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Abstract. Let A(G) be the adjacency matrix of a graph G. The largest eigenvalue of A(G)

is called spectral radius of G. In this paper, an upper bound of spectral radii of K2,3-minor free

graphs with order n is shown to be
3

2
+

√

n−

7

4
. In order to prove this upper bound, a structural

characterization of K2,3-minor free graphs is presented in this paper.
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1. Introduction. All graphs considered in this paper are undirected and simple

(i.e., loops and multiple edges are not allowed). Let G = G[V (G), E(G)] be a graph

with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G), where |V (G)| = n is the

order and |E(G)| = m is the size of G. Let NG(v) denote the neighbor set of vertex

v in a graph G. The degree of v in G, denoted by deg(v), is equal to |NG(v)|. We

denote by δ or δ(G) for the minimal vertex degree of G, and denote by ∆ or ∆(G) the

maximal vertex degree of G. In a connected graph G, the length of a shortest path

from vi to vj is called the distance between vi and vj , denoted by d(vi, vj). We denote

by Ck a cycle of length k, denote by Pn a path of order n and by Kn the complete

graph of order n. For S ⊆ V (G), let G[S] denote the subgraph induced by S. For

a vertex set {v1, v2, . . . , vk}, we sometimes abbreviate G[{v1, v2, . . . , vk}] by G[v1,

v2, . . . , vk]. G[S] is called a clique if it is a complete subgraph of G; G[S] is called

a k-clique if |S| = k. For a connected graph G which is not complete, the vertex

connectivity, commonly referred to simply as connectivity, denoted by κ(G), is the

minimum number of vertices whose deletion yields the resulting graph disconnected.

We define κ(Kn) to be n− 1.

There are several definitions of k-sum of two graphs (see [1], for example). Here,
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we cite the definition of k-sum given in [3].

Definition 1.1. [3] Given two disjoint graphs G and H each of order at least

k + 1, a graph J is a k-sum of G and H if it can be obtained from G and H by

identifying the vertices of a k-clique in G with the vertices of a k-clique in H and

possibly deleting some of the edges of the now common k-clique.

In particular, in the k-sum of G and H , if no edge of the new common k-clique

is deleted, J is a k-complete-sum of G and H . We denote by J = G ⊕k H the k-

sum of graphs G and H and denote by J = G ⊕c
k H the k-complete-sum of G and

H . We abbreviate the k-complete-sum of G and H by the k-sum of G and H and

abbreviate J = G⊕c
kH by J = G⊕kH in this paper. A graph J is called separable if

J = J1 ⊕k1
J2 ⊕k2

· · · ⊕kt−1
Jt (t ≥ 2); the Ji (i = 1, 2, . . . , t) are called the summing

factors of J . Complete separable and complete summing factor are defined similarly.

In this paper, all k-sums of any two graphs we considered are k-complete-sums, and

a k-complete-summing factor of J is also called a k-summing factor.

Let A(G) denote the adjacency matrix of a graph G and Sv(A
l) denote the row

sum corresponding to v in Al. In algebraic graph theory, it is well known that Sv(A
l)

is equal the number of the walks which have length l and start from vertex v in graph

G. It is easy to see that for a graph G, Sv(A) = deg(v) and Sv(A
2) =

∑

u∈NG(v)

deg(u).

The characteristic polynomial (or A-polynomial) of G, denoted by P (G) or P (G, λ),

is defined as det(λI − A(G)), where I is the identity matrix. The largest eigenvalue

of P (G) is called the spectral radius of G, denoted by ρ(G). We call the eigenvector

corresponding to ρ(G) the Perron eigenvector of graph G. By the Perron-Frobenius

theorem [10], we know that the Perron eigenvector is a positive vector for a connected

graph.

Definition 1.2. [6] A graph H is called a minor or H-minor of G, or G is called

a H-minor graph if H can be obtained from G by deleting edges, contracting edges,

and deleting isolated (degree zero) vertices. Given a graph H , a graph G is H-minor

free if H is not a minor of G.

