BOUNDS OF SPECTRAL RADII OF $K_{2,3}$-MINOR FREE GRAPHS*

GUANGLONG YU^{\dagger}, JINLONG SHU ${ }^{\ddagger}$, AND YUAN HONG ${ }^{\ddagger}$

Abstract

Let $A(G)$ be the adjacency matrix of a graph G. The largest eigenvalue of $A(G)$ is called spectral radius of G. In this paper, an upper bound of spectral radii of $K_{2,3}-$ minor free graphs with order n is shown to be $\frac{3}{2}+\sqrt{n-\frac{7}{4}}$. In order to prove this upper bound, a structural characterization of $K_{2,3}$-minor free graphs is presented in this paper.

Key words. Bound, Spectral radius, Minor free.

AMS subject classifications. 05 C 50 .

1. Introduction. All graphs considered in this paper are undirected and simple (i.e., loops and multiple edges are not allowed). Let $G=G[V(G), E(G)]$ be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$, where $|V(G)|=n$ is the order and $|E(G)|=m$ is the size of G. Let $N_{G}(v)$ denote the neighbor set of vertex v in a graph G. The degree of v in G, denoted by $\operatorname{deg}(v)$, is equal to $\left|N_{G}(v)\right|$. We denote by δ or $\delta(G)$ for the minimal vertex degree of G, and denote by Δ or $\Delta(G)$ the maximal vertex degree of G. In a connected graph G, the length of a shortest path from v_{i} to v_{j} is called the distance between v_{i} and v_{j}, denoted by $d\left(v_{i}, v_{j}\right)$. We denote by C_{k} a cycle of length k, denote by P_{n} a path of order n and by K_{n} the complete graph of order n. For $S \subseteq V(G)$, let $G[S]$ denote the subgraph induced by S. For a vertex set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, we sometimes abbreviate $G\left[\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}\right]$ by $G\left[v_{1}\right.$, $\left.v_{2}, \ldots, v_{k}\right] . G[S]$ is called a clique if it is a complete subgraph of $G ; G[S]$ is called a k-clique if $|S|=k$. For a connected graph G which is not complete, the vertex connectivity, commonly referred to simply as connectivity, denoted by $\kappa(G)$, is the minimum number of vertices whose deletion yields the resulting graph disconnected. We define $\kappa\left(K_{n}\right)$ to be $n-1$.

There are several definitions of k-sum of two graphs (see [1], for example). Here,

[^0]we cite the definition of k-sum given in [3].
Definition 1.1. [3] Given two disjoint graphs G and H each of order at least $k+1$, a graph J is a k-sum of G and H if it can be obtained from G and H by identifying the vertices of a k-clique in G with the vertices of a k-clique in H and possibly deleting some of the edges of the now common k-clique.

In particular, in the k-sum of G and H, if no edge of the new common k-clique is deleted, J is a k-complete-sum of G and H. We denote by $J=G \oplus_{k} H$ the k sum of graphs G and H and denote by $J=G \oplus_{k}^{c} H$ the k-complete-sum of G and H. We abbreviate the k-complete-sum of G and H by the k-sum of G and H and abbreviate $J=G \oplus_{k}^{c} H$ by $J=G \oplus_{k} H$ in this paper. A graph J is called separable if $J=J_{1} \oplus_{k_{1}} J_{2} \oplus_{k_{2}} \cdots \oplus_{k_{t-1}} J_{t}(t \geq 2)$; the $J_{i}(i=1,2, \ldots, t)$ are called the summing factors of J. Complete separable and complete summing factor are defined similarly. In this paper, all k-sums of any two graphs we considered are k-complete-sums, and a k-complete-summing factor of J is also called a k-summing factor.

