THE CHARACTERIZATION OF PRIMITIVE SYMMETRIC LOOP-FREE SIGNED DIGRAPHS WITH THE MAXIMUM BASE*

LIHUA YOU ${ }^{\dagger}$ AND SHUYONG YI^{\dagger}

Abstract

In this paper, the primitive symmetric loop-free signed digraphs with the maximum base are characterized.

Key words. Matrix, Symmetric, Primitive, Non-powerful, Base, Signed digraph.

AMS subject classifications. 05C20, 05C22, 15A09, 15A48, 15B35.

1. Introduction. A sign pattern matrix is a matrix each of whose entries is a $\operatorname{sign} 1,-1$ or 0 . For a square sign pattern matrix M, notice that in the computations of the entries of the power M^{k}, an "ambiguous sign" may arise when we add a positive sign 1 to a negative sign -1 . So a new symbol "\#" was introduced in 8 to denote the ambiguous sign, the set $\Gamma=\{0,1,-1, \#\}$ is defined as the generalized sign set and the addition and multiplication involving the symbol \# are defined as follows:

$$
\begin{gathered}
(-1)+1=1+(-1)=\# ; \quad a+\#=\#+a=\# \quad(\text { for all } a \in \Gamma) \\
0 \cdot \#=\# \cdot 0=0 ; \quad b \cdot \#=\# \cdot b=\# \quad(\text { for all } b \in \Gamma \backslash\{0\})
\end{gathered}
$$

In [8, 11], the matrices with entries in the set Γ are called generalized sign pattern matrices. The addition and multiplication of generalized sign pattern matrices are defined in the usual way, so that the sum and product of the generalized sign pattern matrices are still generalized sign pattern matrices. In this paper, we assume that all the matrix operations considered are operations of the matrices over Γ.

Definition 1.1. ([8) A square generalized sign pattern matrix M is called powerful if each power of M has no \# entry.

Definition 1.2. (12) Let M be a square generalized sign pattern matrix of order n and M, M^{2}, M^{3}, \ldots be the sequence of powers of M. Suppose M^{b} is the first

[^0]power that is repeated in the sequence. Namely, suppose b is the least positive integer such that there is a positive integer p such that
\[

$$
\begin{equation*}
M^{b}=M^{b+p} \tag{1.1}
\end{equation*}
$$

\]

Then b is called the generalized base (or simply base) of M, and is denoted by $b(M)$. The least positive integer p such that (1.1) holds for $b=b(M)$ is called the generalized period (or simply period) of M, and is denoted by $p(M)$.

We now introduce some graph theoretical concepts.
Let $D=(V, A)$ denote a digraph on n vertices. Loops are permitted, but no multiple arcs. A $u \rightarrow v$ walk in D is a sequence of vertices $u, u_{1}, \ldots, u_{k}=v$ and a sequence of arcs $e_{1}=\left(u, u_{1}\right), e_{2}=\left(u_{1}, u_{2}\right), \ldots, e_{k}=\left(u_{k-1}, v\right)$, where the vertices and the arcs are not necessarily distinct. A closed walk is a $u \rightarrow v$ walk where $u=v$. A path is a walk with distinct vertices. A cycle is a closed $u \rightarrow v$ walk with distinct vertices except for $u=v$. The length of a walk W is the number of arcs in W, denoted by $l(W)$. A k-cycle is a cycle of length k, denoted by C_{k}.

A signed digraph S is a digraph where each arc of S is assigned a sign 1 or -1 . A generalized signed digraph S is a digraph where each arc of S is assigned a sign 1, -1 or \#.

The sign of the walk W in a (generalized) signed digraph, denoted by $\operatorname{sgn} W$, is defined to be $\prod_{i=1}^{k} \operatorname{sgn}\left(e_{i}\right)$, where $e_{1}, e_{2}, \ldots, e_{k}$ is the sequence of arcs of W.

Let $M=\left(m_{i j}\right)$ be a square (generalized) sign pattern matrix of order n. The associated digraph $D(M)=(V, A)$ of M (possibly with loops) is defined to be the digraph with vertex set $V=\{1,2, \ldots, n\}$ and arc set $A=\left\{(i, j) \mid m_{i j} \neq 0\right\}$. The associated (generalized) signed digraph $S(M)$ of M is obtained from $D(M)$ by assigning the sign of $m_{i j}$ to each arc (i, j) in $D(M)$, and we say $D(M)$ is the underlying digraph of $S(M)$.

Let S be a (generalized) signed digraph on n vertices. Then there is a (generalized) sign pattern matrix M of order n whose associated (generalized) signed digraph $S(M)$ is S. We say that S is powerful if M is powerful. Also the base $b(S)$ and period $p(S)$ are defined to be those of M. Namely, we define $b(S)=b(M)$ and $p(S)=p(M)$.

A digraph D is said to be strongly connected if there exists a path from u to v for all $u, v \in V$, and D is called primitive if there is a positive integer k such that for each vertex x and each vertex y (not necessarily distinct) in D, there exists a walk of length k from x to y. The least such k is called the primitive exponent (or exponent) of D, denoted by $\exp (D)$. It is also well-known that a digraph D is primitive if and only if D is strongly connected and the greatest common divisor (g.c.d.) of the lengths of
all the cycles of D is 1 . A (generalized) signed digraph S is called primitive if the underlying digraph D is primitive, and in this case, we define $\exp (S)=\exp (D)$.

