms of A, G, H, we have
to group y; and 7, together with —y; and —7; if they are also eigenvalues of oH —G.

In view of Lemma 4.8, it is sufficient to consider pencils pH —G whose spectrum is
contained in {7y, —v,%, —7}. Therefore, a discussion of the properties of such pencils
will be helpful.

LEMMA 4.9. Let G, H € C™*" be nonsingular and Hermitian such that the pencil
oH — G is nondefective.

(i) If the spectrum of oH — G is contained in {v,—v}, where v* € R\{0}, then

H7'GH™'G =+°I,.

(i) If the spectrum of oH — G is contained in {~,—7,7, 7}, where v* € C\R,
then there exists a matriz P such that for H = P*HP, G = P*GP, and A = P~ 1 AP,

=2
r—1Af—14 _ | 7 Im 0
(14) H"GH G_[ 0 ’Yzfm]'
Moreover,
< [ A O
= s

Proof. (i) We consider the problem in two cases.

Case (1): Im(y) = 0.

Since the pencil pH —G is nondefective and its spectrum is contained in {~y, —y} C
R, by Corollary 2.4 there exists a nonsingular matrix P € C"*" and numbers
p,q,7,s € N such that

I, 0 0 0 NI, 0 0 0
o -, 0o o o 0 o0
H=P"| o "0 [ |P aad G=P"| | 1 o | P

0 0 0 -I, 0 0 0 A,

This implies H-'GH~'G = P~1(121,) P = +*I,.

Case (2): Re(vy) = 0.

Since the pencil pH — G is nondefective and has only the eigenvalues v, —y € iR,
by Corollary 2.4, there exists a nonsingular matrix P € C"*" such that

0 In

I, O

a=r [ I 0

]P and G=P*[ 0 71”]1),
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where m = % € N. This implies H'GH'G = P~'(*1,,)P = ¥*I,.
(ii) By Corollary 2.4, there exists a nonsingular matrix P such that

gﬂ—é:gP*HP—P*GP:g[ IO 16” ] —[% 702],

where m = § € Nand £ =1, & (=, p), 0 < p < m. We then obtain that

A [F8 0
(15) i1 G_[ ) 72],

and hence we have (14). Note that A is H-self-adjoint and G-skew-adjoint. This
implies that

MA'G) = A1 A*G = —(A'@)A.

Since in this case & 7 # 0, from the block form (15) we get A = A; ® Ay. Since A
is H-self-adjoint, we obtain that Ay = A%. O

THEOREM 4.10. Let G, H € C™*" be Hermitian nonsingular such that the pencil
oH — G is nondefective. Furthermore, let A € C™*" be H-self-adjoint and G-skew-
adjoint. Then there exists a nonsingular matriz P € C™™" such that

PlAP =A@ --- @ Ay,
(16) P'GP=G, & &Gy,
P*HP=H, ®---&® Hy,

where, for each j, the blocks Aj, Gj, H; have corresponding sizes and are of one and
only one of the following forms.

Type (1a):
TN 0 0 0
4] 0 =% o 0
i=1 o o L™ o |’
0 0 2, 0 0 0 0 72
o o0 0 z 0o 0o vz, o0
Hi=lz o o ol ™ G=| 9 5z 0 o |
0 Z, 0 0 ¥Z, 0 0 0

where A € C with Re(\)Im()\) > 0, p € N, and v* € R\{0}, Re(y),Im(y) > 0.
Type (1b):

Tp(A) 0

Aj: 0 _jp()\):|, Hj:E
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where A >0, p € N, and v*> € R\{0}, Re(7),Im(y) > 0. The H;-structure index of A
is € and the Hj-structure index of —\ is (—1)PTle(v/|y])?.

Type (1c):
Z 0
N VAN 0 _ |1 0 Z o P
AT g Tl 0 G g (g, |

where A > 0, p € N, and 2 € R\{0}, Re(y),Im(y) > 0. The G;-structure index of A
is € and the Gj-structure index of — X\ is (—1)PT'e(|y|/7)?.
Type (1d1):

A;=7,00), Hj=¢Z,, and G;=EyF,,

where 4> € R\{0}, Re(7),Im(y)
Moreover, the eigenvalue A = 0
index ég—li”_l.

Type (1d2):

>0, and p € N is odd if v € R and even if v € iR.
has the Hj-structure index € and the G;-structure

o jp(O) 0 o 0 Z, o 0 vF,
Af‘[ 0 Jp(O)]’HJ_[Zp o |© ™ Gi=] _yr, o |’

where v* € R\{0}, Re(7),Im(y) > 0, and p € N is even if v € R and odd if v € iR.
Moreover, the eigenvalue A\ = 0 has the Hj-structure indices +1,—1 and the G-
structure indices +1,—1.

Type (2a):
J(A) 0 0 0
4= 0 —Tp(N) 0 0
i= o o RN o |
0 0 2 0 0 0 0 ~Z
o 0 0 z o 0 4z, 0
Hi=lz o o of ™ G=| 9 5z, 0 o |’
0 Z, 0 0 ¥Z, 0 0 0
where A € C with Re(\)Im(X) > 0, p € N, and v? € C with Re(y)Im(y) > 0.

Type (2b):

Jp(A) 0 0 0

Y IR AV 0

A o SN 0 ’

0 0 Z, 0 0 0 0 7%
o 0o 0 z 0 0 ~Z, 0
Hi=lz o o o ™ G=| o 5z, 0 o |

0 % 0 0 ¥Z, 0 0 0
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where A > 0, p € N, and v* € C with Re(y)Im(y) > 0. The H;-structure indices of A
are +1,—1 and the H;-structure indices of —\ are +1,—1.

Type (2c):
0 0 0 0
A—i| O BN 0 0
1= 0 0 (N 0 ’
0 0 0 T\
0 0 0 2% 0 0 ~4Z, 0
o 0o z o o 0o 0 ~z
Hi=l9 2z o0 of ™ GG=|52 0o o o |’
Z, 0 0 0 0 %Z, 0 0

where A >0, p € N, and v*> € C with Re(y)Im(y) > 0. The G;-structure indices of A
are +1,—1 and the G;-structure indices of —X are +1,—1.

Type (2d):

[ J0) 0 [0 z o 0 +F
Aﬂ‘[ 0 Jp(m]’H"[Zp op]’G"E[(—l)pHm o |

where p € N, ¢ € {+1,-1}, and v*> € C with Re(y)Im(y) > 0. Moreover, the
eigenvalue A = 0 has the Hj-structure indices +1,—1 and the G;-structure indices
+1,-1.

In the blocks of Types (1a)—(1d), the subpencil oH; — G; has only real or purely
imaginary eigenvalues. Those eigenvalues are v and —-y, except for blocks of Type
(1d1) when p = 1. Then the pencil pH; — G has the eigenvalue .