Let $A(G)$ denote the adjacency matrix of a graph G and $S_{v}\left(A^{l}\right)$ denote the row sum corresponding to v in A^{l}. In algebraic graph theory, it is well known that $S_{v}\left(A^{l}\right)$ is equal the number of the walks which have length l and start from vertex v in graph G. It is easy to see that for a graph $G, S_{v}(A)=\operatorname{deg}(v)$ and $S_{v}\left(A^{2}\right)=\sum_{u \in N_{G}(v)} \operatorname{deg}(u)$. The characteristic polynomial (or A-polynomial) of G, denoted by $P(G)$ or $P(G, \lambda)$, is defined as $\operatorname{det}(\lambda I-A(G))$, where I is the identity matrix. The largest eigenvalue of $P(G)$ is called the spectral radius of G, denoted by $\rho(G)$. We call the eigenvector corresponding to $\rho(G)$ the Perron eigenvector of graph G. By the Perron-Frobenius theorem [10], we know that the Perron eigenvector is a positive vector for a connected graph.

Definition 1.2. 6] A graph H is called a minor or H-minor of G, or G is called a H-minor graph if H can be obtained from G by deleting edges, contracting edges, and deleting isolated (degree zero) vertices. Given a graph H, a graph G is H-minor free if H is not a minor of G.

The investigation of H-minor free graphs is of great significance; it is very useful for studying the structures and properties of graphs (see [2, 3, 14, 15]). In 1937, Wagner [14] had shown that a finite graph is planar if and only if it has no minor isomorphic to K_{5} or to $K_{3,3}$. In 2003, Yuan Hong [6] established some sharp bounds for the maximal and minimal spectral radius of a K_{5}-minor free graph. It is well known that a simple graph G is outer-planar if and only if G is both K_{4}-minor free and $K_{2,3}$-minor free (see [1, 16], for example), so the study of K_{4}-minor free graphs and $K_{2,3}$-minor free graphs is very useful for the study of outer-planar graphs. In 2000, J.L. Shu and Y. Hong [12] determined that, for any connected simple maximal
outer-planar graph G of order $n, \rho(G) \leq \frac{3}{2}+\sqrt{n-\frac{7}{4}}$. In 2001, J. Shi and Y. Hong [11] studied K_{4}-minor free graphs. They obtained a sharp upper bound for their spectral radii and characterized the extremal graphs with the sharp upper bound. An interesting thing is that an upper bound for spectral radii of $K_{2,3}-$ minor free graphs of order n is also shown to be $\frac{3}{2}+\sqrt{n-\frac{7}{4}}$ in this paper. To prove this upper bound, a structural characterization of $K_{2,3}$-minor free graphs is presented. This paper is organized as follows: Section 2 presents some working lemmas; Section 3 presents some upper bounds for the spectral radii of $K_{2,3}$-minor free graphs.
2. Preliminaries. The reader is referred to [1, 4, 5, 16] for the facts about outer-planar and maximal outer-planar graphs.

Definition 2.1. A simple graph is an outer-planar graph if it has an embedding in the plane so that every vertex lies on the unbounded (exterior) face.

Definition 2.2. A simple outer-planar graph is maximal if no edge can be added to the graph without violating outer-planarity.

Lemma 2.3. A simple graph G is an outer-planar graph if and only if G is both K_{4}-minor free and $K_{2,3}$-minor free.

Lemma 2.4. If a simple graph G of order $n \geq 3$ is a maximal outer-planar graph, then G has a planar embedding whose outer face is a Hamilton cycle, all other faces being triangles.

Lemma 2.5. 8, 9 Let G_{1} be a connected graph. If G_{2} is a proper subgraph of G_{1}, then $\rho\left(G_{2}\right)<\rho\left(G_{1}\right)$ and for $\lambda \geq \rho\left(G_{1}\right), P\left(G_{2}, \lambda\right)>P\left(G_{1}, \lambda\right)$.