A digraph D is symmetric if for every $\operatorname{arc}(u, v)$ in D, the $\operatorname{arc}(v, u)$ is also in D. A (generalized) signed digraph S is called combinatorially symmetric (or symmetric) if the underlying digraph D is symmetric. A digraph D is loop-free if D has no loops. If a digraph D is symmetric and loop-free, we regard D as a simple graph.

Let $\mathcal{S}_{n}=\{S \mid S$ is a primitive symmetric signed digraph on n vertices $\}, \mathcal{S}_{n}^{\star}=$ $\{S \mid S$ is a primitive symmetric loop-free signed digraph on n vertices $\}$. Let $\mathcal{E}_{n}=$ $\left\{\exp (S) \mid S \in \mathcal{S}_{n}\right\}, \mathcal{E}_{n}^{\star}=\left\{\exp (S) \mid S \in \mathcal{S}_{n}^{\star}\right\}$, and $\mathcal{B}_{n}=\left\{b(S) \mid S \in \mathcal{S}_{n}\right\}, \mathcal{B}_{n}^{\star}=\{b(S) \mid S \in$ $\left.\mathcal{S}_{n}^{\star}\right\}$. The primitive exponent and exponent sets \mathcal{E}_{n} and \mathcal{E}_{n}^{\star} were discussed in [6, 7, 9, 10, and the base set \mathcal{B}_{n} and \mathcal{B}_{n}^{\star} were discussed in [4, 13.

ThEOREM 1.3. ([10) Let D be a primitive symmetric digraph on n vertices. Then:
(1) $\exp (D) \leq 2 n-2$ and the equality holds if and only if D is isomorphic to G_{1}, where $G_{1}=(V, A), V=\{1,2, \ldots, n\}, A=\{(i, i+1),(i+1, i) \mid 1 \leq i \leq$ $n-1\} \bigcup\{(1,1)\}$.
(2) $\mathcal{E}_{n}=\{1,2, \ldots, 2 n-2\} \backslash \mathcal{D}$ where \mathcal{D} is the set of odd numbers in $\{n, n+$ $1, \ldots, 2 n-2\}$.

THEOREM 1.4. (9) Let D be a primitive symmetric loop-free digraph on n vertices. Then:
(1) $\exp (D) \leq 2 n-4$.
(2) $\mathcal{E}_{n}^{\star}=\{2,3, \ldots, 2 n-4\} \backslash \mathcal{D}$ where \mathcal{D} is the set of odd numbers in $\{n-2, n-$ $1, \ldots, 2 n-5\}$.

Theorem 1.5. (4, 5) Let S be a primitive symmetric signed digraph on n vertices. Then:
(1) $b(S) \leq 2 n$ and the equality holds if and only if S has at least one negative 2 -cycle and D is isomorphic to G_{1} where D is the underlying digraph of S.
(2) $\mathcal{B}_{n}=\{1,2, \ldots, 2 n\}$.

Theorem 1.6. (13) Let S be a primitive symmetric loop-free signed digraph on n vertices. Then $b(S) \leq 2 n-1$ and $\mathcal{B}_{n}^{\star}=\{2, \ldots, 2 n-1\}$.

A natural question is what primitive symmetric loop-free signed digraphs on n vertices attain this upper bound $2 n-1$? We answer this in Section 3.
2. Some preliminaries. In this section, we introduce some needed definitions, theorems and lemmas. Other definitions and results not in this article can be found
in [1, 2, 3].
Definition 2.1. ([12) Two walks W_{1} and W_{2} in a signed digraph are called a pair of SSSD walks, if they have the same initial vertex, same terminal vertex, and same length, but they have different signs.

It is easy to see from the above relation between matrices and signed digraphs that a (generalized) sign pattern matrix M is powerful if and only if the associated (generalized) signed digraph $S(M)$ has no pairs of $S S S D$ walks. Thus, for a (generalized) signed digraph S, S is powerful if and only if S has no pairs of $S S S D$ walks.

In [12], You, Shao, and Shan obtained an important characterization of primitive non-powerful signed digraphs from the characterization of powerful irreducible sign pattern matrices (see [8]).

Theorem 2.2. ([12]) If S is a primitive signed digraph, then S is non-powerful if and only if S has a pair of cycles C^{\prime} and $C^{\prime \prime}$ (say, with lengths p_{1} and p_{2}, respectively) satisfying one of the following conditions:
$\left(A_{1}\right) p_{1}$ is odd, p_{2} is even and sgnC ${ }^{\prime \prime}=-1$;
$\left(A_{2}\right)$ Both p_{1} and p_{2} are odd and $\operatorname{sgn} C^{\prime}=-\operatorname{sgn} C^{\prime \prime}$.
A pair of cycles C^{\prime} and $C^{\prime \prime}$ satisfying (A1) or (A2) is a "distinguished cycle pair". It is easy to check that if C^{\prime} and $C^{\prime \prime}$ is a distinguished cycle pair with lengths p_{1} and p_{2}, respectively, then the closed walks $W_{1}=p_{2} C^{\prime}$ (walk around C^{\prime} by p_{2} times) and $W_{2}=p_{1} C^{\prime \prime}$ have the same length $p_{1} p_{2}$ and different signs:

$$
\left(\operatorname{sgn} C^{\prime}\right)^{p_{2}}=-\left(\operatorname{sgn} C^{\prime \prime}\right)^{p_{1}} .
$$