In the blocks of Types (2a)-(2d), the subpencil pH; — G has only eigenvalues that
are neither real nor purely imaginary. Those eigenvalues are v, —v, 7, and —7, except
for blocks of Type (2d) when p = 1. Then the pencil oH; — G; has the eigenvalues 7y
and 7.

Moreover, the canonical form (16) is unique up to permutation of blocks.

Proof. In view of Lemma 4.8, we may assume that the spectrum of the pencil
oH — G is contained in {v, —v,7, —7} for some v € C\{0}, Re(v),Im(y) > 0, and it
is sufficient to distinguish the following two cases.

Case (1): Re(y)Im(y) = 0.

In view of Lemma 4.7, we may distinguish the following four subcases.

Subcase (1a): The spectrum of A is {\, =X, A, =}, where Re(A\)Im()) > 0.

Since A is H-self-adjoint and G-skew-adjoint, it follows from Remark 3.4 that A
A, =\, and —\ have the same Jordan structure. Applying Theorem 3.1, the Z-trick,
and a block permutation, we may assume that A and H have the following forms:

JN 0 0 0 0 0 In 0
0 —any o 0 0 0 0 In

an A=1 o g o ["H=|r1. 0 o o |
0 0 0 —JON* 0 I, 0 0
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where m = 2 € N and J(A) is an (m x m) matrix in Jordan canonical form only
having the eigenvalue A\. Then the equation —A*G = G A and the fact that A, —A, A,
and —\ are pairwise distinct imply that G necessarily has the form

0 0 0 Gy

0 0 Gs 0

0 G 0 0 |’
G; 0 0 0

(18) G=

where Go,G3 € C™*™. By Lemma 4.9, we obtain that H 'GH 'G = ~+*I,,. This
implies in particular that

(19) G3G2 = ’)/QIm.

Note that the equation —A*G = GA also implies that J(A)*Ga2 = G2 J (A)*, i.e., G
commutes with 7(A)*. Hence, setting

Y e 0 0
Q= 0 ~ 2, 0 o |
0 0 ~2G, 0
0 0 0  ~il,
we obtain that Q7 1AQ = A, Q*HQ = H, and
0 0 0 -
" . 0 0 771G3G2 0
(20) @rER=| Y LIGEGE 0 0
Y1, 0 0 0

Then it follows from (19) and (20) that the triple (A4, H, G) can be reduced to blocks
of Type (1a) by applying an appropriate block permutation and the Z-trick.
Subcase (1b): The spectrum of A is {\, —A}, where A > 0.
Theorem 3.3 implies that A and —\ have the same Jordan structure. Moreover,
applying Theorem 3.1, we may assume that A, H, and G have the following forms:

_ A1 0 _ Hl 0 _ G1 G2
A_[O _Al], H_[O HQ]’ and G_[G§ G3]’

where

AL =Tp(N) @@ Ty (V)
H1 = 61Zp1 D--- @Ekzpk,
Hy=8Z ® - ®ErZp,,

and G; € C™*™ for m = Z. Observing that —A*G = GA, we obtain that G; = G3 =
0, since A # 0, and A}G2 = G2 A;. Moreover, H 'GH'G = 4?1, implies that

(21) H'GoHy' Gy = 4*1,, = Hy 'GSH ' Gs.
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Setting

In 0
Q_[ 0 v 'H,'Gs ]

then from (21), A;G2 = G241, Z;'J,(0)*Z, = Jp(0) (Lemma 2.1), and the block
forms of Hy and A, we obtain that

[ A 0 A0
—1 _ 1 _ 1
@AC= | 0 —-G3*H,AH;'G3 ] B [ 0 -4 ]
[ Hy 0 H, 0
QTHQ = 1 —1 —1 s ] = 2 ], and
| 0 25G.H,'HH,'Gj 0 (ﬁ) H,
. 0 v 'GaHy'Gs ] [ 0 yH,y
@G = | 7 1GoH, 'G3 0 T | FH, 0

Thus, it follows by applying an appropriate block permutation that we may assume

that
_ jp()\) 0 EZp 0 )
0 ¢ (ﬁ) Z,

4= —%(A)]’H:

. 0 YeZ)p
’andG_[ieZp 0 ]

Hence, setting
~ eI, 0
o= L

we find that Q 1AQ, Q*HQ, and Q*GQ have the desired forms.

Subcase (1c): The spectrum of A is {\, —A}, where A € iR, Im()) > 0.

The matrix —¢A4 is G-self-adjoint, H-skew-adjoint, and has only a pair of real
eigenvalues. Noting that the spectrum of pG — H is contained in {y~!, —y~1}, we
can reduce the problem to Case (1b), i.e., it is sufficient to consider the case that
—iA, G, and H are as listed in Type (1b):

R /0N 0 _
—3A = 0 AN ],G_

_ 0 v 'Z,
7H - |: 771Zm 0 )

where & € {+1,—1}. Setting

we obtain that Q@ 1(—iAd)Q = —iA,
Zm,

0 Zn :
0 (5) 2

ane=| 2 | wa @co=en
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Subcase (1d): The spectrum of A is {0}.

It follows from Lemma 7.5 in the Appendix that the triple (4, H,G) can be
reduced to blocks of Type (1d1) or of Type (1d2).

Case (2): Re(y)Im(y) # 0.

By Corollary 2.4, we may assume that the pencil pH — G is already in the form

_ 0 I, 0 X
QH_G_Q[Im 0]_[72 0]’

where m = § € N and ¥ = diag(I,, I;,—p), 1 < p < m, and, furthermore, we have
(14). Then Lemma 4.9 implies that A has the form

(4 o0
A‘[o M]'

Note that by Lemma 4.9, a similarity transformation on A with a corresponding
block-diagonal matrix and simultaneous congruence transformations on H, G does
not change the block structure of A and the identity (14), but it does change the
block forms in H and G. Hence we can apply similarity transformations on A; and
at the same time keep the relation (14). Again, we will consider the following four
subcases.

Subcase (2a): The spectrum of A is {\, =X, A, =}, where Re(A)Im(\) > 0.