Lemma 2.6. 13 Let u and v be two vertices of a connected graph G. Suppose $v_{1}, v_{2}, \ldots, v_{s}(1 \leq s \leq d(v))$ are vertices of $N_{G}(v) \backslash N_{G}[u]\left(N_{G}[u]=N_{G}(u) \bigcup\{u\}\right)$ and $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ is the Perron eigenvector of G, where x_{i} corresponds to the vertex $v_{i}(1 \leq i \leq n)$. Let G^{*} be the graph obtained from G by deleting the edges $\left(v, v_{i}\right)$ and adding the edges $\left(u, v_{i}\right)(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$, then $\rho(G)<\rho\left(G^{*}\right)$.

Lemma 2.7. [7] Let G be a connected graph with n vertices, m edges and minimum degree δ. Then

$$
\rho(G) \leq \frac{\delta-1+\sqrt{(\delta+1)^{2}+4(2 m-\delta n)}}{2}
$$

where equality holds if and only if G is isomorphic to a regular graph or to a graph in which the degree of each vertex is either $n-1$ or δ.

3. Upper bounds.

Definition 3.1. The union of simple graphs H and G is the simple graph $G \bigcup H$ with vertex set $V(G) \bigcup V(H)$ and edge set $E(G) \bigcup E(H)$. The intersection $G \bigcap H$ of simple graphs H and G is defined analogously.

Lemma 3.2. A graph G of order n is $K_{2,3}$-minor free if and only if each component of G is a 1-sum, namely, $G_{1} \oplus_{1} G_{2} \oplus_{1} \cdots \oplus_{1} G_{k}$, in which, each $G_{i}(1 \leq i \leq k)$ is either a K_{4} or an outer-planar graph.

Proof. We prove the necessity by induction on n. For $n=1,2,3,4$, the lemma obviously holds. Suppose the $N \geq 5$ and that the lemma holds for $n<N$. Next we prove the lemma holds for $n=N$.

If G is disconnected, then the conclusion follows at once from the induction hypothesis. Next, we suppose G is connected.

Case 1: G is K_{4}-minor free. Then G is an outer-planar graph by Lemma 2.3. Hence, the lemma holds.

Fig. 3.1. H^{\prime}.

Fig. 3.2. F.

Case 2: K_{4} is a minor of G. Because $K_{2,3}$ is a minor of any subdivision (obtained from K_{4} by subdividing some of its edges) of K_{4} (see Fig. 3.1, $H=H^{\prime}-v_{1} v_{3}$ is a $K_{2,3}$), there exists a K_{4} but no subdivision of K_{4} as a subgraph in G.

We assert $\kappa(G)=1$. Suppose otherwise that $\kappa(G) \geq 2$ and $G\left[v_{1}, v_{2}, v_{3}, v_{4}\right]=K_{4}$. Then there are two internal disjoint independent paths P_{1}, P_{2} from vertex v_{5} to $G\left[v_{1}\right.$, $\left.v_{2}, v_{3}, v_{4}\right]$, which causes a $K_{2,3}$-minor subgraph $F=G\left[v_{1}, v_{2}, v_{3}, v_{4}\right] \cup P_{1} \bigcup P_{2}$ in G (see Fig. 3.2), which contradicts that G is $K_{2,3}$-minor free. So our assertion holds, and then $\kappa(G)=1$. Suppose G is obtained from G_{1} and G_{2} by their 1-sum. Because G_{1} and G_{2} are both $K_{2,3}$-minor free, by induction, then G_{1} and G_{2} are both obtained from some $K_{4}^{\prime} s$ with some outer-planar graphs by their 1-sum. So G is also obtained from some $K_{4}^{\prime} s$ with some outer-planar graphs by their 1-sum.

