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AMONG BIPARTITE GRAPHS WITH A GIVEN DIAMETER∗
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Abstract. The rank of a graph is defined to be the rank of its adjacency matrix. In this paper,

the bipartite graphs that attain the minimum rank among bipartite graphs with a given diameter

are completely characterized.
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1. Introduction. All the graphs considered in this paper are finite, undirected

and simple. Let G = (V,E) be a graph of order n with vertex set V = V (G) =

{v1, v2, . . . , vn} and edge set E = E(G). For any v ∈ V , the degree and neighborhood

of v are denoted by dG(v) and NG(v) or simply d(v) and N(v) respectively, when just

one graph is under discussion. The adjacency matrix A = A(G) = (aij)n×n of G is

defined as follows: aij = 1 if vi and vj are adjacent, and aij = 0 otherwise. The rank

of a graph G is the rank of its adjacency matrix A(G) and is denoted by r(G). The

multiplicity of the eigenvalue zero in the spectrum of A(G) is called the nullity of G

and is denoted by η(G). Observe that η(G) = |V (G)| − r(G).

Recently the rank of graphs has received a lot of attention. On one hand, as the

rank is such a fundamental algebraic concept, the relationship between the structure

of a graph and its rank is a natural topic of study for algebraic graph theorists. One

of the most well-known investigations in this direction is the study of the relationship

between the rank and the chromatic number of a graph [1]. On the other hand, the

nullity of a molecular graph has important applications to the Hückel theory of non-

bonding molecular orbitals in chemistry [8]. A famous problem posed by Collatz et

al. [7] is to characterize all graphs G with η(G) > 0, which is a very interesting one

in chemistry as the occurrence of a zero eigenvalue in the spectrum of a bipartite
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graph (corresponding to an alternant hydrocarbon) indicates chemical instability of

the molecule which such a graph represents.

The problem of classifying the graphs according to their rank or nullity seemed

to appear initially in the work of Whitney [21]. Cheng and Liu [6] characterized the

graphs of order n with nullity n − 2 or n − 3 or, equivalently, the graphs with rank

2 or 3. Fan and Qian [10] characterized all bipartite graphs with rank 4. Recently

Chang, Huang, and Yeh characterized the graphs with rank 4 in [4] and also the

graphs with rank 5 in [5]. Other works on the rank or nullity of graphs can be found

in [2, 12, 14, 15, 16, 17, 18, 19, 20].

In Section 2, we give some basic notations and facts that will be used in the sequel.

In Section 3, we focus ourselves on studying the bipartite graphs and completely char-

acterize the bipartite graphs that attain the minimum rank among bipartite graphs

with a given diameter. The case of non-bipartite graphs is still an open problem.

2. Preliminaries. For a graph G, an equivalence relation ∼ on V (G) is given

by: u ∼ v if and only if N(u) = N(v). Corresponding to this equivalence relation,

we can define a graph, denoted by G/ ∼, with the equivalence classes as its vertices

such that {u/ ∼, v/ ∼} is an edge in G/ ∼ if and only if {u, v} is an edge in G (for

details see [11]). If u ∼ v and u 6= v, then u and v are also said to be duplicates.

If u is a vertex of G with a duplicate, then G − u is called a reduction of G. A

graph to which no reduction can be applied is reduced. From every graph G, we can

obtain a unique (up to isomorphism) reduced graph R(G) (i.e., G/ ∼) by successive

reductions. If G is any graph and R(G) is the (unique) reduced graph obtained from

G by reductions then G can be obtained from R(G) by multiplication of vertices (i.e.,

replacing each vertex by a stable set and an edge by the edges in the corresponding

complete bipartite graph, for details see [13, p. 53]). Furthermore, we always have

r(G) = r(R(G)), diam(G) = diam(R(G)) provided that diam(G) ≥ 3, and also G is

bipartite if and only if R(G) is bipartite. So we may restrict our attention to reduced

bipartite graphs in the sequel.

A graph with vertex set {v1, v2, . . . , vn} and edge set {v1v2, v2v3, . . . , vn−1vn} is

called a path from v1 to vn and is denoted by Pn. The number of edges of the path

is its length. The distance dG(x, y) (or simply d(x, y)) in G of two vertices x, y is the

length of a shortest path from x to y in G; if no such path exists, we define d(x, y)

to be infinite. The greatest distance between two vertices in G is the diameter of G,

denoted by diam(G).

As shown in [9], there are only finitely many reduced graphs with given rank.