Again, the eigenvalues A\, —\, X, and —\ have the same Jordan structure. More-
over, there exists a nonsingular matrix

Ql 0 :| nxn
= .« | €C
© [ 0
such that

A 0 0 0

0 A 0 0
1AQ = 2 and Q*HQ =H,
Q™ AQ 0 0 A5 0 QTHQ

0 0 0 A

where A;; 6_((3’“"c has the eigenvalues A and —X and Ay, € C3-*(3-k) has the
eigenvalues A and —A. Partitioning Q*G(@ conformably, i.e.,

0 0 G Go

o 10 0 G5 Gy

QE=\ g g 0 0 |
G G 0 0

we obtain from the equation —A*G = G A and the fact that A;; and — Ay, have no
common eigenvalues that Go = G3 = 0. Thus, after an appropriate block permuta-
tion, we may consider two smaller subproblems. The first one is

: [An 0 - [0 I . [0 &
A_[ ! A,{l], H_[Ik 0], and G—[GT 0],
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and (14) implies that

=2
r-1ai-1g _ | 7 Ak 0
HGH G—[ 0 ’Y2Ik}'

Hence, after applying a similarity transformation on A;;, we may assume that A, G,
and H are in the forms (17) and (18), where (G1)? = 72I. The remainder of the proof
then proceeds analogously to Subcase (1a). The second subproblem with respect to
Ajys can be transformed in the same way.

Subcase (2b): The spectrum of A is {\, —A}, where A > 0.

We obtain from Theorem 3.3 that the Jordan structures associated with A and
—A are the same. Hence, both 4; and A} must have the eigenvalues A and —\ with
the same Jordan structure. Thus, there exists a nonsingular matrix

_ Q1 O ]
Q [ o
such that
J(N) 0 0 0
_ _ 0 -J\) 0 0 . .
QTrAQ=| 0 0y 0 and Q*HQ=H,
0 0 0 —JW

where k = 2 and [J(X) is an k x k matrix in Jordan canonical form associated with
only one eigenvalue A. Partitioning Q*G(@ conformably, i.e.,

0 0 G G

w0 0 G5 Gy

@E=\ g g 0 0 |
Gy G 0 0

we obtain from —A*G = GA and the fact that J(\) and —7(A) have no common
eigenvalues that G1 = G4 = 0, and that J(A\)*G2 = G2J(\), T(A\)*G3 = Gz T (N).
Moreover, we still have (14), which implies that G3G2 = v2I. Thus we may assume
that A, G, and H are in the forms (17) and (18), where G3G> = v2I. The remainder
of the proof then proceeds analogously to Subcase (1a).

Subcase (2¢): The spectrum of A is {A, —A}, where A € iR.

The proof proceeds analogously to the proof of Subcase (1c).

Subcase (2d): The spectrum of A is {0}.

This case follows from Lemma 7.8 in the Appendix and by applying the Z-trick.

Uniqueness: Analogously to the proof of Theorem 4.4, it is sufficient to prove
uniqueness for the case that the spectrum of A is {\, —\, X, =} for some X € C and
that the spectrum of pH — G is contained in {7, —v,7, —7} for some v € C. Again,
the canonical form for the pair (A4, H) is unique. In any case except for the case that
A =0 and y* ¢ R, the matrix G is then uniquely determined by the invariants v with
Re(v),Im(y) > 0 (and signs € or £ in some cases that are uniquely determined by the
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canonical form for the pair (4,G)). Only in the case A = 0 and y> ¢ R do we have
an additional invariant € that is not an invariant of the canonical form for the pair
(A, @). In this case, the uniqueness follows from Lemma 7.8 in the Appendix.

In all of Cases (1a)—(2d), it is easy to verify that the H- and G-structure indices
of each block are as claimed in the theorem. O

Again, we obtain as an immediate consequence the result for the special case
H =1,1i.e., Ais Hermitian and G-skew-adjoint.

COROLLARY 4.11. Let G be nonsingular and Hermitian and let A be Hermitian
and G-skew-adjoint. Then there exists a unitary matriz U € C™*" such that

* = )\1 0 - Am 0
UAU_[0 —)\1]69 69[0 _Am]ea[o],

a0 m e o[ 0 m
UGU_|:'}’1 0:|® @['Ym 0:|@Gm+1,

where A1, ...;  m ER, v1,...,vm >0, and Gyt € Cn=2m)x(n=2m) ;o diagonal.

Proof. Tt follows from Sylvester’s law of inertia (see, e.g., [5]) applied to H = I
that in the canonical form for the triple (4, I,G), only blocks may appear in which
the matrix H; has only positive eigenvalues. These are blocks of Type (1b) with
parameters € = +1 and p = 1 and blocks of Type (1d1) with parameters € = +1 and
p = 1. Noting, furthermore, that G is Hermitian and thus has only real eigenvalues,
it follows also that the parameter v must be real. It now follows from Theorem 4.10
that there exists a nonsingular matrix U € C™*™ such that U1 AU and U*GU have
the forms claimed in the corollary and such that U*HU = H = I. The latter identity
implies that U is unitary. O

REMARK 4.12. The result can be generalized to the case that H is positive
definite. In this case, there exists a nonsingular matrix P such that P*HP = I.
Then we can apply Corollary 4.11 to P~ AP and P*GP.

5. Singly and doubly structured pencils. In this section, we discuss canoni-
cal forms for matrix pencils pA — B, where both A and B are matrices that are singly
or doubly structured with respect to some indefinite inner product. It turns out that
the case of structured pencils can be reduced to the matrix case. This is done in the
following theorem.

THEOREM 5.1. Let the matrices G, H € C™*" be nonsingular and Hermitian or
skew-Hermitian, i.e.,

G*=ngG and H*=ngH,

where ng,na € {1,—1}. Furthermore, let pA — B € C™™" be a regular pencil such
that

A*H = HA, A*G = 64GA,

(22) B*H =egHB, B*G = 65GB,
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where €4,6B,04,0p € {1,—1}. Then there erist nonsingular matrices P,Q € C™*"
such that

p—l(gA_B)Qza[ o }\’,]— [ Y 122 ]

x _| H1 O
QHP_[ g Hm],

* _ | Gu O
QGP_[ ! Gm],

where M, Hy1,G11 € C™*™ and N, Hyy,Goy € C™ %™ Moreover, M and N are in
Jordan canonical form, N is nilpotent, and the following conditions are satisfied.

HY, =ngeaHu, G7L =nc0aGh1,
M*Hyy =eaegHuuM, M*Gi1 = 6408G11 M,
H3, = nrepHaa, G5y = ngdBGaa,

N*H22 = EAEBHQQN, N*G22 = 5A63G22N.

Proof. Let P,@ € C™*" be nonsingular matrices such that the pencil
T 0 M 0
—1 _ _ ni _

is in Kronecker canonical form (see [6]), where M, N are in Jordan canonical form
and N is nilpotent. Then (22) and (23) imply, in particular, that

Q*H(eeaA —epB) = Q"(¢A" — B")H = (a[ 0 N* ] [ 0 I, DP .
From this and (23), we obtain that
. I,, O
Q HP[ 0 N ]

. M 0
QHP[O Im]

— * — Inl 0 *
- @maQ = |y g | P,

Q*HBQ = SB[]% IO ]P*HQ.