The following result can be used to determine the base.
Theorem 2.3. [12] Let S be a primitive non-powerful signed digraph. Then:
(1) There is an integer k such that there exists a pair of SSSD walks of length k from each vertex x to each vertex y in S.
(2) If there exists a pair of SSSD walks of length k from each vertex x to each vertex y, then there also exists a pair of SSSD walks of length $k+1$ from each vertex x to each vertex y in S.
(3) The minimal such k (as in (1)) is just $b(S)$-the base of S.

In the rest of the paper, for an undirected walk W of graph G and two vertices x, y on W, let $Q_{W}(x \rightarrow y)$ be the shortest path from x to y on W. Let $Q(x \rightarrow y)$ be the shortest path from x to y on G. For a cycle C, if x and y are two (not necessarily distinct) vertices on C and P is a path from x to y along C, then $C \backslash P$ denotes the
path or cycle from x to y along C obtained by deleting the edges of P.
The following lemmas will be useful.
Lemma 2.4. Let D be a symmetric digraph on n vertices. Suppose that there exist a cycle C and an odd cycle C^{\prime} with lengths of $k \geq 1$ and $k^{\prime} \geq 1$ in D such that $C \cap C^{\prime}=\emptyset$. Let P be the shortest path from C to C^{\prime}, and for any $x \in D$, let $P_{1}\left(P_{2}\right)$ be the shortest path from x to $C\left(C^{\prime}\right)$. Then we have

$$
\begin{equation*}
l\left(P_{1}\right)+l(P)+l\left(P_{2}\right) \leq 2\left(n-k-k^{\prime}+1\right)+\max \left\{\left[\frac{k}{2}\right], \frac{k^{\prime}-1}{2}\right\} \tag{2.1}
\end{equation*}
$$

Proof. Suppose P intersects $C\left(C^{\prime}\right)$ at $v\left(v^{\prime}\right)$.
Case 1: $P_{1} \cap C^{\prime}=\emptyset$ and $P_{2} \cap C=\emptyset$.
Subcase 1.1: $\left(P_{1} \cup P_{2}\right) \cap P=\emptyset$.
It is easy to see that $l\left(P_{1}\right)+l(P)+l\left(P_{2}\right) \leq 2\left(n-k-k^{\prime}+1\right) \leq 2\left(n-k-k^{\prime}+\right.$ 1) $+\max \left\{\left[\frac{k}{2}\right], \frac{k^{\prime}-1}{2}\right\}$.

Subcase 1.2: $\left(P_{1} \cup P_{2}\right) \cap P \neq \emptyset$.
We have $P_{1} \cap P \neq \emptyset$ or $P_{2} \cap P \neq \emptyset$. Without loss of generality, we may assume $P_{1} \cap P \neq \emptyset$. Suppose z is the first vertex on $P_{1} \cap P$. Then $l\left(P_{1}\right)+l(P)+l\left(P_{2}\right) \leq$ $l\left(Q_{P_{1}}(x \rightarrow z)\right)+l\left(Q_{P}(z \rightarrow v)\right)+l(P)+l\left(Q_{P_{1}}(x \rightarrow z)\right)+l\left(Q_{P}\left(z \rightarrow v^{\prime}\right)\right)=2(l(P)+$ $\left.l\left(Q_{P_{1}}(x \rightarrow z)\right)\right) \leq 2\left(n-k-k^{\prime}+1\right)$.

Case 2: $P_{1} \cap C^{\prime} \neq \emptyset$.
Suppose z is the first vertex on $P_{1} \cap C^{\prime}$. We have $l\left(P_{1}\right)+l(P)+l\left(P_{2}\right) \leq\left(l\left(Q_{P_{1}}(x \rightarrow\right.\right.$ $\left.z))+l\left(Q_{C^{\prime}}\left(z \rightarrow v^{\prime}\right)\right)+l(P)\right)+l(P)+l\left(Q_{P_{1}}(x \rightarrow z)\right)=2\left(l(P)+l\left(Q_{P_{1}}(x \rightarrow z)\right)\right)+$ $l\left(Q_{C^{\prime}}\left(z \rightarrow v^{\prime}\right)\right) \leq 2\left(n-k-k^{\prime}+1\right)+\frac{k^{\prime}-1}{2}$.

Case 3: $P_{2} \cap C \neq \emptyset$.
Suppose z is the first vertex on $P_{2} \cap C$. We have $l\left(P_{1}\right)+l(P)+l\left(P_{2}\right) \leq l\left(Q_{P_{2}}(x \rightarrow\right.$ $z))+l(P)+\left(l\left(Q_{P_{2}}(x \rightarrow z)\right)+l\left(Q_{C}(z \rightarrow v)\right)+l(P)\right)=2\left(l(P)+l\left(Q_{P_{2}}(x \rightarrow z)\right)\right)+$ $l\left(Q_{C}(z \rightarrow v)\right) \leq 2\left(n-k-k^{\prime}+1\right)+\left[\frac{k}{2}\right]$.