Let BG(d) denote the finite set of reduced bipartite graphs with diameter d and rank

r(Pd+1). Note that Pd+1 ∈ BG(d). Also, if G has diameter d then G must contain

Pd+1 as an induced subgraph and so we have r(G) ≥ r(Pd+1). Hence, BG(d) consists
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of all reduced bipartite graphs attaining minimum rank among all bipartite graphs

of diameter d. We write H ⊆I G to mean that H is an induced subgraph of G.

The ⊆I -minimal element in BG(d) is unique and is precisely the path Pd+1. Instead

of listing all elements of BG(d), we shall first give a complete characterization of

⊆I −maximal elements in BG(d) and then show that BG(d) consists of all graphs H

satisfying Pd+1 ⊆I H ⊆I G, for some ⊆I -maximal element G in BG(d). We will use

the notation MBG(d) to denote the set of all ⊆I −maximal elements in BG(d).

It is clear that BG(1) = {P2}. According to a result of Cheng and Liu [6], for a

graph G of order n (≥ 2), r(G) = 2 if and only if G is the union of a complete bipartite

graph and possibly a null graph (i.e., a graph without edges). Thus, there exists no

reduced bipartite graph with diameter 2 and rank r(P3) (= 2); hence, BG(2) = ∅. So,

hereafter, when considering the set BG(d), we always assume that d ≥ 3.

Let S be a set and A ⊆ S. The characteristic function χA of A with respect to S

is defined to be identically one on A, and is zero elsewhere. That is

χA(x) =

{

1, if x ∈ A,

0, if x ∈ S\A.

For convenience, χA may also be regarded as a column (0, 1)-vector of length |S|. For

a subset T of S, let χA ↾ T denote the restriction of χA to T .

Let G be a graph and let α be a column (0, 1)-vector indexed by the vertices of

G. We use G⊕α v to denote the graph obtained from G by adding a vertex v and all

edges joining v to those vertices u for which the component α(u) = 1. When it is not

essential to specify α explicitly, we write G⊕α v simply as G⊕ v. Note that α can be

viewed as the characteristic function of the neighborhood N(v) of v in G ⊕α v with

respect to vertex set V (G). The exact effect on the rank of a graph when a single

vertex is added has been examined in [3].

Lemma 2.1 ([3]). Let G be a graph and let A be the adjacency matrix of G.

Then:

(1) r(G ⊕α v) = r(G) + 2 if and only if α is not a vector in rs(A), where rs(A)

is the range space of A.

(2) If α = Aβ is in rs(A), then:

(a) r(G⊕α v) = r(G) + 1 if and only if α is not orthogonal to β, and

(b) r(G⊕α v) = r(G) if and only if α is orthogonal to β.

3. Main results. In this section, we give a complete characterization of BG(d),

that is we determine those (reduced) bipartite graphs that attain the minimum rank

among all bipartite graphs with a given diameter. For this purpose, we need to

investigate in depth the structure properties of the graphs in BG(d), especially the
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⊆I -maximal graphs in BG(d).

Let G = (X,Y, U) be a connected bipartite graph, where (X,Y ) is the bipartition

and U is the edge set of G, respectively. The vertices of G may be numbered so that

the adjacency matrix has its following form:

(3.1) A =

[

0 B

BT 0

]

.

The matrix B is the “incidence matrix” between the parts X,Y of the bipartition for

G. It is easy to see that r(G) = 2r(B); consequently, the rank of a bipartite graph is

always even.

Recall that a graph is bipartite if and only if it contains no odd cycles. Let G be

a connected bipartite graph with bipartition (X,Y ). It is easy to see that if a vertex

v is added to G such that the resulting graph is still bipartite, then the vertices joined

to v must all belong to X or Y . If v is joined to vertices in Y (respectively, X), we

say that v is added to X (respectively, Y ).

Lemma 3.1. Let G ⊕α v be a bipartite graph obtained by adding a new vertex

v to a connected bipartite graph G with bipartition (X,Y ). Then r(G) = r(G ⊕α v)

if and only if α is a linear combination of the χNG(u)’s, with u’s all belonging to X

(respectively, Y ) if v is added to X (respectively, Y ).

Proof. Let A be the adjacency matrix of G with the form as given in Equation

(3.1). It suffices to consider the case when v is added to X , as a similar argument

applies to the case when v is added to Y . In this case, we have xu = 0 for any u ∈ X ,

as u is not joined to vertices in X . So to conform with the bipartition (X,Y ), α may

be partitioned as α =
[

0 xT
2

]T
.