By Case 1 and Case 2, the necessity is proved.
Conversely, suppose that G is obtained from some $K_{4}^{\prime} s$ with some outer-planar graphs by their 0 -sum or 1 -sum. Since the outer-planar graph and K_{4} are both
$K_{2,3}$-minor free, and $\kappa\left(K_{2,3}\right)=2, G$ is also $K_{2,3}$-minor free.
Lemma 3.3. Let e be a cut-edge of graph G and $G=G_{1} e G_{2}$, where one end vertex of e is in G_{1} and the other one is in G_{2}. If G_{1} and G_{2} are both $K_{2,3}$-minor free, then G is still $K_{2,3}$-minor free.

Proof. Note that $\kappa\left(K_{2,3}\right)=2$, so e does not belong to any $K_{2,3}$-minor subgraph in G. Thus, G is still $K_{2,3}$-minor free. \square

Lemma 3.4. If a graph G^{*} on n vertices satisfies $\rho\left(G^{*}\right)=\max \{\rho(H) \mid H$ is $K_{2,3}$-minor free\}, then for some integer $t \geq 0, G^{*}$ is obtained by attaching $t K_{4}^{\prime} s$ to a vertex of a maximal outer-planar graph of order $n-3 t$ (see Fig. 3.3).

Fig. 3.3. G^{*}.

Fig. 3.4. $G=\mathbb{G}_{1} \oplus \mathbb{G}_{2}$.

Proof. We claim that G^{*} is connected. To see this, assume to the contrary that G^{*} is disconnected and let $G_{1}, G_{2}, \ldots, G_{k}$ be the connected components of G^{*}. By Lemma3.3, we can get a connected $K_{2,3}$-minor free graph $H_{1}=G_{1} e_{1} G_{2} e_{2} \cdots e_{k-1} G_{k}$ by adding edges $e_{1}, e_{2}, \ldots, e_{k-1}$. But $\rho\left(H_{1}\right)>\rho\left(G^{*}\right)$ by Lemma 2.5, which contra$\operatorname{dicts} \rho\left(G^{*}\right)=\max \left\{\rho(H) \mid H\right.$ is $K_{2,3}$-minor free $\}$. So G^{*} is connected.

We assert that there is at most one cut-vertex in G^{*}. Otherwise, suppose that $v_{t_{1}}, v_{t_{2}}, \ldots, v_{t_{l}}(l \geq 2)$ are the cut-vertices of G^{*}. Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ denote the Perron eigenvector of G^{*}, where x_{i} corresponds to vertex $v_{i}(1 \leq i \leq n)$. Suppose that $x_{t_{1}}=\max _{1 \leq i \leq l}\left\{x_{t_{1}}, x_{t_{2}}, \ldots, x_{t_{l}}\right\}$ in the Perron eigenvector X of G^{*}, and suppose $G^{*}=\mathbb{G}_{1} \oplus_{1} \mathbb{G}_{2}$ where $V\left(\mathbb{G}_{1}\right) \bigcap V\left(\mathbb{G}_{2}\right)=\left\{v_{t_{2}}\right\}, v_{t_{1}} \in V\left(\mathbb{G}_{1}\right)$ and $v_{t_{2}}$ is not a cutvertex of \mathbb{G}_{1} (see Fig. 3.4). Let

$$
H_{2}=G^{*}-\sum_{u \in N_{\mathbb{G}_{2}}\left(v_{t_{2}}\right)} v_{t_{2}} u+\sum_{u \in N_{\mathbb{G}_{2}}\left(v_{t_{2}}\right)} v_{t_{1}} u .
$$

Now, the number of the cut-vertices in H_{2} is less than the number of the cut-vertices in G^{*}, and H_{2} is also a $K_{2,3}$-minor free graph. But $\rho\left(H_{2}\right)>\rho\left(G^{*}\right)$ by Lemma 2.6, which contradicts $\rho\left(G^{*}\right)=\max \left\{\rho(H) \mid H\right.$ is $K_{2,3}$-minor free $\}$. So our assertion holds.

If G^{*} has no cut-vertex, then G^{*} must be either a K_{4} or a maximal outer-planar graph. The lemma holds.