Combining the above three cases, we see that (2.1) holds.
Lemma 2.5. Let D be a symmetric digraph on n vertices. Suppose that there exist a cycle C and an odd cycle C^{\prime} with lengths of $k \geq 1$ and $k^{\prime} \geq 1$ in D such that $C \cap C^{\prime}=\emptyset$. Let P be the shortest path from C to $C^{\prime}, d(x, y)$ be the distance from x to y. Then for any two vertices $x, y \in D$, there exist $x^{\prime} \in C, y^{\prime} \in C^{\prime}$ or $x^{\prime} \in C^{\prime}, y^{\prime} \in C$

ELA

The Characterization of Primitive Symmetric Loop-Free Signed Digraphs
such that

$$
\begin{equation*}
d\left(x, x^{\prime}\right)+l(P)+d\left(y, y^{\prime}\right) \leq 2\left(n-k-k^{\prime}+1\right)+\max \left\{\left[\frac{k}{2}\right], \frac{k^{\prime}-1}{2}\right\} \tag{2.2}
\end{equation*}
$$

Proof. Note that $l(P) \leq n-k-k^{\prime}+1$. Thus, we only need to consider the following three cases.

Case 1: $x \in C$ or $y \in C$. Without loss of generality, we may assume $x \in C$.
Take $x^{\prime}=x$, and for any $y \in D$, there exists $y^{\prime} \in C^{\prime}$ such that $d\left(y, y^{\prime}\right) \leq$ $\left[\frac{k}{2}\right]+n-k-k^{\prime}+1$. So $d\left(x, x^{\prime}\right)+l(P)+d\left(y, y^{\prime}\right) \leq 2\left(n-k-k^{\prime}+1\right)+\left[\frac{k}{2}\right] \leq$ $2\left(n-k-k^{\prime}+1\right)+\max \left\{\left[\frac{k}{2}\right], \frac{k^{\prime}-1}{2}\right\}$.
Case 2: $x \in C^{\prime}$ or $y \in C^{\prime}$. Without loss of generality, we may assume $x \in C^{\prime}$.
Taking $x^{\prime}=x$, and for any $y \in D$, there exists $y^{\prime} \in C$ such that $d\left(y, y^{\prime}\right) \leq$ $\frac{k^{\prime}-1}{2}+n-k-k^{\prime}+1$. So $d\left(x, x^{\prime}\right)+l(P)+d\left(y, y^{\prime}\right) \leq 2\left(n-k-k^{\prime}+1\right)+\frac{k^{\prime}-1}{2} \leq$ $2\left(n-k-k^{\prime}+1\right)+\max \left\{\left[\frac{k}{2}\right], \frac{k^{\prime}-1}{2}\right\}$.

Case 3: $\quad x \notin C \cup C^{\prime}$ and $y \notin C \cup C^{\prime}$.
Let P_{1} and P_{1}^{\prime} be the shortest path from x to C and C^{\prime} respectively, and let P_{2} and P_{2}^{\prime} be the shortest path from y to C and C^{\prime} respectively. Assume the result does not hold. Then we have

$$
l\left(P_{1}\right)+l(P)+l\left(P_{2}^{\prime}\right)>2\left(n-k-k^{\prime}+1\right)+\max \left\{\left[\frac{k}{2}\right], \frac{k^{\prime}-1}{2}\right\}
$$

and

$$
l\left(P_{1}^{\prime}\right)+l(P)+l\left(P_{2}\right)>2\left(n-k-k^{\prime}+1\right)+\max \left\{\left[\frac{k}{2}\right], \frac{k^{\prime}-1}{2}\right\} .
$$

Therefore, $l\left(P_{1}\right)+l\left(P_{1}^{\prime}\right)+2 l(P)+l\left(P_{2}\right)+l\left(P_{2}^{\prime}\right)>4\left(n-k-k^{\prime}+1\right)+2 \max \left\{\left[\frac{k}{2}\right], \frac{k^{\prime}-1}{2}\right\}$.
On the other hand, by Lemma 2.4, we have

$$
l\left(P_{1}\right)+l(P)+l\left(P_{1}^{\prime}\right) \leq 2\left(n-k-k^{\prime}+1\right)+\max \left\{\left[\frac{k}{2}\right], \frac{k^{\prime}-1}{2}\right\},
$$

and

$$
l\left(P_{2}\right)+l(P)+l\left(P_{2}^{\prime}\right) \leq 2\left(n-k-k^{\prime}+1\right)+\max \left\{\left[\frac{k}{2}\right], \frac{k^{\prime}-1}{2}\right\}
$$

So, $l\left(P_{1}\right)+l\left(P_{1}^{\prime}\right)+2 l(P)+l\left(P_{2}\right)+l\left(P_{2}^{\prime}\right) \leq 4\left(n-k-k^{\prime}+1\right)+2 \max \left\{\left[\frac{k}{2}\right], \frac{k^{\prime}-1}{2}\right\} ;$
this is a contradiction.
Combining the above three cases, we obtain (2.2). \square
3. Characterization of the primitive symmetric loop-free signed digraphs with the maximum base. It was shown in [8] that if a primitive signed digraph S is powerful, then $b(S)=\exp (D)$, where D is the underlying digraph of S. So for a primitive powerful symmetric (loop-free) signed digraph, Theorems 1.3 and 1.4 give the results, and if S is a primitive symmetric (loop-free) signed digraph on n vertices with base $2 n-1, S$ must be non-powerful.