Sufficiency: By Lemma 2.1, there exists a vector β such that α = Aβ. Partitioning

β conformally, let β =
[

yT1 yT2
]T

. Then

[

0

x2

]

=

[

0 B

BT 0

] [

y1
y2

]

,

which implies x2 = BT y1; hence,

α =

[

0

x2

]

=

[

0

BT

]

y1.

As each column of

[

0

BT

]

is a characteristic function of NG(u) for some u in X , our

assertion follows.
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Necessity: In this case we can find a vector y1 such that α =

[

0

BT

]

y1. So

[

0

x2

]

=

[

0 B

BT 0

] [

y1
0

]

,

and hence, α ∈ rs(A). Since the rank of every bipartite graph is even and G,G⊕α v

are bipartite, by Lemma 2.1(2) it follows that r(G) = r(G ⊕α v).

Lemma 3.2 ([17]). If H is the graph obtained from a graph G by deleting a

pendant vertex and its unique neighbor, then η(G) = η(H) or, equivalently, r(G) =

r(H) + 2.

Lemma 3.3. Let G be a connected graph and H a connected induced subgraph of

G satisfying r(H) = r(G). Then for any subgraph F such that H ⊆I F ⊆I G, F is

connected.

Proof. Suppose that F = W1 ∪ W2 ∪ · · · ∪ Wt (t ≥ 2), where W1, . . . ,Wt are

the connected components of F . As H ⊆I F and H is connected, H must be an

induced subgraph of a connected component of F , say, H ⊆I W1. Obviously, we have

r(F ) = r(H) and r(W1) = r(H). But r(F ) =
∑t

i=1 r(Wi), it follows that r(Wi) = 0

and Wi is a null graph for i = 2, . . . , t. Hence, F can be written as W1 ∪ W̃ , where

W̃ is a nonempty null graph. Take any vertex v in W̃ . Since G is connected, we

can find a vertex u in G adjacent to v. Note that NG(v) ∩ V (W1) = ∅ as v is an

isolated vertex in F and F ⊆I G, so u /∈ V (F ). Now let F ′ denote the subgraph of G

induced by V (W1) ∪ {u, v}. Then we have H ⊆I F ′ ⊆I G and r(F ′) = r(H). On the

other hand, dF ′(v) = 1, u being the unique neighbor of v in F . So by Lemma 3.2,

r(F ′) = r(W1) + 2 = r(H) + 2, which is a contradiction. Therefore, F must be

connected.

Below we present a result more general than Lemma 3.1.

Lemma 3.4. Let G be a connected bipartite graph with bipartition (XG, YG). Let

H be a connected induced subgraph of G with bipartition (XH , YH) such that XH ⊆ XG

and YH ⊆ YG. Then r(G) = r(H) if and only if for any u ∈ V (G) \ V (H), χNG(u) is

a linear combination of the χNG(x)’s, where all x’s belong to XH or YH depending on

whether u belongs to XG \XH or YG \ YH .

Proof. Sufficiency: It suffices to consider the case when u ∈ XG \ XH , as a

similar argument applies to the case when u ∈ YG \ YH . For any u ∈ XG\XH , let

F1 (respectively, F2) denote the subgraph of G induced by XH ∪ YG (respectively,

XH ∪ {u} ∪ YG). Clearly H ⊆I F1 ⊆I F2 ⊆I G, and as r(G) = r(H) we have

r(F1) = r(F2). By Lemma 3.3, F1 and F2 are connected. So by Lemma 3.1, χNF1
(u)

is a linear combination of the χNF1
(x)’s, where x ∈ XH . But NF1

(u) = NG(u) and

NF1
(x) = NG(x) whenever x ∈ XH , so the desired assertion follows.
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Necessity: Let B denote the incidence matrix between the parts XG, YG of the

bipartition for G. Partition XG as XH ∪ (XG \XH) and YG as YH ∪ (YG \ YH), and

let the corresponding partitioned matrix for B be the following 2× 2 block matrix:
[

B11 B12

B21 B22

]

.

Note that B11 is the incidence matrix between the partsXH , YH of the bipartite graph

H . For any u ∈ XG \ XH , the transpose of the row of B indexed by u is equal to

the vector χN(v) ↾ YG. By the assumption, χNG(u) is a linear combination of χNG(x)’s

with x ∈ XH . Hence, χNG(u) ↾ YG is also a linear combination of χNG(x) ↾ YG’s with

x ∈ XH . In other words, every row of the matrix
[

B21 B22

]

belongs to the row

space of
[

B11 B12

]

. In a similar manner, we can show that every column of the

matrix

[

B12

B22

]

belongs to the column space of

[

B11

B21

]

; hence, every column of B12

belongs to the column space of B11. Putting together, we have

r(

[

B11 B12

B21 B22

]

) = r(
[

B11 B12

]

) = r(B11).