Hyy Hy
Hsy;  Ha

Hll HIZN = e Hikl H;l
H21 H22N N*Hik2 N*H;2

Setting Q*HP = [ ] and noting that P*HQ = ng(Q*HP)*, we find that

HuM H, ] S [ M*Hiy M*Hsa]
Hiy  Hj

This implies, in particular, that

Hiy = ngepM*H}, = eaegM*HoN = (e 4e5)*(M*)*H1oN*  for every k € N.
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Since N is nilpotent, it follows that Hi» = 0 and thus, also Hyy = ngeaN*H{, =
0. Moreover, Hi1 = nueaHy, and Hyy = nuepHy,, and HyyN = ngeaN*H3, =
€aegN*Hoy, HuM = ngepM*Hy, = caepM*Hq1. Analogously, we show that
@Q*GP has the structure claimed in the theorem. This concludes the proof. O

We note that M is a doubly structured matrix with structures induced by Hi;
and G1; and that N is a nilpotent doubly structured matrix with structures induced
by Hs and G2z, where Hy1, G11, Haa, and G242 are all Hermitian or skew-Hermitian.
Therefore, Theorem 5.1 gives a general description of how to obtain the canonical
forms for the pencil case from the canonical forms in the matrix case that are given
in the previous sections. We only have to further reduce M and N by applying the
results from Section 4. Note that Theorem 5.1 does not require the pencil pH — G
to be nondefective. However, canonical forms for the matrix case are known for this
case only.

Theorem 5.1 also describes the case of singly structured pencils. In this case one
may choose H = G, €4 = 64, and eg = dg. Thus, Theorem 5.1 gives a general
description of how to obtain canonical forms for singly and doubly structured pencils
from the canonical forms in the matrix case. For obvious reasons, we do not give a
list of the canonical forms for all possible cases, but only one example to illustrate
the effect of Theorem 5.1.

THEOREM 5.2. Let H € C™*" be Hermitian and nonsingular and let pA — B €
C™™ be a regular pencil such that A and B are H-self-adjoint. Then there exist
nonsingular matrices P,Q € C™*" such that

Ay 0 By 0
P (eA-B)Q =0 - ,
0 Ay, 0 By
H, 0
Q*HP = ,
0 Hy

where the blocks Aj, B;, and H; have corresponding sizes and are of one and only
one of the following forms:
1. blocks associated with real eigenvalues:

Aj=1I,, Bj=7Jp(A\), and H;=¢Z,
where p € N, A€ R, and € € {1,—1};

2. blocks associated with a pair of nonreal eigenvalues:

A 0
Aj = _[2p7 Bj = [ jp(g ) jp(X) ] , and HJ‘ = Zzp,

where p € N and A € C\R;
3. blocks associated with the eigenvalue oo:

A; =7,(00), Bj=1I, and H;=cZ,
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where p € N and € € {1,—1}.

Moreover, this form is uniquely determined up to permutation of blocks.

Proof. This follows directly from Theorem 5.1 and Theorem 3.1. O

Note that with the assumptions and notation of Theorem 5.2, the pencil H(pA —
B) = gHA— HB is a Hermitian pencil. It turns out that Theorem 5.2 is a generaliza-
tion of Theorem 2.3. Indeed, the pencil Q* HPP~!(pA — B)(Q is a Hermitian pencil
in canonical form.

6. Conclusions. We have derived canonical forms for matrices and matrix pen-
cils that are doubly structured in the sense that they are H-self-adjoint (or H-skew-
adjoint) and at the same time G-self-adjoint (or G-skew-adjoint), where we have
assumed that G, H are nonsingular Hermitian (or skew Hermitian) and oG — H is
a nondefective pencil. The general case that G or H is singular, or that the pencil
oG — H is defective, is still an open problem. Also, the associated real canonical
forms, which appear to be much more difficult, are open.

In view of the applications to eigenvalue computations, it is also important to
restrict the transformation matrices to be unitary (or orthogonal in the real case).
This case will be covered in a forthcoming paper, which will also address numerical
methods, in particular for the classes of pencils arising in quantum chemistry that we
discussed in the introduction.

Appendix. In the Appendix we derive some technical lemmas. Recall the Kro-
necker product; see, e.g., [9, 12].
DEFINITION 7.1. Let A = [aj;] € C™*" and B € CP*?. Then

auB e CblnB
A®B:= : - : e cmPxna,

am1B ... amnB

This product has the following basic properties; see, e.g., [9, 12].

PROPOSITION 7.2. Let A,C € CP**P2 B D € C1"*%, E € CP>*P3 qgnd F €
C%*9  Then the following identities hold.

1.A(B+D)=A®B+A®D, (A+C)®B=A®B+C®B.

2. (A B)(E® F) = (AE) ® (BF).

3. A® B is invertible if and only if A and B are invertible. In this case we have
that (A Byl = A~ @ B~1.

4. (A B)T = AT® BT, (A®B)*= A*® B*.

5 A B =0 if and only if A=0 or B=0.

We will frequently need the permutation matrix

Qm," = [617 €nt1s-- 5 €(m—1)n+1;€2;,€n42; - -+, €(M—1)n+2;€n>€2n, - - -, emn]'

If A, B are m x n and p X ¢, respectively, then

D (A B)Q, , = B® A.
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In the following we derive the canonical forms for doubly structured matrices that
are nilpotent. This case is the most complicated case, since we have least symmetry
in the spectrum. Therefore, we have to use a very technical reduction procedure.

For the sake of brevity of notation, let J, denote the nilpotent Jordan block 7,(0)
of size p. Opq is the p X g zero matrix.

LEMMA 7.3. Let Z,, D,, and F, be defined as in Section 2 and let k,l,p,q € N,
(p > q)- Then

(24) ijzf = (jzf)*Zpa DpjggDp = (_1)1\-7;’ ijzi = (_l)l(jé)*Fp;

J! O,_
k — k]
(25) ZpJ, [ o,,_qq,q ] = [ Zq”jqzﬁl ]
k jl _(_ — Opfq,q
(26) ijp |: Oqu,q :| - ( l)p 1 |: quqk_H :| )
O,_ ¢ | Op—q,
Dp[ pqqq]:(_l)pq[ 5!1}%:]

DEFINITION 7.4. Let A = (ajg)nn, € C"*". Then the lth lower antidiagonal
of A or, in short, the lth antidiagonal of A, is defined by the elements a;i, where
j+k=n+1+1. Here, we allow [ = 0. The 0th antidiagonal is also called the main
antidiagonal. If

~ 0
B=[0 B] and C—[é],
where B and C' are square matrices, then the Ith antidiagonal of B and C is called
the Ith antidiagonal of B and C, respectively. Analogously, we define the I/th block
antidiagonal for square and nonsquare block matrices.