Let $\mathcal{S}_{n}^{\star}=\{S \mid S$ is a primitive symmetric loop-free signed digraph on n vertices $\}$. For a cycle C in a (generalized) signed digraph S, if $\operatorname{sgn} C=1$ (or -1), then we call C a positive (or negative) cycle.

Let $n \geq 4, l(3 \leq l \leq n)$ be odd, and let $D_{l}=(V, A)$ be a digraph on n vertices with vertex set $V=\{1,2, \ldots, n\}$ and arc set $A=\{(i, i+1),(i+1, i) \mid 1 \leq i \leq$ $n-1\} \cup\{(1, l),(l, 1)\}$. Clearly, D_{l} is a primitive symmetric loop-free digraph.

Lemma 3.1. Let $n \geq 4, l(3 \leq l \leq n)$ be odd, and let $S D_{l}$ be a signed digraph with D_{l} as its underlying digraph, where every 2 -cycle in $S D_{l}$ is negative. Then
(1) $S D_{l} \in \mathcal{S}_{n}^{\star}$ and $S D_{l}$ is non-powerful.
(2) $b\left(S D_{l}\right)=2 n-1$.

Proof. (1) It follows from Theorem 2.2 and the definitions.
(2) It is obvious that $b\left(S D_{l}\right) \leq 2 n-1$ by Theorem 1.5. Since there are no $S S S D$ walks of even length $2 n-2$ from n to $n, b\left(S D_{l}\right) \geq 2 n-1$. Combining the two inequalities, we obtain $b\left(S D_{l}\right)=2 n-1$.

Lemma 3.2. Suppose $S \in \mathcal{S}_{n}^{\star}$. If there exists a vertex v in $V(S)$ such that v is contained in a positive 2-cycle C^{\prime} and a negative 2-cycle $C^{\prime \prime}$, then $b(S) \leq 2 n-2$.

Proof. Since there exist a positive 2-cycle C^{\prime} and a negative 2-cycle $C^{\prime \prime}$ in S, S is non-powerful, $C^{\prime}, C^{\prime \prime}$ is a "distinguished cycle pair", there exists a pair of $S S S D$ walks of length 2 from v to v.

Since S is primitive, there exists an odd cycle $C=v_{1} v_{2} \cdots v_{l} v_{1}$ with length l (≥ 3) in S. Let x and y be any two (not necessarily distinct) vertices in $V(S)$.

Let P be the shortest path from v to C and let P intersect C at v^{\prime}. Suppose there are k vertices on P where $k \geq 1$. Then $P \cup C$ has $k+l-1$ vertices.

Let P_{1} be the shortest path from x to $P \cup C$ and let P_{1} intersect $P \cup C$ at x^{\prime} where $0 \leq l\left(P_{1}\right) \leq n-k-l+1$, let P_{2} be the shortest path from y to $P \cup C$ and let P_{2} intersect $P \cup C$ at y^{\prime} where $0 \leq l\left(P_{2}\right) \leq n-k-l+1$.

We consider the following three cases.
Case 1: $\quad x^{\prime} \in P, y^{\prime} \in P$.

ELA

The Characterization of Primitive Symmetric Loop-Free Signed Digraphs
Set $a=l\left(Q_{P}\left(x^{\prime} \rightarrow v\right)\right), b=l\left(Q_{P}\left(v \rightarrow y^{\prime}\right)\right)$ and

$$
W= \begin{cases}P_{1}+Q_{P}\left(x^{\prime} \rightarrow v\right)+P+Q_{P}\left(v^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { if } a \leq b \\ P_{1}+Q_{P}\left(x^{\prime} \rightarrow v^{\prime}\right)+P+Q_{P}\left(v \rightarrow y^{\prime}\right)+P_{2}, & \text { otherwise }\end{cases}
$$

Then $l(W) \leq(n-k-l+1)+(k-1)+(k-1)+(n-k-l+1)=2 n-2 l$. If $l(W)$ is even, we set $W_{1}=W$. Otherwise, we set $W_{1}=W+C$. Therefore, $l\left(W_{1}\right)$ is even, and $l\left(W_{1}\right) \leq 2 n-l$, thus $W_{1}+C^{\prime}$ and $W_{1}+C^{\prime \prime}$ are a pair of $S S S D$ walks from x to y with even length $\leq 2 n-l+2 \leq 2 n-1$. Therefore, there exists a pair of $S S S D$ walks of length $2 n-2$ from x to y.

Case 2: Either x^{\prime} or y^{\prime} belongs to P. Without loss of generality, we may assume $x^{\prime} \in P$ and $y^{\prime} \notin P$.