The investigation of H-minor free graphs is of great significance; it is very useful

for studying the structures and properties of graphs (see [2, 3, 14, 15]). In 1937,

Wagner [14] had shown that a finite graph is planar if and only if it has no minor

isomorphic to K5 or to K3,3. In 2003, Yuan Hong [6] established some sharp bounds

for the maximal and minimal spectral radius of a K5-minor free graph. It is well

known that a simple graph G is outer-planar if and only if G is both K4-minor free

and K2,3-minor free (see [1, 16], for example), so the study of K4-minor free graphs

and K2,3-minor free graphs is very useful for the study of outer-planar graphs. In

2000, J.L. Shu and Y. Hong [12] determined that, for any connected simple maximal
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outer-planar graph G of order n, ρ(G) ≤ 3

2
+

√

n− 7

4
. In 2001, J. Shi and Y. Hong

[11] studied K4-minor free graphs. They obtained a sharp upper bound for their

spectral radii and characterized the extremal graphs with the sharp upper bound. An

interesting thing is that an upper bound for spectral radii of K2,3-minor free graphs

of order n is also shown to be
3

2
+

√

n− 7

4
in this paper. To prove this upper bound,

a structural characterization of K2,3-minor free graphs is presented. This paper is

organized as follows: Section 2 presents some working lemmas; Section 3 presents

some upper bounds for the spectral radii of K2,3-minor free graphs.

2. Preliminaries. The reader is referred to [1, 4, 5, 16] for the facts about

outer-planar and maximal outer-planar graphs.

Definition 2.1. A simple graph is an outer-planar graph if it has an embedding

in the plane so that every vertex lies on the unbounded (exterior) face.

Definition 2.2. A simple outer-planar graph is maximal if no edge can be added

to the graph without violating outer-planarity.

Lemma 2.3. A simple graph G is an outer-planar graph if and only if G is both

K4-minor free and K2,3-minor free.

Lemma 2.4. If a simple graph G of order n ≥ 3 is a maximal outer-planar graph,

then G has a planar embedding whose outer face is a Hamilton cycle, all other faces

being triangles.

Lemma 2.5. [8, 9] Let G1 be a connected graph. If G2 is a proper subgraph of

G1, then ρ(G2) < ρ(G1) and for λ ≥ ρ(G1), P (G2, λ) > P (G1, λ).

Lemma 2.6. [13] Let u and v be two vertices of a connected graph G. Suppose

v1, v2, . . . , vs (1 ≤ s ≤ d(v)) are vertices of NG(v)\NG[u] (NG[u] = NG(u)
⋃{u})

and X = (x1, x2, . . . , xn)
T is the Perron eigenvector of G, where xi corresponds to

the vertex vi (1 ≤ i ≤ n). Let G∗ be the graph obtained from G by deleting the edges

(v, vi) and adding the edges (u, vi) (1 ≤ i ≤ s). If xu ≥ xv, then ρ(G) < ρ(G∗).

Lemma 2.7. [7] Let G be a connected graph with n vertices, m edges and minimum

degree δ. Then

ρ(G) ≤ δ − 1 +
√

(δ + 1)2 + 4(2m− δn)

2
,

where equality holds if and only if G is isomorphic to a regular graph or to a graph in

which the degree of each vertex is either n− 1 or δ.
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3. Upper bounds.

Definition 3.1. The union of simple graphsH and G is the simple graph G
⋃

H

with vertex set V (G)
⋃

V (H) and edge set E(G)
⋃

E(H). The intersection G
⋂

H of

simple graphs H and G is defined analogously.

Lemma 3.2. A graph G of order n is K2,3-minor free if and only if each compo-

nent of G is a 1-sum, namely, G1 ⊕1 G2 ⊕1 · · · ⊕1 Gk, in which, each Gi (1 ≤ i ≤ k)

is either a K4 or an outer-planar graph.

Proof. We prove the necessity by induction on n. For n = 1, 2, 3, 4, the lemma

obviously holds. Suppose the N ≥ 5 and that the lemma holds for n < N . Next we

prove the lemma holds for n = N .

If G is disconnected, then the conclusion follows at once from the induction hy-

pothesis. Next, we suppose G is connected.

Case 1: G is K4-minor free. Then G is an outer-planar graph by Lemma 2.3.

Hence, the lemma holds.
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Case 2: K4 is a minor of G. BecauseK2,3 is a minor of any subdivision (obtained

from K4 by subdividing some of its edges) of K4 (see Fig. 3.1, H = H
′ − v1v3 is a

K2,3), there exists a K4 but no subdivision of K4 as a subgraph in G.