If G^{*} has only one cut-vertex, noting that a graph obtained by a 1 -sum of some outer-planar graphs is also an outer-planar graph, and that any outer-planar graph
can be expanded into a maximal outer-planar graph by adding edges, so for some integer $t \geq 0, G^{*}$ is obtained by attaching $t K_{4}^{\prime} s$ to a vertex of a maximal outerplanar graph of order $n-3 t$. This completes the proof. \square

Lemma 3.5. Let A be an irreducible nonnegative square real matrix of order n and spectral radius ρ. If there exists a nonnegative vector $y \neq 0$ and a polynomial function f whose coefficients are all real numbers such that $f(A) y \leq r y(r \in \mathbb{R})$, then $f(\rho) \leq r$.

Proof. Since $\rho\left(A^{T}\right)=\rho(A)=\rho$ and A^{T} is also irreducible and nonnegative, let x denote the Perron eigenvector of A^{T}. If $f(A) y \leq r y(r \in \mathbb{R})$, then $f(\rho) x^{T} y=$ $\left(f\left(A^{T}\right) x\right)^{T} y=x^{T} f(A) y \leq r x^{T} y$ and $f(\rho) \leq r$. \square

Lemma 3.6. Let G^{*} be as in Lemma 3.4 and assume the order of its maximal outer-planar 1 -summing factor is $h \geq 3$. Then $\rho\left(G^{*}\right) \leq \frac{3}{2}+\sqrt{n-\frac{7}{4}}$.

Proof. Denote by v_{1}, \mathcal{G} the only cut-vertex and the maximal outer-planar 1summing factor in G^{*}, respectively. Let $C_{1}=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{p+1}, v_{1}\right)(p \geq 2)$ denote the Hamilton cycle of \mathcal{G}. For any $v \in V\left(G^{*}\right)$, there are the following 4 cases.

Case 1: $v=v_{1}$. Along the clockwise direction, suppose the neighbors on C_{1} of v_{1} are $v_{i_{1}}\left(v_{i_{1}}=v_{2}\right), v_{i_{2}}, \ldots, v_{i_{k}}, v_{i_{k+1}}\left(v_{i_{k+1}}=v_{p+1}\right)$. Suppose there are $l_{j}(1 \leq j \leq k)$ vertices between $v_{i_{j}}$ and $v_{i_{j+1}}$ on C_{1}, and let $S_{j}=\left\{u_{1}, u_{2}, \ldots, u_{l_{j}}\right\}$ denote the set of such vertices between $v_{i_{j}}$ and $v_{i_{j+1}}$ (see Fig 3.5 and Fig 3.6).

Fig. 3.5. F.

Fig. 3.6. H_{1}.

We claim that $v_{i_{j}}$ is adjacent to $v_{i_{j+1}}$ in G^{*}. Let $H_{1}=G^{*}\left[\left\{v_{1}, v_{i_{j}}, v_{i_{j+1}}\right\} \cup S_{j}\right]$. Then H_{1} is also an maximal outer-planar graph by Definitions 2.1, 2.2 and Lemmas 2.3, 2.4. If $v_{i_{j}}$ is not adjacent to $v_{i_{j+1}}$ in G^{*}, then since v_{1} must be in a triangle of H_{1}, there exists at least one different vertex from $v_{i_{j}}$ and $v_{i_{j+1}}$ adjacent to v_{1} in H_{1}, which contradicts $N_{H_{1}}\left(v_{1}\right)=\left\{v_{i_{j}}, v_{i_{j+1}}\right\}$. So, our claim holds.