Set $w=l\left(P_{1}\right)+l\left(Q_{P}\left(x^{\prime} \rightarrow v\right)\right)+l(P)+l\left(Q_{C}\left(v^{\prime} \rightarrow y^{\prime}\right)\right)+l\left(P_{2}\right)$ and

$$
W= \begin{cases}P_{1}+Q_{P}\left(x^{\prime} \rightarrow v\right)+P+Q_{C}\left(v^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is even } ; \\ P_{1}+Q_{P}\left(x^{\prime} \rightarrow v\right)+P+C \backslash Q_{C}\left(v^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { otherwise }\end{cases}
$$

Then $l(W)$ is even, and $l(W) \leq(n-l-k+1)+(k-1)+(k-1)+(l-1)+(n-$ $l-k+1)=2 n-l-1$, thus $W+C^{\prime}$ and $W+C^{\prime \prime}$ are a pair of SSSD walks from x to y with even length $\leq 2 n-l+1 \leq 2 n-2$. Therefore, there exists a pair of $S S S D$ walks of length $2 n-2$ from x to y.

Case 3: $\quad x^{\prime} \notin P, y^{\prime} \notin P$.
Subcase 3.1: If $v^{\prime} \in Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)$.
Set $w=l\left(P_{1}\right)+l\left(Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)\right)+l\left(P_{2}\right)$ and

$$
W= \begin{cases}P_{1}+Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 P+P_{2}, & \text { if } w \text { is even } \\ P_{1}+Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 P+C+P_{2}, & \text { otherwise }\end{cases}
$$

Then $l(W)$ is even, and $l(W) \leq(n-l-k+1)+\frac{(l-1)}{2}+2(k-1)+l+(n-l-k+1)=$ $2 n-\frac{l}{2}-\frac{1}{2}$, thus $W+C^{\prime}$ and $W+C^{\prime \prime}$ are a pair of $S S S D$ walks with even length $\leq 2 n-l+\frac{3}{2}<2 n-1$. Therefore, there exists a pair of SSSD walks of length $2 n-2$ from x to y.

Subcase 3.2: If $v^{\prime} \notin Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)$.
Set $w=l\left(P_{1}\right)+l\left(Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)\right)+l\left(P_{2}\right)$.
If w is odd, then set $W=P_{1}+Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)+C+2 P+P_{2}$.
If w is even, then set $a=l\left(Q_{C}\left(x^{\prime} \rightarrow v^{\prime}\right)\right), b=l\left(Q_{C}\left(y^{\prime} \rightarrow v^{\prime}\right)\right)$ and

$$
W= \begin{cases}P_{1}+2 Q_{C}\left(x^{\prime} \rightarrow v^{\prime}\right)+Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 P+P_{2}, & \text { if } a \leq b \\ P_{1}+Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 Q_{C}\left(y^{\prime} \rightarrow v^{\prime}\right)+2 P+P_{2}, & \text { otherwise }\end{cases}
$$

Then $l(W)$ is even, and $l(W) \leq(n-l-k+1)+\frac{(l-1)}{2}+l+2(k-1)+(n-l-k+1)=$ $2 n-\frac{l}{2}-\frac{1}{2}$. Thus, $W+C^{\prime}$ and $W+C^{\prime \prime}$ are a pair of $S S S D$ walks with even length $\leq 2 n-l+\frac{3}{2}<2 n-1$. Therefore, there exists a pair of SSSD walks of length $2 n-2$ from x to y.

Combining the three cases, we have $b(S) \leq 2 n-2$ by Theorem 2.3, ㅁ
Lemma 3.3. Suppose $S \in \mathcal{S}_{n}^{\star}$ and S is non-powerful. If every 2 -cycle is positive, then $b(S) \leq 2 n-2$.

Proof. Since S is primitive and non-powerful, Theorem 2.2 applies.
Let x and y be any two (not necessarily distinct) vertices in S.
Case 1: If $\left(A_{1}\right)$ of Theorem 2.2 holds.
In this case, there exist an odd cycle $C_{l}(l \geq 3)$ and an even cycle $C_{k}(k \geq 4)$ such that $\operatorname{sgn} C_{k}=-1$.

Subcase 1.1: $\quad C_{l} \cap C_{k}=\emptyset$.
Let P be the shortest path from C_{l} to C_{k} and P intersect $C_{l}\left(C_{k}\right)$ at $v\left(v^{\prime}\right)$. By Lemma [2.5) there exist $x^{\prime} \in C_{l}, y^{\prime} \in C_{k}$ or $x^{\prime} \in C_{k}, y^{\prime} \in C_{l}$ such that (2.2) holds. Without loss of generality, suppose there exist $x^{\prime} \in C_{l}, y^{\prime} \in C_{k}$ such that (2.2) holds. For convenience, let P_{1} be the shortest path from x to x^{\prime} and P_{2} be the shortest path from y to y^{\prime}.