LEMMA 7.5. Let G,H € C™*" be Hermitian nonsingular such that the pencil
oH — G is nondefective and such that its spectrum is contained in {v,—~}, where
7% € R\{0} and Re(y),Im(y) > 0. Furthermore, let A € C"*™ be nilpotent, H -self-
adjoint, and G-skew-adjoint. Then there exists a nonsingular matriz P € C™*" such
that

PlAP=A®-- @ Ay,
(27) P'GP=G1®--- &Gy,
P*HP=H, @ --- & Hy,
where the blocks Aj;, G, H; have corresponding sizes and, for each j, are of one and
only one of the following forms:
Type (1d1):
(28) A =7,00), H;j=c¢Z, and G;=E¢EvF,,

where £, € {—1,1} and p € N is odd if v € R and even if v € iR;
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Type (1d2):
o Jp(0) 0 o 0 Z o 0 vEp
(29) AJ - [ 0 jp(O) I HJ - Zp 0 I GJ - _,pr 0 )

where p € N is even if v € R and odd if v € iR.
Moreover, the form (27) is unique up to permutation of blocks.

Proof. Applying Theorem 3.1, we may assume that (A, H) is in canonical form,
i.e., collecting blocks of the same size and representing them by means of the Kronecker
product, we may assume that

I, ® Jp, 0 Y ® Zp, 0
A = . . y H = . . y
0 Iyn,,e ® jpk 0 Emk ® ZPk
where p; > --- > p; are the sizes of Jordan blocks and X,,; are signature matrices

for j =1,...,k. Setting

Iy, @ Fp, 0

0 Iy, @ Fy,

we obtain from —A*G = G A and (24) that A and FG commute. Thus, the structure of
G is implicitly given by the well-known form for matrices that commute with matrices
in Jordan canonical form; see [5]. For the sake of clarity, we will not work directly
on A, H, and G, but first apply a permutation. Setting Q = Qpp, p, @ - B Qi o
and updating A, H, G by Q1 AQ, Q*HQ, Q*GQ, we are led to consider the following
situation:

Ipr @ Iy, 0 Hy,y 0
A= and H = )
0 Tor @ I, 0 Hy,

where Hj; 1= Z,, ® Y, . Partitioning

Gi1 ... G
(30) G=1| : :

Tk voo Gk

conformably and using the structures of matrices that commute with matrices in
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Jordan canonical form [5], we obtain that

Go = X1t (Fp,J},) ®Gil
[ 0 e ... 0 el ]
1) ' ~Giy G
= : T Gy G
0 . o :
(—1)pG) o (—1perigPe)

forg=1,...,k, where G,(Il’)q € C™Ma*XMa gnd

ol o
(32) Gyr = [ P brpr ] ®G{)
qr ; Fpr jzfr q,

for 1 < g <r <k, with G\, € C™axmr.

3

We will stepwise reduce the matrix G, while keeping the forms of A and H.

Step (1): Show that Gg-?; is nonsingular for j =1,...,k.

Since the pencil pH — G is nondefective and has only the eigenvalues v, —y, where
7?2 € R\{0}, we obtain from Lemma 4.9 that

GH'G =+*H.
Comparing the jth diagonal blocks on both sides, this implies in particular that
(33) ’)’2Hjj = G1;H1Grj + -+ GjHjiGij + - + G He Gy, -

Because of the structure of the blocks Gy, it follows that all the block antidiagonals
of G}, HyyGgr and GorHyrGy, are zero for ¢ < r, and hence, comparing the main
block antidiagonals on both sides of (33), we obtain that

Y2y @ Ty = (Fp; © G (Zy; ® Sy ) (Fy; © G
0 0
= (ij ZP:’ ij) ® (G;}Emi G;J))

Since Fy,; Z,, Fy;, = Z,,, this implies that

(0) 0 _ 1
(34) G Xm; Gy = ?Ema'

and thus, Ggoj) is nonsingular.

Step (2) Eliminate G12, cay le.

Assume that we already have G@ =0forallj=2,...,kand all s =0,...,l—1,
and GY)] =0forj =2,...,r—1, where ] > 0 and r > 2. We then show how to
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eliminate Ggl)r while keeping the forms of A and H. Let

r
I Xlr

I

have a block form analogous to G, where zero blocks of the matrix are indicated by
blanks and, moreover,

0 = 0
1 1
Xi=| o e (Geomrreel) =] o i
Op1—p,.p- 2 ' '
0 0

1 B .
X1=[ Oppr—p, T, |® (5(_1)I+I(G$‘?7)') (ng’)r) ) '

Substep (2a): Note that X1, and X, are chosen so that X commutes with A.
Substep (2b): In the updated matrix G := X*GX, we have é§”r =0.

Indeed, it is easy to see that G is again a matrix of the form (30), (31), and (32).
The (1,r)-block of G satisfies

(35) Gir = Gui X1r + X} G, X1r 4+ Gip + X G

From the structure of G and X, we immediately find that the first [ — 1 block antidi-
agonals of all the summands of the right-hand side of (35) are zero. Furthermore, the
lth block antidiagonal of Gy, has the form

; 1
(Fp, ®Gg(g) ([ o Ip. :| ® (5(_1)Pl—pr+1(G§?i)—1Ggl’)T))

P1—DPrPr
Op.— 0
_|_ P1—Pr,Pr ] ®G )
[ oot
Op o L6 (o)1 (0)
+ (jl )* by 5(_1) Gl,r(Gr,r) (Fpr ® Gr,r)
Dr

1 l
= 5(_1)171—1Jr4-1 (Fm [ o Jpr ]) ®G§l,)r + [ Op1—p,pr ] ®G§l,)r

P1—Pr,Pr Fp"“ ‘7151’
1 Opr.p1-ps 0
+-0 (| gpye | B) otl

_ 1 Opi—pr,p» O] Opi—pr,p» O]
= —5 |: Fpr jzgr ® Gl,T’ + Fprjér ® Gl,T
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1 Opi—p.p, 0] i
D) (_l)l(jlfr)*Fpr ® GI,T (usulg (26))

=0 (using (24)).

Substep (2¢): In the updated matrix G := X*GX, we still have égf; = (0 for all
j=2,...,kandall s=0,...,1—1, and égl’)] =0forj=2,...,7—1.
Indeed, the elements of the first block row of G have the form

Gig+XGy, forl<g<r and
G+ X41Gyy forr<ag.

From the block structure of G14, Grq, Ggr, and X,1, we obtain that the first p, —p,+21
block antidiagonals in X7;G7,. and the first p, — p; + 2l — 1 block antidiagonals in
X} Grq are zero.

Substep (2d): Show that the matrix H := X*HX is block diagonal.