Note that r(G) = 2r(B) and r(H) = 2r(B11). Therefore r(G) = r(H).

Let G be a graph with diameter d and suppose that v1 is a vertex such that

maxv∈V d(v1, v) = d. Now let Vi = Vi(v1) ≡ {v ∈ V : d(v1, v) = i−1}, i = 2, . . . , d+1.

Clearly, V (G) = {v1} ∪ V2 ∪ · · · ∪ Vd+1. We will refer to {v1, V2, . . . , Vd+1} as the

distance partition (of G) with respect to v1. The following fact, whose proof we omit,

is an immediate consequence of the definition of distance partition.

Lemma 3.5. Let G be a bipartite graph with diameter d. Let v1 be a vertex such

that maxv∈V d(v1, v) = d, and let {v1, V2, . . . , Vd+1} be the distance partition with

respect to v1. For any v ∈ Vt (2 ≤ t < d + 1), v is adjacent to some vertex in Vt−1,

possibly to some vertex in Vt+1, but not adjacent to vertices in Vi for i 6= t− 1, t+1.

Lemma 3.6. If G is a reduced connected bipartite graph and v is a non-cut vertex

of G such that r(G) = r(G − v) then G− v is a reduced bipartite graph.

Proof. Denote by (X,Y ) the bipartition of G. Suppose that there exist duplicates

u and w in G − v, say u,w ∈ X , without loss of generality. If v ∈ X then, as

NG−v(u) = NG(u) and NG−v(w) = NG(w), we have NG(u) = NG(w), i.e., u and

w are duplicates in G, which is a contradiction. If v ∈ Y , by Lemma 3.1, χNG−v(v)

is a linear combination of χNG−v(x)’s, where x ∈ Y \{v}. Then v is adjacent to u

if and only if it is adjacent to w. Therefore, NG(u) = NG(w), which is again a

contradiction.

Lemma 3.7. Let H be a graph satisfying Pd+1 ⊆I H ⊆I G for some G ∈ BG(d).

Then:
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(1) r(H) = r(Pd+1).

(2) H is connected.

(3) H is bipartite.

(4) H is reduced.

Proof. Suppose that V (G) \ V (H) = {u1, u2, . . . , ud}. Then we can construct

graphs Hi, 0 ≤ i ≤ d such that H = Hd ⊆I Hd−1 ⊆I · · · ⊆I H1 ⊆I H0 = G

with Hi = Hi−1 − ui for i = 1, . . . , d. Consider any i, 1 ≤ i ≤ d. Suppose we

have already shown inductively that H0(= G), . . . , Hi−1 are all connected, bipartite,

reduced and have the same rank as Pd+1. Since Pd+1 ⊆I Hi ⊆I Hi−1, it is clear that

r(Hi) = r(Pd+1). By Lemma 3.3 Hi is connected. As Hi = Hi−1 − ui and Hi is

connected, it is clear that ui is a non-cut vertex of Hi−1. So by Lemma 3.6, Hi is

a reduced bipartite graph. Therefore, Hi satisfies conditions (1)–(4). Proceeding in

this way, after a finite number of steps, we conclude that H also satisfies conditions

(1)–(4).

Let G be a bipartite graph with diameter d, and let v1v2 · · · vd+1 be a path in

G such that d(v1, vd+1) = d. Let {v1, V2, V3, . . . , Vd+1} be the distance partition

with respect to v1. The sequence (vi, vi+2, . . . , vi+2k) is called neighborhood compat-

ible (N-compatible, for short) in G if N(vi+r) ∩ Vi+r+1 = N(vi+r+2) ∩ Vi+r+1 for

r = 0, 2, . . . , 2(k − 1); the sequence (vi, vi+2, . . . , vi+2k) is called nearly neighborhood

compatible (nearly N-compatible, for short) if the subsequence (vi+2, . . . , vi+2k) is N-

compatible and N(vi) ∩ Vi+1 ⊇ N(vi+2) ∩ Vi+1.

We shall investigate the structure of the distance partition of the graphs in BG(d).

The following result is key to the proofs of Theorems 3.9 and 3.10.