Note that any two edges in \mathcal{G} either do not intersect or intersect only at their common end vertex, so there is at most one in S_{j} which is adjacent to both $v_{i_{j}}$ and $v_{i_{j+1}}$. Hence, the contribution of S_{j} to $\operatorname{deg}\left(v_{i_{j}}\right)+\operatorname{deg}\left(v_{i_{j+1}}\right)$ is at most $l_{j}+1$ and the contribution of $\left\{v_{i_{j}}, v_{i_{j+1}}\right\} \bigcup S_{j}$ to $\operatorname{deg}\left(v_{i_{j}}\right)+\operatorname{deg}\left(v_{i_{j+1}}\right)$ is at most $l_{j}+3$.

ELA

Let A denote the adjacency matrix of G^{*}. Note that $n=3 t+l_{1}+l_{2}+\cdots+l_{k}+k+2$ and $S_{v_{1}}(A)=k+1+3 t$, so

$$
\begin{aligned}
S_{v_{1}}\left(A^{2}\right) & =9 t+\sum_{1}^{k+1} \operatorname{deg}\left(v_{i_{j}}\right) \leq 9 t+k+1+\left(l_{1}+3\right)+\left(l_{2}+3\right)+\cdots+\left(l_{k}+3\right) \\
& =9 t+k+1+3 k+\left(l_{1}+l_{2}+\cdots+l_{k}\right)=n+3 k-1+6 t
\end{aligned}
$$

and so $S_{v_{1}}\left(A^{2}\right)-3(k+1+3 t)=S_{v_{1}}\left(A^{2}\right)-3 S_{v_{1}}(A) \leq n-4-3 t$.
Case 2: $v \neq v_{1}$ is a vertex of some K_{4}. Then $S_{v}(A)=3$. Note that $\operatorname{deg}\left(v_{1}\right) \leq$ $n-1$. As a consequence, $S_{v}\left(A^{2}\right)=\sum_{v v_{i} \in E\left(G^{*}\right)} \operatorname{deg}\left(v_{i}\right)=\operatorname{deg}\left(v_{1}\right)+6 \leq n-1+6$, and so $S_{v}\left(A^{2}\right)-3 S_{v}(A) \leq n-4$.

Case 3: $v \neq v_{1}$ is a vertex of \mathcal{G} and $v v_{1} \in E\left(G^{*}\right)$. Along the clockwise direction, suppose the neighbors of v on C_{1} are $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{q}}, v_{i_{q+1}}$ and $l_{j}(1 \leq j \leq q)$ denotes the number of vertices between $v_{i_{j}}$ and $v_{i_{j+1}}$. Note that

$$
n=3 t+l_{1}+l_{2}+\cdots+l_{q}+q+2
$$

and $S_{v}(A)=q+1$; similar to Case 1 , we get

$$
\begin{aligned}
S_{v}\left(A^{2}\right) & =\sum_{1}^{q+1} \operatorname{deg}\left(v_{i_{j}}\right) \leq 3 t+q+1+\left(l_{1}+3\right)+\left(l_{2}+3\right)+\cdots+\left(l_{q}+3\right) \\
& =3 t+q+1+3 q+\left(l_{1}+l_{2}+\cdots+l_{q}\right)=n+3 q-1
\end{aligned}
$$

So, we have

$$
S_{v}\left(A^{2}\right)-3(q+1)=S_{v}\left(A^{2}\right)-3 S_{v}(A) \leq n-4
$$

Case 4: $v \neq v_{1}$ is a vertex of \mathcal{G} and v is not adjacent to v_{1}. Suppose the neighbors of v along the clockwise direction on C_{1} are $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{s}}, v_{i_{s+1}}$ and $l_{j}(1 \leq j \leq s)$ denotes the number of vertices between $v_{i_{j}}$ and $v_{i_{j+1}}$. Note that

$$
n=3 t+l_{1}+l_{2}+\cdots+l_{s}+s+2
$$

and $S_{v}(A)=s+1$; similar to Case 1, we get

$$
\begin{aligned}
S_{v}\left(A^{2}\right) & =\sum_{1}^{s+1} \operatorname{deg}\left(v_{i_{j}}\right) \leq s+1+\left(l_{1}+3\right)+\left(l_{2}+3\right)+\cdots+\left(l_{s}+3\right) \\
& =s+1+3 s+\left(l_{1}+l_{2}+\cdots+l_{s}\right)=n+3 s-1-3 t
\end{aligned}
$$