The only changes outside the block diagonal can have happened to the (1,r)-block
H,, and the (r,1)-block H,; = H},. The (1,7)-block has the form

ﬁlr = (Zm ® z:ml)Xlr + X’:].(Zpr ® Emr)

11 0,,—
36 J—— P1—Pr;Pr :|
(36) 2 [ Zp, Ty,

- 0)\—1 ~( 1 -

B((=1)7 P S, (G G+ (CD)T GG T Em,),
using (24) and (25). On the other hand, we have GH™'G = +?H. Noting that
H~! = H and comparing the (1,r)-blocks of both sides, we obtain that

r—1 k
(37)  0=GyHuGy, + (Z ququGqT) + G1,Hy Gy + ( > ququG:q> .
q=2 q=r+1

Clearly, the first [ — 1 antidiagonals of all the summands in (37) are zero. We now
consider the /th block antidiagonal. We note that G11 H;1G1, and Gy, H,.G . are the
only summands that have a nonzero lth block antidiagonal. For the terms G1,H,Gyr,
1 < g < r, this follows from the fact that the Ith block antidiagonal of G, is already
zero. For G1,H,,Gr,, ¢ > r, this can be seen as follows. If we write the jth block
antidiagonal of G1,H,, Gy, in the form S; ® T}, then we obtain

» » Iz)q Dr —Pq Dq
P17 Fq . 0 Fr
% =p, [ququ]z"q a a
Dr — Dq Dq
b1 — pr 0 0
= Pr — Pq 0 0

DPq 0 qu ‘qu qu F;q
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Having in mind that the first [ — 1 block antidiagonals of G14 are zero, we find that
the first p, — pg + 1 — 1 block antidiagonals of G14H,,G7, are zero.
Finally, comparing the Ith block antidiagonals in (37), we obtain

O, _
0= (Fn ®Grao)Z %) (| %2 2 | 0611
r p’p

(| Camr |2 60) @ 050, 0 60
PrYpr

Op,— .
=| 25" | @ () G G+ (-1)/ G2, GE)),
Zp. Ty, ' ’ ’ '

using (24), (25), and (26). Using (34) and (36), this implies H;, = 0.

Substep (2e): Retrieve H.

Although H is block diagonal, the (1,1)- and (r,r)-blocks may differ from those
of H. We now show how to retrieve H from H while keeping the zero block antidi-

agonals of G. Tt follows from Theorem 3.1 that there exists a nonsingular matrix
T € CPrm>Pr™ gych that

T YTp @I )T =Ty, ® Iy, and T*H\T = Zp, @ Sy, -

Since T' commutes with Jp, ® Ip,,, it has the block structure

Ti ... T,
0 T
with T; € CP**P'| j = 1,...,m;. Analogously, we find a matrix 7" € CPr™"*Pr™" of

similar structure such that
T YT @ Iu )T = TJp, @Iy, and T™*H,T' =7, & Zp,.
Setting
T:=TOLym ® &I _m,_, ®T O Iy ympy ® O Ipym,,
we obtain
T'AT =A and T*HT =H.

Moreover, let us look at the (1, q)-block of T*GT. Note that, because of the block-
triangularity of T', the multiplication of G from the left by T™* neither changes the
first I — 1 zero block antidiagonals of élq for ¢ = 2,...,k nor the [th zero block
antidiagonals of élq for ¢ =2,...,r. The same argument holds for the multiplication
from the right by T, because of the block-triangularity of 7.

Substep (2f): By consecutively repeating Substeps (2a)—(2e) several times, we
can eliminate Gg?])- for all j = 2,...,k, then GS]) for all j = 2,...,k, and so on.
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After having also eliminated Gﬁ{’ ;71)

matrix S such that

, we finally obtain that there exists a nonsingular

-1 _ jpl ® Im1 0 * — Zp1 ® Em1 0
ST1AS = 0 4, |2 STHS= 0 |
ema_ | G1 0
and SGS—{O Gz],

where Gy € CP*™*Pr™ Hence, it is sufficient to assume that we are in the following
situation:

A=7,®I, H=2Z,8%, and

0 Go
P . —Go -G
G: (ijp)@)Gk: A - : )
k=0 : : .
(PG ... ... (=1)PTG,

where k,m,p € N, ¥ is a signature matrix, and G; € C™*™ for j =0,...,p— 1.

Step (3): Reduce G to block antidiagonal form.

Assume that we already have G; = --- = Gj_1 = 0 for some [ < p— 1. We then
eliminate G while keeping the structure of A and H.

Substep (3a): Eliminate Gj.

Since G is Hermitian and Fj, is Hermitian for odd p and skew-Hermitian for even
p, we obtain that

(38) G; = (-1)PHrHIG,.
This implies, in particular, that
(39) (G5'G)* = (-1)'GiGy ™

° 4 2 P 0 l)’

it follows that X commutes with A. Moreover, we obtain that the first [ — 1 block
antidiagonals in G := X*GX are still zero. Then, using (24), it follows that the /th
block antidiagonal has the form

(Ip @ In) (FpTp) ® G1)(Ip @ Im) — %(—1)’((315)* ® (Gi1Gg ) (Fp ® Go)(Ip ® Im)

50, ® I)(F, @ Go)(J} ® (G5 G) = 0.
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Substep (3b): Retrieve H.
Comparing the Ith block antidiagonals on both sides of GH~'G = v2H and using
that G4 = --- = Gj—1 = 0, by applying (24) and Lemma 2.1, we obtain that
0= (£ ® Go)(Z, ® B)(F,Ty) ® Gi) + (Fp ) © Gi)(Z, ® ) (Fy © Go)
= (FpZpF,J)) ® (Go2G + (-1)'GiEGy).

This implies, in particular, that for [ > p —1,
GGy + (-1)'=Gy Gy = 0.

Here we have used the identity GoXGo = 2%, which follows from comparing the
diagonal blocks in GH™1G = y?H. Therefore, with this relation and (39) we obtain
that

X*HX
1 1
=7Z,0% — 5ijﬁ ® (G;Gy*S + G, 'Gy) + Z((J,ﬁ)*z,,j;) ® (GrGy*2Gy'Gy)

1
= 2,05 - {(Z,7%) @ (5(G;'G)?).

The (2])th block antidiagonal of X*HX can then be eliminated by a congruence
transformation with

1
Y=L QI+ gj,f’ ® (Gy'Gy)2.

This transformation does not change the first I block antidiagonals of G' but may
change the jth block antidiagonal of X*H X for some j > 2. However, repeating the
procedure described above a finite number of times, we can finally retrieve H while
keeping the property that the first [ block antidiagonals in G are zero.

Substep (3¢): By consecutively applying Substeps (3a) and (3b), we finally obtain
that there exists a nonsingular matrix S such that

0 by
S'AS=7,®1I,, S*HS=Z,3%= ,
) 0
0 Go
and S*GS=F,®G, =
(=1)P+1G, 0

Step (4): Complete the final reduction of G.