We assert κ(G) = 1. Suppose otherwise that κ(G) ≥ 2 and G[v1, v2, v3, v4] = K4.

Then there are two internal disjoint independent paths P1, P2 from vertex v5 to G[v1,

v2, v3, v4], which causes a K2,3-minor subgraph F = G[v1, v2, v3, v4]
⋃

P1

⋃

P2 in G

(see Fig. 3.2), which contradicts that G is K2,3-minor free. So our assertion holds,

and then κ(G) = 1. Suppose G is obtained from G1 and G2 by their 1-sum. Because

G1 and G2 are both K2,3-minor free, by induction, then G1 and G2 are both obtained

from some K
′

4s with some outer-planar graphs by their 1-sum. So G is also obtained

from some K
′

4s with some outer-planar graphs by their 1-sum.

By Case 1 and Case 2, the necessity is proved.

Conversely, suppose that G is obtained from some K
′

4s with some outer-planar

graphs by their 0-sum or 1-sum. Since the outer-planar graph and K4 are both
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K2,3-minor free, and κ(K2,3) = 2, G is also K2,3-minor free.

Lemma 3.3. Let e be a cut-edge of graph G and G = G1eG2, where one end

vertex of e is in G1 and the other one is in G2. If G1 and G2 are both K2,3-minor

free, then G is still K2,3-minor free.

Proof. Note that κ(K2,3) = 2, so e does not belong to any K2,3-minor subgraph

in G. Thus, G is still K2,3-minor free.

Lemma 3.4. If a graph G∗ on n vertices satisfies ρ(G∗) = max{ρ(H)| H is

K2,3-minor free}, then for some integer t ≥ 0, G∗ is obtained by attaching t K
′

4s to

a vertex of a maximal outer-planar graph of order n− 3t (see Fig. 3.3).
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Fig. 3.3. G∗.
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Fig. 3.4. G = G1 ⊕G2.

Proof. We claim that G∗ is connected. To see this, assume to the contrary that

G∗ is disconnected and let G1, G2, . . . , Gk be the connected components of G∗. By

Lemma 3.3, we can get a connected K2,3-minor free graph H1 = G1e1G2e2 · · · ek−1Gk

by adding edges e1, e2, . . . , ek−1. But ρ(H1) > ρ(G∗) by Lemma 2.5, which contra-

dicts ρ(G∗) = max{ρ(H)| H is K2,3-minor free}. So G∗ is connected.

We assert that there is at most one cut-vertex in G∗. Otherwise, suppose that

vt1 , vt2 , . . . , vtl (l ≥ 2) are the cut-vertices of G∗. Let X = (x1, x2, . . . , xn)
T denote

the Perron eigenvector of G∗, where xi corresponds to vertex vi (1 ≤ i ≤ n). Suppose

that xt1 = max
1≤i≤l

{xt1 , xt2 , . . . , xtl} in the Perron eigenvector X of G∗, and suppose

G∗ = G1 ⊕1 G2 where V (G1)
⋂

V (G2) = {vt2}, vt1 ∈ V (G1) and vt2 is not a cut-

vertex of G1 (see Fig. 3.4). Let

H2 = G∗ −
∑

u∈NG2
(vt2 )

vt2u +
∑

u∈NG2
(vt2 )

vt1u.

Now, the number of the cut-vertices in H2 is less than the number of the cut-vertices

in G∗, and H2 is also a K2,3-minor free graph. But ρ(H2) > ρ(G∗) by Lemma 2.6,

which contradicts ρ(G∗) = max{ρ(H)| H is K2,3-minor free}. So our assertion holds.

If G∗ has no cut-vertex, then G∗ must be either a K4 or a maximal outer-planar

graph. The lemma holds.

If G∗ has only one cut-vertex, noting that a graph obtained by a 1-sum of some

outer-planar graphs is also an outer-planar graph, and that any outer-planar graph
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can be expanded into a maximal outer-planar graph by adding edges, so for some

integer t ≥ 0, G∗ is obtained by attaching t K
′

4s to a vertex of a maximal outer-

planar graph of order n− 3t. This completes the proof.

Lemma 3.5. Let A be an irreducible nonnegative square real matrix of order n

and spectral radius ρ. If there exists a nonnegative vector y 6= 0 and a polynomial

function f whose coefficients are all real numbers such that f(A)y ≤ ry (r ∈ R), then

f(ρ) ≤ r.