Hence, we have

$$
S_{v}\left(A^{2}\right)-3(s+1)=S_{v}\left(A^{2}\right)-3 S_{v}(A) \leq n-4-3 t \leq n-4 .
$$

By Cases $1-4$, we know that $S_{v}\left(A^{2}\right)-3 S_{v}(A) \leq n-4$ for any vertex $v \in V\left(G^{*}\right)$. So, $\rho^{2}\left(G^{*}\right)-3 \rho\left(G^{*}\right) \leq n-4$ and $\rho\left(G^{*}\right) \leq \frac{3}{2}+\sqrt{n-\frac{7}{4}}$ by Lemma 3.5, 口

Lemma 3.7. Let G^{*} be as in Lemma 3.4 with no maximal outer-planar 1-summing factor; so, G^{*} is a 1-sum of $t K_{4}^{\prime}$ s for some positive integer t. Then $\rho\left(G^{*}\right)=1+\sqrt{n}$.

Proof. Note that G^{*} is a bidegree graph with $\delta=3, \Delta=n-1$ and $m=2 n-2$ now. Then the result follows immediately from Lemma 2.7,

Fig. 3.7. G^{*}.

Lemma 3.8. Let G^{*} be as in Lemma 3.4 with its maximal outer-planar 1-summing factor equal to K_{2}. Then $\rho\left(G^{*}\right) \leq 1+\sqrt{n}$.

Proof. Let $V\left(G^{*}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let A denote the adjacency matrix of G^{*}. We denote by v_{1} the only cut-vertex in G^{*} and by v_{2} the other vertex of the maximal outer-planar 1-summing factor (see Fig. 3.7). Then

$$
\begin{gathered}
S_{v_{1}}(A)=3 t+1, S_{v_{1}}\left(A^{2}\right)=\sum_{v_{i} \in N_{G^{*}}\left(v_{1}\right)} \operatorname{deg}\left(v_{i}\right)=3 \cdot 3 t+1=9 t+1=n+6 t-1, \\
S_{v_{2}}(A)=1, S_{v_{2}}\left(A^{2}\right)=n-1 .
\end{gathered}
$$

For any vertex $v_{j}(j \geq 3)$, we have $S_{v_{j}}(A)=3, S_{v_{j}}\left(A^{2}\right)=\sum_{v_{i} \in N_{G^{*}}\left(v_{j}\right)} \operatorname{deg}\left(v_{i}\right)=6+n-1$. Therefore, for any vertex $v_{j} \in V\left(G^{*}\right)$, we have $S_{v_{j}}\left(A^{2}\right)-2 S_{v_{j}}(A) \leq n-1$. By Lemma 3.5, we get $\rho^{2}\left(G^{*}\right)-2 \rho\left(G^{*}\right) \leq n-1$. Hence, $\rho\left(G^{*}\right) \leq 1+\sqrt{n}$.

Theorem 3.9. Let G be a $K_{2,3}$-minor free graph of order $n \geq 2$. Then

$$
\rho(G) \leq \frac{3}{2}+\sqrt{n-\frac{7}{4}} .
$$

Proof. When $n=1$, then $G \cong K_{1}$; when $n=2$, then $G \cong 2 K_{1}$ or $G \cong P_{2}$; when $n=3$, then $G \cong 3 K_{1}$, or $G \cong\left(P_{2} \bigcup K_{1}\right)$, or $G \cong P_{3}$ or $G \cong K_{3}$. Note that $\rho\left(K_{1}\right)=0$,
$\rho\left(P_{2}\right)=1, \rho\left(P_{3}\right)=\sqrt{2}, \rho\left(K_{3}\right)=2$, hence the theorem holds for $n \leq 3$. When $n \geq 4$, the theorem follows from the Lemmas 3.4 and 3.6 3.8 since $1+\sqrt{n} \leq \frac{3}{2}+\sqrt{n-\frac{7}{4}}$. \square