Since the pencil pH — G is nondefective and its spectrum is contained in {7, —7v},
this also holds for each subpencil ¢¥ — (£Gy). We will distinguish four cases.

Case (a): v € R and p is even.
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Identity (38) implies that G is skew-Hermitian. Since the pencil g3 — (£Gp) has
only real eigenvalues v and/or —v, it follows that ¢X — (£Gy) has both eigenvalues
with equal algebraic multiplicity. This implies, in particular, that m is even and that
there exists a nonsingular matrix R € C™*™ such that

" |0 I " . 0 ~yI
RZR—[IO] and RGOR_[—’yI 0].

Set R =1, ® R. Then

01

R'AR = A, R*HR:Z,,@[I 0

" _ 0 I
], and R'GR=F,® [ I 0 ]
Applying a transformation with €, ,,, the form stated in (29) for the case that p is
even follows from an appropriate block permutation.
Case (b): v € R and p is odd.
In this case, (38) implies that G is Hermitian. Considering the Hermitian pencil
0% — (£Gy), there exists a nonsingular matrix R € C™*™ such that

R*YSR=% and R*GoR=~%,

where ¥ is another signature matrix. Setting R := I, ® R and applying transforma-
tions with R and Qp ., the form stated in (28) for the case that p is odd follows from
an appropriate block permutation.

Case (c): v € iR and p is even.

In this case, (38) implies that G is Hermitian. The rest follows as in Case (b).

Case (d): v € iR and p is odd.

This case follows analogously to Case (a). This concludes the reduction to the
canonical form.

Uniqueness: The canonical form for the pair (A4, H) is unique. The matrix G is
then uniquely determined by the invariants € and . O

DEFINITION 7.6. Let A = (ajk)nn € C"*". Then the Ith upper diagonal of A or,
in short, the Ith diagonal of A, is defined by the elements a;, where k = j + 1. Here,
we allow [ = 0. If

B=[0 B] and c:[g],

where B and C' are square matrices, then the Ith diagonals of B and C are called the
Ith diagonals of B and C, respectively. Analogously, we define the /th block diagonal
for square and nonsquare block matrices.

LEMMA 7.7. Suppose that Ag,Go € C™*™ anticommute, i.e., AgGy = —GoAp.
Furthermore, let Ag be nilpotent and Go be diagonalizable and nonsingular. Then
there exists a nonsingular matriz P € C"*™ such that

P AP =4 - Ay,
(40) PilG()P:Gl@"'@Gk,
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where the blocks Aj, G; have corresponding sizes and, for each j, are of the following
form:

Aj =Tp(0) and Gj =¢e;7Dy,

where p € N, v € C with Re(y) > 0 and Im(y) > 0 if Re(y) =0, and ¢; € {+1,-1}.
Moreover, the form (40) is unique up to the permutation of blocks.
Proof. Let Q € C™™" be nonsingular such that

—1 | A A 1 | G O
e ae=| 40 47| ad oG- G g ).

where the spectrum of G is contained in {7, —y} and the spectrum of G2 is disjoint
from {7v,—7}. Then —AgGo = GoAp implies A1 = A2; = 0. Hence, we may assume
without loss of generality that G has at most the eigenvalues 7, —v, where v € C\R
with Re(y) > 0 and Im(y) > 0 if Re(y) = 0. Since Gy is diagonalizable, this implies

in particular that G2 = 42I,. Furthermore, we may assume that Aq is in Jordan
canonical form. Thus, we obtain that
Ip1 ® I,y 0 Gu ... Gui
Ay = and Gy = : - :
0 jpk ®Imk G ... G

for integers p; > --- > pg, my,...,my and Gy, € C™**™ . Setting

D, ® I, 0

D := .
0 Dplc ® Imk

and using (24), the fact that Ay and Gy anticommute is equivalent to Ag(DGo) =
(DGy)Ap. Therefore, we obtain the following structures for the blocks of Go:

Pq—1 pr—1 P
Goq = Z (ququ) ®G1(1{()1a Gyr = Z [ Dp,,j,fr ] & Gfﬂl for g <,
7=0 =0 Pq—Pr,Pr
and
Pq—1
GQT = Z [ Opq sPr—Pq DPq qu ] ® G((IJ,Z for q>r,
7=0

where Gz(zj,t)z and GI(I’,.) are matrices of suitable dimensions. We will now reduce Gg
stepwise to canonical form.

Step (1): Since G§ = 7?1, as in Step (1) in the proof of Lemma 7.5, it follows
that G((Zl,)q is nonsingular.

S’tep (2) Eliminate G12, Sy le and Ggl, ey le.
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Assume that we already have Ggs; =(Qforallj=2,...,kandalls=0,...,1—1,
and Ggl)] =0forj=2,...,r—1, wherel > 0, r > 1. We then eliminate Gg’)r Note
that G2 = 721 implies that

Gi1Gir+ -+ GGy =0

for r > 1. From this and using an argument similar to the argument in Step (1) in the
proof of Lemma 7.5, we obtain that only the blocks G11G1» and G1,.G . contribute
to the lth diagonal of the left-hand side. Using (24), this implies that

4
0= 0, 06 ([ g7 |oal)

Opl—Pr,Pr
D l
(a) ([ o Joclh) @, 06
P1—Pr,Pr
[ 07 Je@tet + cvetew).
Op1—pr.p, ’ ’ T
Setting
,
1 Xlr
XO = - . ;
I
where

1 T} ] (0)y—1 (1)
Xy, = —= pr ® (G felon
! 2 [ Om—pmpr ( 1’1) L

we obtain that Xo commutes with 4y. Furthermore, partitioning Go := X5 1GoXo
conformably to Gy, for the (1,r)-block G, we obtain that

Gir = Gir — X1,Grr + G11 X1y — X1,Gr1 X1

From this and using (24) and (41), we obtain that the /th diagonal of G, has the
form

D,, J! 1 J! _
[ PrJp ]®G§{1+—([O - ]Dm)@((Gfi) GG

P1—Pr,Pr 2 P1—DPr,Pr
1 VA D )
——\{D pr ® Gy’ =0.
2 ( P [ Om—pmpr L

Analogously to the proof of Lemma 7.5, we can show that we still have éﬁ;” =0
forall j=2,...,kand G{) =0 for j=2,...,r - 1.
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By consecutively repeating Step (2), we can first eliminate Gg?])- for j =2,...,k,
then Gg}, and so on. Finally, we can eliminate Gi2,...,G1x. Moreover, we can
eliminate Gay, ..., Gy using transformations of the form
I
XO = 5
r Xrl
I
where
1
_ 1 (1) ((0)y—1
Xr = _5 [ Opr,prpr jpr ] ® (GI,T‘(GI,I) )
Note that these transformations do not change Gia,...,G1j.