Lemma 3.8. Let G ∈ BG(d), let v1v2 · · · vd+1 be a path in G such that d(v1, vd+1)

= d, and let {v1, V2, V3, . . . , Vd+1} be the distance partition with respect to v1. Then

(1) |Vi| ≤ 2 for i = 2, . . . , d + 1, |V2| = |V3| = |Vd+1| = 1, and when d is even,

|V2j | = 1 for all j.

(2) If |V2r| = 2 and d is odd, then (v2r, v2r+2, . . . , vd+1) is nearly N-compatible.

In this case, we have N(v) = N(v2r) \N(v2r+2), where v ∈ V2r\{v2r}.

(3) If |V2r+1| = 2, then (v1, v3, . . . , v2r−1) is N-compatible. In this case, N(v) =

N(v2r−1) ∩ V2r, where v ∈ V2r+1\{v2r+1}.

(4) (i) For 4 ≤ i ≤ d− 1, if (vi, vi+2, . . . , vd+1) is nearly N-compatible (so that

i and d are of opposite parity) and |Vi| = 1, then G⊕ v ∈ BG(d), where

v is a new vertex that satisfies N(v) = N(vi)\N(vi+2).

(ii) For any odd integer i ≥ 5, if (v1, v3, . . . , vi−2) is N-compatible and |Vi| =

1 then G ⊕ v ∈ BG(d), where v is a new vertex that satisfies N(v) =

N(vi−2) ∩ Vi−1.
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Proof. Let k = ⌈d
2⌉. Then d is 2k or 2k − 1, depending on whether d is even

or odd. Consider any r, 1 ≤ r ≤ k, such that |V2r | ≥ 2. Let v ∈ V2r\{v2r}. Since

the connected bipartite graph G contains the connected bipartite graph Pd+1 as an

induced subgraph, by Lemma 3.4, we have

(3.2) χN(v) = a2χN(v2) + a4χN(v4) + · · ·+ a2kχN(v2k)

for some real numbers a2, a4, . . . , a2k. If there is some j, 1 ≤ j ≤ r − 1, such that

a2j 6= 0, let j0 be the smallest such j. In view of Lemma 3.5, among v, v2, v4, . . . , v2k,

only v2j0 is adjacent to v2j0−1. By equating the values of the two sides of (3.2) at

v2j0−1, we obtain a2j0 = 0, which is a contradiction. So we must have a2j = 0 for

1 ≤ j ≤ r− 1 and (3.2) is reduced to χN(v) =
∑k

j=r a2jχN(v2j). Since χN(v) takes the

value 1 at some vertex in V2r−1 and for j = r + 1, . . . , k, χN(v2j) takes the value 0 at

that vertex, we have a2r = 1. So χN(v) = χN(v2r) +
∑k

j=r+1 a2jχN(v2j). By equating

the values of the two sides of the preceding relation at v2r+1, we obtain χN(v)(v2r+1) =

1+ a2r+2. If χN(v)(v2r+1) = 1, then a2r+2 = 0 and by considering the values of χN(v)

at v2r+3, v2r+5, . . . , v2k−1 (in this order), we obtain successively that a2r+4, . . . , a2k
are all equal to 0; hence, χN(v) = χN(v2r) and so N(v) = N(v2r), which contradicts

the assumption that G is a reduced graph. So we must have χN(v)(v2r+1) = 0 and

a2r+2 = −1. Then by considering the values of χN(v) at v2r+3, . . . , v2k−1 respectively

(and in this order), we obtain respectively a2r+4 = 1, . . . , a2k = (−1)k−r. So we have

χN(v) = χN(v2r) − χN(v2r+2) + · · ·+ (−1)k−rχN(v2k).(3.3)

Using (3.3), we find that for any u ∈ V2r+1, u ∈ N(v) if and only if χN(v2r)(u) =

1 and χN(v2r+2)(u) = 0. Similarly, for any u ∈ V2r−1, u ∈ N(v) if and only if

u ∈ N(v2r). So we have N(v) = N(v2r) \ N(v2r+2). Furthermore, if there exists

u ∈ (N(v2r+2) ∩ V2r+1) \ (N(v2r) ∩ V2r+1), then by (3.3) we obtain χN(v)(u) = −1,

which is a contradiction. Therefore, N(v2r) ∩ V2r+1 ⊇ N(v2r+2) ∩ V2r+1. Also,

for any j = 1, . . . , k − 1 − r and any u ∈ V2r+2j+1 we have χN(v)(u) = 0 and

hence χN(v2r+2j)(u) equals 1 or 0 depending on whether χN(v2r+2j+2)(u) equals 1 or

0. So we have N(v2r+2j) ∩ V2r+2j+1 = N(v2r+2j+2) ∩ V2r+2j+1. This proves that

(v2r, v2r+2, . . . , v2k) is nearly N-compatible.