Proof. Since ρ(AT ) = ρ(A) = ρ and AT is also irreducible and nonnegative, let

x denote the Perron eigenvector of AT . If f(A)y ≤ ry (r ∈ R), then f(ρ)xT y =

(f(AT )x)T y = xT f(A)y ≤ rxT y and f(ρ) ≤ r.

Lemma 3.6. Let G∗ be as in Lemma 3.4 and assume the order of its maximal

outer-planar 1-summing factor is h ≥ 3. Then ρ(G∗) ≤ 3

2
+

√

n− 7

4
.

Proof. Denote by v1, G the only cut-vertex and the maximal outer-planar 1-

summing factor in G∗, respectively. Let C1 = (v1, v2, v3, . . . , vp+1, v1) (p ≥ 2)

denote the Hamilton cycle of G. For any v ∈ V (G∗), there are the following 4 cases.

Case 1: v = v1. Along the clockwise direction, suppose the neighbors on C1 of v1
are vi1 (vi1 = v2), vi2 , . . . , vik , vik+1

(vik+1
= vp+1). Suppose there are lj (1 ≤ j ≤ k)

vertices between vij and vij+1
on C1, and let Sj = {u1, u2, . . . , ulj} denote the set of

such vertices between vij and vij+1
(see Fig 3.5 and Fig 3.6).

q q q
q
q q

qq

v1v2

v3

vij
vij+1

vp+1

C1

q
q qqq
q

v1
vij

u1

u2
um

ulj

vij+1

Fig. 3.5. F . Fig. 3.6. H1.

We claim that vij is adjacent to vij+1
in G∗. Let H1 = G∗[{v1, vij , vij+1

}⋃Sj ].

Then H1 is also an maximal outer-planar graph by Definitions 2.1, 2.2 and Lemmas

2.3, 2.4. If vij is not adjacent to vij+1
in G∗, then since v1 must be in a triangle of

H1, there exists at least one different vertex from vij and vij+1
adjacent to v1 in H1,

which contradicts NH1
(v1) = {vij , vij+1

}. So, our claim holds.

Note that any two edges in G either do not intersect or intersect only at their

common end vertex, so there is at most one in Sj which is adjacent to both vij and

vij+1
. Hence, the contribution of Sj to deg(vij ) + deg(vij+1

) is at most lj +1 and the

contribution of {vij , vij+1
}⋃Sj to deg(vij ) + deg(vij+1

) is at most lj + 3.
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Let A denote the adjacency matrix of G∗. Note that n = 3t+l1+l2+· · ·+lk+k+2

and Sv1(A) = k + 1 + 3t, so

Sv1(A
2) = 9t+

k+1
∑

1

deg(vij ) ≤ 9t+ k + 1 + (l1 + 3) + (l2 + 3) + · · ·+ (lk + 3)

= 9t+ k + 1 + 3k + (l1 + l2 + · · ·+ lk) = n+ 3k − 1 + 6t,

and so Sv1(A
2)− 3(k + 1 + 3t) = Sv1(A

2)− 3Sv1(A) ≤ n− 4− 3t.

Case 2: v 6= v1 is a vertex of some K4. Then Sv(A) = 3. Note that deg(v1) ≤
n− 1. As a consequence, Sv(A

2) =
∑

vvi∈E(G∗)

deg(vi) = deg(v1) + 6 ≤ n− 1 + 6, and

so Sv(A
2)− 3Sv(A) ≤ n− 4.

Case 3: v 6= v1 is a vertex of G and vv1 ∈ E(G∗). Along the clockwise direction,

suppose the neighbors of v on C1 are vi1 , vi2 , . . . , viq , viq+1
and lj (1 ≤ j ≤ q) denotes

the number of vertices between vij and vij+1
. Note that

n = 3t+ l1 + l2 + · · ·+ lq + q + 2

and Sv(A) = q + 1; similar to Case 1, we get

Sv(A
2) =

q+1
∑

1

deg(vij ) ≤ 3t+ q + 1 + (l1 + 3) + (l2 + 3) + · · ·+ (lq + 3)

= 3t+ q + 1 + 3q + (l1 + l2 + · · ·+ lq) = n+ 3q − 1.