To complete Step (2), we may finally assume that

1 Goo --. Gop-1
A:jp®l’m7 GO:Z(DPka)(gGOk: ’
=k 0 (—1)p+1G00

where p,m € N.

Step (3): Reduce Gy to block-diagonal form.

Assume that we have Go1 = -+ = Go—1 = 0 for some 0 < ! < p — 1. We then
show how to eliminate Gg;. The lth block diagonal of G% has the form

0= ((DpJ}) ® Ga)(Dp @ Goo) + (Dp ® Goo)((DpJy) ® Gar)
=7} © ((-1)'GaGoo + GooGor)-

Hence
(42) GoiGoo = (—1)"*'GooGor -
The matrix Xo := I, ® I, — 7. ® (GooGor) commutes with Ag. Moreover, X, ! has
the structure

1 o0

Xgt =1 ® In + 5.7, ® (Ggg Gor) + D TH @ Xok
k=2

for some matrices Xo,. Hence, setting Go == Xy LGy X0, we obtain that the first [ — 1
block diagonals are still zero and that the /th block diagonal has the form

1
(5315 ® (Ggolam)) (D, & Goo) (T, ® In) + (D, 1) ® Gy

1
+(Ip ® Im)(Dp ® Goo) (—5.715 ® (GaolGOl))
=0,
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using (24) and (42).

By consecutively repeating this procedure and then applying €2, ,, we may finally
assume that

A= m®Jp and G0=G00®Dp.

Since Gy is diagonalizable, this also holds for the matrix Gpo. Moreover, Ggo has at
most the eigenvalues v and —v. Hence, there exists a nonsingular matrix R such that

-1 _ 'YIq 0
R GOOR—[ ! —va_q]

for some g € N. Setting R := R ® I,,, we obtain that R~ 4gR = Ao and

Rflan |: ’qu 0

R ] ® Dp.

The assertion then follows by an appropriate block permutation.

Uniqueness: Analogously to the argument in the proofs of Theorems 4.4 and 4.10,
it is sufficient to consider uniqueness for the case that Gg has at most the eigenvalues
v, —7 with Re(y) > 0 and Im(y) > 0 if Re(y) = 0. Assume that

Imp ® \7p En’l,J ® Dp
AO = ) GO =7 )
Im1 ® L71 Eml ® Dl
Ym, ® Dy
and Go=7 ,
im1 X -Dl
where we allow m; = 0 for some j = 1,...,p and where %,,, and f]mj are signature

matrices. To prove the uniqueness of the form (40), we have to show that if S € C"*"
is nonsingular such that S™'A4pS = A and S™'GoS = G, then E,,; and X, are
similar for j =1,...,p.

Note that for each Jordan block there exists a Jordan chain {xsg, e mgg }, where

a=p,...,1and B =1,...,my. Let P be the permutation matrix that reorders these

chains in the following way. First, we collect 5’3((11;3 fora=p,...,1, 8 =1,...,my,
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then 22 for a = 2, 8=1 d Setti =3 ; h
of =p,.--,2, B=1,...,mp, and so on. Setting g» = > ;_, m;, we have
dp gp—1 dp—2 s q1
_ I -
a0 0 |: 116 1 :| 0
I
dp, 0 [ q16_2 ]
AO = P_IA()P =
qp72 0 0
IQ1
0
il | 0
Moreover,
Go:=P'GyP =+~
0 Gpp
G 0
and Go:=P 'GoP =1 ,
0 Gpp
where
S, 0 S, 0
Gjj = (1)’ and  Gj; = (1) .
0 Yo, 0 S,

J

Assume that there exists a nonsingular matrix 7' such that T14,T = Ay and

T-'GoT = Go. Then the structure of A, implies that T is block upper triangu-
lar with a block structure corresponding to Ag. But then we obtain, in particular,
that G;; and éjj are similar for each j. This implies that ¥,,, and f}mj are similar
for each j. O

LEMMA 7.8. Let G,H € C™*™ be Hermitian nonsingular such that the pencil
oH — G is nondefective and such that its spectrum is contained in {v,—v,7, =7},
where v2 € C\R and Re(y)Im(y) > 0. Furthermore, let A € C™*™ be nilpotent, H -
self-adjoint, and G-skew-adjoint. Then there exists a nonsingular matriz P € C™*"
such that

PlAP =A@ -- @ Ay,
(43) PGP =G:1®---® G},
P*HP=H, ®---&® Hy,
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where, for each j, the blocks A;, G;, H; have corresponding sizes and are of the
following form:

Type (2d):

0 evF,
and GJ = [ 6(_1)1’4—17}7’1) 0 P :| ’

where p € N and € € {+1,—1}.

Moreover, the form (43) is unique up to the permutation of blocks.

Proof. Using the same argument as in Case (2) of the proof of Theorem 4.10, we
may assume that A, H, and G have the following forms:

(4 0 Jo I o0 G
|8 o r ) e eslg T

where

=2
-1 aH_ | YL 0
HGH G_[ 0 'sz]'

This implies, in particular, that GZ = 7?I. From —A*G = GA, we obtain that A
and Gy anticommute. We will now reduce G by congruence transformations with
matrices of the form

[ Xe 0O
r= [ 0 X ]
Then
X 40X, 0
X‘lAXz[ 0 020 _ ] X*HX = H, and
0 (X5 ApXo)*
¥ _ 0 (Xy 'GoXo)*
XGX = [ X5 'GoXo 0 :

Thus, the problem of reducing G, while keeping the forms of A and H, reduces to
the problem of finding a canonical form for Ay and Go under simultaneous similarity.
This is done in Lemma 7.7. Hence, the result follows from noting that the spectrum
of Gy is contained in {7, —7} and applying the Z-trick.

Uniqueness: Assume that

_[7 o [0 1 [ o ey [0 G
S KA R P B A R e



ELA

Canonical forms for doubly structured matrices and pencils 151

where J is a nilpotent matrix in Jordan canonical form, G, G2 are Hermitian, and
0(G11) = 0(G22) C {¥,—7}. Furthermore, assume that T~'AT = A, T*HT = H,
and T*G1T = G for some nonsingular matrix 7. Partitioning

T T - S11 Siz
T = T =
[ Tor T ] and [ Sa1 S22 ]

conformably with A, H, and G, we obtain that

Tio =821 and GuiTi2 = S21G5y = T12G35,.

This implies that Tj5 = 0. Analogously, we show that T5; = 0 and hence, we obtain
by symmetry To2 = T7;*. Hence, the uniqueness of the form (43) follows from the
uniqueness property in Lemma, 7.7. O

(1]
2]
(3]
(4]
]

[S4
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