If V2r contains an element, say w, different from v and v2r, then by the same

argument we obtain N(w) = N(v2r) \ N(v2r+2). Hence, N(v) = N(w), which is a

contradiction. This shows that if |V2r| ≥ 2 then necessarily |V2r| = 2.

If d is even, then by (3.3) we have χN(v)(v2k+1) = (−1)k−r, which implies r = k

and consequently N(v) = N(v2k). So we arrive at a contradiction. This shows that

when d is even, |V2j | = 1 for j = 1, . . . , k.

Next, we note that we always have |V2k| = 1; in other words, we have |Vd| = 1
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when d is even and |Vd+1| = 1 when d is odd. Otherwise, by (3.3) (with r = k) we

have χN(v) = χN(v2k) or N(v) = N(v2k), which is a contradiction.

It is also not possible that r = 1. Otherwise, by (3.3) we have χN(v) = χN(v2) −

χN(v4) + · · ·+ (−1)k−1χN(v2k). If the shortest path from v to vd+1 contains v1 then

d(v, vd+1) = d+ 1 and so diam(G) ≥ d+ 1, which is a contradiction. So the shortest

path from v to vd+1 must go through a vertex in V3. By (3.3) v is not adjacent to v3.

So there exists u3 ∈ V3\{v3} such that v is adjacent to u3. Since N(v) = N(v2)\N(v4)

(as (v2, v4, . . . , v2k) is nearly N-compatible), u3 is not adjacent to v4. But the shortest

path from v to vd+1 must go through V4, so V4 contains a vertex different from v4, say

u4, which is adjacent to u3. By what we have done above (with r = 2 and v = u4),

(v4, v6, . . . , v2k) is nearly N-compatible; hence, N(u4)∩V3 = N(v4)∩V3. But we have

u3 ∈ V3, u3 is adjacent to u4 and u3 is not adjacent to v4, which is a contradiction.

This proves that we always have |V2| = 1.

Now let r be a positive integer such that |V2r+1| ≥ 2. Consider any v ∈ V2r+1 \

{v2r+1}. By Lemma 3.4 we have

(3.4) χN(v) = a1χN(v1) + a3χN(v3) + · · · ,

where the last term of the sum on the right side is a2k−1χN(v2k−1) when d is odd and

is a2k+1χN(v2k+1) when d is even.

When d is odd, by considering the values of χN(v) at v2k, v2k−2, . . . , v2r+4, we find

that a2j+1 = 0 for j ≥ r + 1. In this case (3.4) becomes

χN(v) = a1χN(v1) + a3χN(v3) + · · ·+ a2r+1χN(v2r+1).

Since χN(v)(v2r+2) = a2r+1, a2r+1 equals 1 or 0, depending on whether v is adjacent

or not adjacent to v2r+2. Consider the former case first. Note that χN(v)(v2r) =

1 + a2r−1. If χN(v)(v2r) = 1 then a2r−1 = 0 and by considering the values of χN(v)

at v2r−2, v2r−4, . . . , v2, we infer that a2r−3 = · · · = a1 = 0; hence, χN(v) = χN(v2r+1),

which is a contradiction. So we must have χN(v)(v2r) = 0 and a2r−1 = −1. Now

v must be adjacent to some vertex in V2r, different from v2r, say u. Then we have

1 = χN(v)(u) = χN(v2r+1)(u) − χN(v2r−1)(u), which implies χN(v2r+1)(u) = 1 and

χN(v2r−1)(u) = 0. As |V2r | ≥ 2, by what we have done, N(u) = N(v2r) \ N(v2r+2).

So we arrive at a contradiction. This shows that the case a2r+1 = 1 cannot happen

and we must have a2r+1 = 0. Then by the previous argument we can show that

(3.5) χN(v) = χN(v2r−1) − χN(v2r−3) + · · ·+ (−1)r−1χN(v1).

When d is even, as we have shown, |V2j | = 1 for j = 1, . . . , k. In view of these

relations, we readily verify the equality relation

(3.6) χN(v1) − χN(v3) + · · ·+ (−1)kχN(v2k+1) = 0.
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So we can rewrite χN(v) as a linear combination of χN(v1), χN(v3), · · · , χN(v2k−1). Us-

ing the kind of arguments we have used to obtain (3.3) from (3.2), we can show that

in this case (3.5) still holds.