So, we have

Sv(A
2)− 3(q + 1) = Sv(A

2)− 3Sv(A) ≤ n− 4.

Case 4: v 6= v1 is a vertex of G and v is not adjacent to v1. Suppose the neighbors

of v along the clockwise direction on C1 are vi1 , vi2 , . . . , vis , vis+1
and lj (1 ≤ j ≤ s)

denotes the number of vertices between vij and vij+1
. Note that

n = 3t+ l1 + l2 + · · ·+ ls + s+ 2

and Sv(A) = s+ 1; similar to Case 1, we get

Sv(A
2) =

s+1
∑

1

deg(vij ) ≤ s+ 1 + (l1 + 3) + (l2 + 3) + · · ·+ (ls + 3)

= s+ 1 + 3s+ (l1 + l2 + · · ·+ ls) = n+ 3s− 1− 3t.

Hence, we have

Sv(A
2)− 3(s+ 1) = Sv(A

2)− 3Sv(A) ≤ n− 4− 3t ≤ n− 4.
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By Cases 1–4, we know that Sv(A
2)− 3Sv(A) ≤ n− 4 for any vertex v ∈ V (G∗).

So, ρ2(G∗)− 3ρ(G∗) ≤ n− 4 and ρ(G∗) ≤ 3

2
+

√

n− 7

4
by Lemma 3.5.

Lemma 3.7. Let G∗ be as in Lemma 3.4 with no maximal outer-planar 1-summing

factor; so, G∗ is a 1-sum of t K
′

4s for some positive integer t. Then ρ(G∗) = 1+
√
n .

Proof. Note that G∗ is a bidegree graph with δ = 3, ∆ = n− 1 and m = 2n− 2

now. Then the result follows immediately from Lemma 2.7.

�
�
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A
A ,,QQ

�
�
� L

L
LL
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r qppp

K4

K4

v1 v2

Fig. 3.7. G∗.

Lemma 3.8. Let G∗ be as in Lemma 3.4 with its maximal outer-planar 1-summing

factor equal to K2. Then ρ(G∗) ≤ 1 +
√
n .

Proof. Let V (G∗) = {v1, v2, . . . , vn} and let A denote the adjacency matrix of

G∗. We denote by v1 the only cut-vertex in G∗ and by v2 the other vertex of the

maximal outer-planar 1-summing factor (see Fig. 3.7). Then

Sv1(A) = 3t+ 1, Sv1(A
2) =

∑

vi∈NG∗(v1)

deg(vi) = 3 · 3t+ 1 = 9t+ 1 = n+ 6t− 1,

Sv2(A) = 1, Sv2(A
2) = n− 1.

For any vertex vj (j ≥ 3), we have Svj (A) = 3, Svj (A
2) =

∑

vi∈NG∗(vj)

deg(vi) = 6+n−1.

Therefore, for any vertex vj ∈ V (G∗), we have Svj (A
2)−2Svj(A) ≤ n−1. By Lemma

3.5, we get ρ2(G∗)− 2ρ(G∗) ≤ n− 1. Hence, ρ(G∗) ≤ 1 +
√
n .

Theorem 3.9. Let G be a K2,3-minor free graph of order n ≥ 2. Then

ρ(G) ≤ 3

2
+

√

n− 7

4
.

Proof. When n = 1, then G ∼= K1; when n = 2, then G ∼= 2K1 or G ∼= P2; when

n = 3, then G ∼= 3K1, or G ∼= (P2

⋃

K1), or G ∼= P3 or G ∼= K3. Note that ρ(K1) = 0,
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ρ(P2) = 1, ρ(P3) =
√
2 , ρ(K3) = 2, hence the theorem holds for n ≤ 3. When n ≥ 4,

the theorem follows from the Lemmas 3.4 and 3.6–3.8 since 1+
√
n ≤ 3

2
+

√

n− 7

4
.

Remark 3.10. Let ρ∗ = max {ρ(G)| G be a K2,3-minor free graph}. Note that

ρ(G∗) = 1 +
√
n in Lemma 3.7 and note that lim

n→∞

3

2
+

√

n− 7

4
1 +

√
n

= 1, so we say that

the upper bound in Theorem 3.9 is good and that while n → ∞, ρ∗ is tight up to

O(1 +
√
n).
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