$$
\text { Set } w=l\left(P_{1}\right)+l\left(Q_{C_{l}}\left(x^{\prime} \rightarrow v\right)\right)+l(P)+l\left(Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)\right)+l\left(P_{2}\right) \text { and }
$$

$$
W_{1}= \begin{cases}P_{1}+Q_{C_{l}}\left(x^{\prime} \rightarrow v\right)+P+Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is even; } \\ P_{1}+C_{l} \backslash Q_{C_{l}}\left(x^{\prime} \rightarrow v\right)+P+Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { otherwise. }\end{cases}
$$

and

$$
W_{2}= \begin{cases}P_{1}+Q_{C_{l}}\left(x^{\prime} \rightarrow v\right)+P+C_{k} \backslash Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is even } \\ P_{1}+C_{l} \backslash Q_{C_{l}}\left(x^{\prime} \rightarrow v\right)+P+C_{k} \backslash Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { otherwise }\end{cases}
$$

Then $l\left(W_{1}\right)$ and $l\left(W_{2}\right)$ are even because $l\left(Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)\right)$ and $l\left(C_{k} \backslash Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)\right)$ have the same parity, $\operatorname{sgn} Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)=-\operatorname{sgn} C_{k} \backslash Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)$ and $\operatorname{sgn}\left(W_{1}\right)=$ $-\operatorname{sgn}\left(W_{2}\right)$ because $\operatorname{sgn} C_{k}=-1$ and every 2 -cycle is positive.

So $W_{2}, W_{3}=W_{1}+\frac{l\left(W_{2}\right)-l\left(W_{1}\right)}{2} C_{2}$ are a pair of $S S S D$ walks from x to y with even length $l\left(W_{2}\right) \leq 2(n-k-l+1)+\max \left\{\frac{l-1}{2}, \frac{k}{2}\right\}+l+k<2 n-2$ by (2.2), and thus, there exists a pair of $S S S D$ walks of length $2 n-2$ from x to y.

Subcase 1.2: $\quad C_{l} \cap C_{k} \neq \emptyset$.
Suppose $C_{l} \cup C_{k}$ has k^{\prime} vertices. Let $P_{1}\left(P_{2}\right)$ be the shortest path from $x(y)$ to
$C_{l} \cup C_{k}$ and $P_{1}\left(P_{2}\right)$ intersect $C_{l} \cup C_{k}$ at $x^{\prime}\left(y^{\prime}\right)$ where $0 \leq l\left(P_{i}\right) \leq n-k^{\prime}, i=1,2$.
Subcase 1.2.1: $x^{\prime} \in C_{l}$ and $y^{\prime} \in C_{l}$.
Suppose $z \in C_{l} \cap C_{k}$, without loss of generality, we suppose $z \in Q_{C_{l}}\left(x^{\prime} \rightarrow y^{\prime}\right)$.

$$
\text { Set } w=l\left(P_{1}\right)+l\left(Q_{C_{l}}\left(x^{\prime} \rightarrow y^{\prime}\right)\right)+l\left(P_{2}\right), a=l\left(Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)\right), b=l\left(Q_{C_{l}}\left(y^{\prime} \rightarrow z\right)\right)
$$

and

$$
W= \begin{cases}P_{1}+Q_{C_{l}}\left(x^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is even; } \\ P_{1}+C_{l} \backslash Q_{C_{l}}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)+P_{2}, & \text { if } w \text { is odd and } a \leq b \\ P_{1}+C_{l} \backslash Q_{C_{l}}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 Q_{C_{l}}\left(y^{\prime} \rightarrow z\right)+P_{2}, & \text { if } w \text { is odd and } a>b\end{cases}
$$

Then $W_{1}=W+C_{k}$ and $W_{2}=W+\frac{k}{2} C_{2}$ are a pair of $S S S D$ walks from x to y with even length $l\left(W_{1}\right)=l\left(W_{2}\right) \leq 2\left(n-k^{\prime}\right)+\left|C_{l}\right|+\left|C_{k}\right|=2\left(n-k^{\prime}\right)+\left|C_{l} \cup C_{k}\right|+\left|C_{l} \cap C_{k}\right| \leq$ $2\left(n-k^{\prime}\right)+k^{\prime}+\left(k^{\prime}-1\right)=2 n-1$. Thus, there exists a pair of SSSD walks of length $2 n-2$ from x to y.

Subcase 1.2.2: $x^{\prime} \in C_{l}$ and $y^{\prime} \in C_{k}$.
Suppose $z \in C_{l} \cap C_{k}$. Set $w=l\left(P_{1}\right)+l\left(Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)\right)+l\left(Q_{C_{k}}\left(z \rightarrow y^{\prime}\right)\right)+l\left(P_{2}\right)$ and

$$
\begin{gathered}
W_{1}= \begin{cases}P_{1}+Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)+Q_{C_{k}}\left(z \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is even; } \\
P_{1}+C_{l} \backslash Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)+Q_{C_{k}}\left(z \rightarrow y^{\prime}\right)+P_{2}, & \text { otherwise. }\end{cases} \\
W_{2}= \begin{cases}P_{1}+Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)+C_{k} \backslash Q_{C_{k}}\left(z \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is even; } \\
P_{1}+C_{l} \backslash Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)+C_{k} \backslash Q_{C_{k}}\left(z \rightarrow y^{\prime}\right)+P_{2}, & \text { otherwise. }\end{cases}
\end{gathered}
$$

Then $\operatorname{sgn} W_{1}=-\operatorname{sgn} W_{2}, l\left(W_{1}\right)$ and $l\left(W_{2}\right)$ are even lengths with $l\left(W_{1}\right) \leq l\left(W_{2}\right)$. So W_{2} and $W_{3}=W_{1}+\frac{l\left(W_{2}\right)-l\left(W_{1}\right)}{2} C_{2}$ are a pair of $S S S D$ walks from x to y with even length $l\left(W_{2}\right) \leq 2\left(n-k^{\prime}\right)+\left|C_{l}\right|+\left|C_{k}\right| \leq 2 n-1$, and thus, there exists a pair of $S S S D$ walks of length $2 n-2$ from x to y.