By (3.5) we readily deduce that (v1, v3, . . . , v2r−1) is N-compatible and N(v) =

N(v2r−1) ∩ V2r. Hence, it also follows that if |V2r+1| ≥ 2 then necessarily we have

|V2r+1| = 2. If |V3| = 2 then by (3.5) (with r = 1), we have χN(v) = χN(v1), which

is a contradiction. We have already shown that |Vd+1| = 1 when d is odd. Now we

contend that when d is even we still have |Vd+1| = 1. Assume to the contrary that

there exists v ∈ Vd+1 \ {vd+1}. Then by (3.5) (with r = k) and (3.6) we obtain

χN(v) = χN(v2k+1), which is a contradiction.

In the above we have established (1), (2), and (3).

(4)(i) It is readily checked that we have

χN(v) = χN(vi) − χN(vi+2) + · · ·+ (−1)
d+1−i

2 χN(vd+1),

as the two sides of relation agree at v1 and on Vi for i = 2, 3, . . . , d + 1. So by

Lemma 3.4, G⊕ v ∈ BG(d).

Similarly, (4)(ii) also follows from the relation

χN(v) = χN(vi−2) − χN(vi−4) + · · ·+ (−1)
i−3

2 χN(v1).

Therefore, we have established the conclusions (1)–(4).

Now we are ready to give a complete characterization of the set MBG(d). The

next two results deal with the case when d is odd and when d is even respectively.

Theorem 3.9.

MBG(2k − 1) =











{P4}, k = 2,

{G
(4)
6 }, k = 3,

{G
(2i)
2k |i = ⌈k+1

2 ⌉, . . . , k − 1}, k ≥ 4.

Proof. Let G ∈ MBG(2k − 1). Let v1v2 · · · v2k be a path in G such that

d(v1, v2k) = 2k − 1 and let {v1, V2, V3, . . . , V2k} denote the distance partition of G

with respect to v1. By Lemma 3.8, we have |Vi| ≤ 2 for i = 2, . . . , 2k and |Vj | = 1 for

j = 2, 3, 2k. If k = 2 then clearly G = P4; that is, MBG(3) = {P4}. Hereafter, we

assume that k ≥ 3.
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v1 v2 v3 v4 v5 v6

(a)

b b b b b b

b b

b b b b b b b b b b b b b b b b b b
v1 v2 v3 v4 v2i−3 v2i+5v2i−1 v2k−2v2i v2i+1 v2i+3 v2k

b bb b b b b b

(b)

Figure 1. (a) G
(4)
6 and (b) G

(2i)
2k .

Next we show that there exists at least one j such that |V2j | = 2. Assume that

the contrary holds. Then (v1, v3, . . . , v2k−3) is clearly N -compatible. If |V2k−1| = 1,

then by Lemma 3.8(4)(ii), we can add a new vertex v to G such that G ⊕ v ∈

BG(2k − 1), which contradicts the maximality assumption on G. So |V2k−1| = 2

and by Lemma 3.8(3) we have N(u2k−1) = N(v2k−3)∩V2k−2 = v2k−2, where u2k−1 ∈

V2k−1\{v2k−1}. But then N(v2k−2)∩V2k−1 = V2k−1 ⊇ N(v2k)∩V2k−1, so (v2k−2, v2k)

is nearly N -compatible. In view of the maximality of G, by Lemma 3.8(4)(i) it follows

that |V2k−2| = 2, which is a contradiction. This proves that |V2j | = 2 for at least

one j. Let i be the smallest such j. By Lemma 3.8(2) (v2i, v2i+2, . . . , v2k) is nearly

N -compatible. As G ∈ MBG(2k − 1), by Lemma 3.8(4)(i), for j = i, . . . , k − 1, we

have |V2j | = 2 and N(u2j) = N(v2j) \N(v2j+2), where u2j ∈ V2j \ {v2j}; hence, u2j

is adjacent to v2j−1.

By the assumption on i, we have |V2j | = 1 for j = 1, . . . , i − 1. This im-

plies that (v1, v3, . . . , v2i−1) is N -compatible. In view of the maximality of G, by

Lemma3.8(4)(ii) for j = 2, . . . , i, we have |V2j+1| = 2 and N(u2j+1) = N(v2j−1)∩V2j ,

where u2j+1 ∈ V2j+1 \ {v2j+1}; hence, u2j+1 is adjacent to v2j .