Remark 3.10. Let $\rho^{*}=\max \left\{\rho(G) \mid G\right.$ be a $K_{2,3}$-minor free graph $\}$. Note that $\rho\left(G^{*}\right)=1+\sqrt{n}$ in Lemma 3.7 and note that $\lim _{n \rightarrow \infty} \frac{\frac{3}{2}+\sqrt{n-\frac{7}{4}}}{1+\sqrt{n}}=1$, so we say that the upper bound in Theorem 3.9 is good and that while $n \rightarrow \infty, \rho^{*}$ is tight up to $O(1+\sqrt{n})$.

Acknowledgment. We offer many thanks to the referees for their kind reviews and helpful suggestions.

REFERENCES

[1] J.A. Bondy and U.S.R. Murty. Graph Theory. Graduate Text in Mathematics, Vol. 244, Springer, New York, 2008.
[2] R. Diestel. Decomposing infinite graphs. Discrete Math., 95:69-89, 1991.
[3] G.L. Ding and B. Oporowski. Surfaces, tree-Width, clique-minors, and partitions. J. Combin. Theory, Ser. B, 79:221-246, 2000.
[4] S.S. Gupta and B.P. Sinha. A simple $O(\log n)$ time parallel algorithm for testing isomorphism of maximal outerplanar graphs. J. Parallel Distrib. Comput., 56:144-155, 1999.
[5] F. Harary. Graph Theory. Addison-Wesley, New York, 1969.
[6] Y. Hong. Tree-width, clique-minors, and eigenvalues. Discrete Math., 274:281-287, 2004.
[7] Y. Hong, J.L. Shu, and K.F. Fang. A sharp upper bound of the spectral radius of graphs. J. Combin. Theory, Ser. B, 81:177-183, 2001.
[8] A.J. Hoffman and J.H. Smith. On the spectral radii of topologically equivalent graphs. In Recent Advances in Graph Theory, M. Fiedler (editor), Academic Praha, 273-281, 1975.
[9] Q. Li and K.Q. Feng. On the largest eigenvalues of graphs. Acta Math. Appl. Sinica, 2:167-175, 1979 (in Chinese).
[10] O. Perron. Zur theorie der matrizen. Math Ann., 64:248-263, 1907.
[11] J. Shi and Y. Hong. The spectral radius of K_{4}-minor free graph. Acta Math. Appl. Sinica, 5(1):167-175, 2001.
[12] J.L. Shu and Y. Hong. Upper bound of the spectral radius of Halin graph and outer-planer graph. Chinese Ann. Math., 21A(6):677-682, 2000.
[13] B.F. Wu, E.L. Xiao, and Y. Hong. The spectral radius of trees on k pendent vertices. Linear Algebra Appl., 395:343-349, 2005.
[14] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Math. Ann., 114:570-590, 1937.
[15] K. Wagner. Beweis einer abschwa chung der Hadwiger-Vermutung. Math. Ann., 153:139-141, 1964.
[16] D.B. West. Introduction to Graph Theory, second edition. Prentice-Hall, Upper Saddle River, NJ, 2001.

[^0]: *Received by the editors on January 31, 2011. Accepted for publication on January 15, 2012. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ Department of Mathematics, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China, and Department of Mathematics, East China Normal University, Shanghai, 200241, China (yglong01@163.com). Supported by NSFC (11171290, 11101057).
 ${ }^{\ddagger}$ Department of Mathematics, East China Normal University, Shanghai, 200241, China (jlshu@math.ecnu.edu.cn, yhong@math.ecnu.edu.cn). Supported by NSFC (11071078, 11075057).