Since N(u2i) = N(v2i) \ N(v2i+2) and v2i+2 is adjacent to v2i+1, u2i and v2i+1

must be non-adjacent. Furthermore, we have u2i ∈ N(v2i−1). Hence, N(v2i−1)∩V2i 6=

N(v2i+1)∩V2i. So (v1, v3, . . . , v2i+1), and hence also, (v1, v3, . . . , v2j+1) for any j > i,

is not N-compatible. By Lemma 3.8(3) it follows that |V2i+3| = |V2i+5| = · · · =

|V2k−1| = 1.

Since N(u2i+1) = N(v2i−1) ∩ V2i, u2i+1 is not adjacent to v2i+2. On the other

hand, we have shown that u2i+1 is adjacent to v2i, and as N(u2i) = N(v2i)\N(v2i+2),

it follows that u2i is adjacent to u2i+1. We have proved that G is precisely the graph

G
(2i)
2k (or the graph G

(4)
6 in case k = 3).
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In the above, we have shown that every maximal element of BG(2k − 1) is equal

to some G
(2i)
2k (or G

(4)
6 in case k = 3). To complete the argument, we note that by

applying Lemma 3.4 one can show that each G
(2i)
2k indeed belongs to BG(2k − 1). So

the maximal elements in BG(2k− 1) are exactly G
(2i)
2k , i = 2, . . . , k− 1. On the other

hand, it can be verified that G
(2i)
2k is isomorphic to G

(2k−2i+2)
2k for i = 2, . . . , k − 1—

one way to see this is to consider the distance partition with respect to v2k instead

of v1. Therefore, (up to isomorphism) the ⊆I -maximal elements in BG(2k − 1) are

precisely G
(2i)
2k for ⌈k+1

2 ⌉, . . . , k − 1.

Theorem 3.10. The ⊆I-maximal element in BG(2k) (k ≥ 2) is unique: it is the

path P5 if k = 2 and is the graph G2k+1, which is given by Figure 2, if k ≥ 3.

v1

Figure 2. Graph G2k+1.

v2 v3 v4 v5 v6 v7 v2k−3 v2k−2 v2k−1 v2k v2k+1
b b b bb b b b b b b b

b b b

Proof. Let G ∈ MBG(2k), let v1v2 · · · v2k+1 be a path in G with d(v1, v2k+1) = 2k,

and let {v1, V2, V3, . . . , V2k+1} denote the distance partition of G with respect to v1.

If k = 2, then by Lemma 3.8(1) we have |V2| = |V3| = |V4| = |V5| = 1 and so G

must be the path P5. Hereafter, we assume that k ≥ 3. By Lemma 3.8(1), we have

V3 = {v3}, V2k+1 = {v2k+1} and also V2j = {v2j} for j = 1, 2, . . . , k. In view of

the latter relations, clearly (v1, v3, . . . , v2k−1) is N-compatible. As G ∈ MBG(2k), by

Lemma 3.8(4)(ii), we have |V2r+1| = 2 for r = 2, . . . , k−1; say, V2r+1 = {v2r+1, u2r+1}

for all such r. So G is obtained from the path v1v2 · · · v2k+1 by adding the new vertices

u5, u7, . . . , u2k−1. By Lemma 3.8(3) and the fact that V2j = {v2j} for j = 1, 2, . . . , k,

we also have N(u2r+1) = N(v2r−1) ∩ V2r = {v2r} for r = 2, . . . , k − 1. Now it should

be clear that G is the graph G2k+1. Our above argument proves that BG(2k) has a

unique ⊆I-maximal element, namely, G2k+1.

Lemma 3.11. Let H be a graph satisfying Pd+1 ⊆I H ⊆I G, where G is an

element in MBG(d) (d ≥ 3). Then diam(H) = d.

Proof. As before, let d be 2k or 2k − 1 according to whether d is even or odd.

One can check that for any graph H that satisfies Pd+1 ⊆I H ⊆I G, where G is one

of P4 and G
(2i)
2k with i = ⌈k+1

2 ⌉, . . . , k− 1 when d is odd and is P5 or G2k+1 when d is

even, we have dH(v1, vd+1) = d and dH(v, w) < d for any other pair of vertices v, w

of H . Thus, diam(H) = d.
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Now we can conclude with the following main result of this paper.

Theorem 3.12. For d ≥ 3, we have

BG(d) =
⋃

G∈MBG(d)

{H : Pd+1 ⊆I H ⊆I G}.

Proof. The inclusion
⋃

G∈MBG(d){H : Pd+1 ⊆I H ⊆I G} ⊆ BG(d) follows from

Lemma 3.7 and Lemma 3.11, whereas the reverse inclusion is obvious as BG(d) is

finite.
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