Subcase 1.2.3: $x^{\prime} \in C_{k}$ and $y^{\prime} \in C_{k}$. Suppose $z \in C_{l} \cap C_{k}$, without loss of generality, we suppose $z \in Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)$.

$$
\text { Set } w=l\left(P_{1}\right)+l\left(Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)\right)+l\left(P_{2}\right), a=l\left(Q_{C_{k}}\left(x^{\prime} \rightarrow z\right)\right), b=l\left(Q_{C_{k}}\left(y^{\prime} \rightarrow z\right)\right)
$$ and

$$
W_{1}= \begin{cases}P_{1}+Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is even } \\ P_{1}+Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+C_{l}+P_{2}, & \text { otherwise }\end{cases}
$$

$$
W_{2}= \begin{cases}P_{1}+C_{k} \backslash Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & w \text { is even } \\ P_{1}+C_{k} \backslash Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 Q_{C_{k}}\left(x^{\prime} \rightarrow z\right)+C_{l}+P_{2}, & w \text { is odd, } a \leq b \\ P_{1}+C_{k} \backslash Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 Q_{C_{k}}\left(y^{\prime} \rightarrow z\right)+C_{l}+P_{2}, & w \text { is odd, } a>b\end{cases}
$$

Then $\operatorname{sgn} W_{1}=-\operatorname{sgn} W_{2}, l\left(W_{1}\right)$ and $l\left(W_{2}\right)$ are even lengths with $l\left(W_{1}\right) \leq l\left(W_{2}\right)$. So W_{2} and $W_{3}=W_{1}+\frac{l\left(W_{2}\right)-l\left(W_{1}\right)}{2} C_{2}$ are a pair of $S S S D$ walks from x to y with even length $l\left(W_{2}\right) \leq 2\left(n-k^{\prime}\right)+\left|C_{l}\right|+\left|C_{k}\right| \leq 2 n-1$. Thus, there exists a pair of $S S S D$ walks of length $2 n-2$ from x to y.

Case 2: If $\left(A_{2}\right)$ of Theorem 2.2 holds.
In this case, there exist two odd cycles have different signs. Suppose C_{l} and C_{k} are two odd cycles such that $\operatorname{sgn} C_{l}=-\operatorname{sgn} C_{k}$ and the sum $l+k$ is the least length where $l, k(\geq 3)$ are odd.

Subcase 2.1: $\quad C_{l} \cap C_{k}=\emptyset$.
Without loss of generality, we assume $\operatorname{sgn} C_{l}=1$ and $\operatorname{sgn} C_{k}=-1$.
Let $P, P_{1}, P_{2}, v, v^{\prime}, x^{\prime}, y^{\prime}$ be defined as Subcase 1.1. Set $w=l\left(P_{1}\right)+l\left(Q_{C_{l}}\left(x^{\prime} \rightarrow\right.\right.$ $v))+l(P)+l\left(Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)\right)+l\left(P_{2}\right)$, and

$$
W_{1}= \begin{cases}P_{1}+Q_{C_{l}}\left(x^{\prime} \rightarrow v\right)+P+Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is even; } \\ P_{1}+C_{l} \backslash Q_{C_{l}}\left(x^{\prime} \rightarrow v\right)+P+Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { otherwise }\end{cases}
$$

and

$$
W_{2}= \begin{cases}P_{1}+C_{l} \backslash Q_{C_{l}}\left(x^{\prime} \rightarrow v\right)+P+C_{k} \backslash Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is even; } \\ P_{1}+Q_{C_{l}}\left(x^{\prime} \rightarrow v\right)+P+C_{k} \backslash Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { otherwise. }\end{cases}
$$

Then $l\left(W_{1}\right), l\left(W_{2}\right)$ are even lengths, and $\operatorname{sgn} W_{1}=-\operatorname{sgn} W_{2}$ since $\operatorname{sgn} Q_{C_{k}}\left(v^{\prime} \rightarrow\right.$ $\left.y^{\prime}\right)=-\operatorname{sgn} C_{k} \backslash Q_{C_{k}}\left(v^{\prime} \rightarrow y^{\prime}\right)$. So there exist a pair of $S S S D$ walks from x to y with even length no more than $\max \left\{l\left(W_{1}\right), l\left(W_{2}\right)\right\} \leq 2(n-l-k+1)+\max \left\{\frac{l-1}{2}, \frac{k-1}{2}\right\}+$ $l+k<2 n-2$ by (2.2). Thus, there exists a pair of $S S S D$ walks of length $2 n-2$ from x to y.

Subcase 2.2: $\quad C_{l} \cap C_{k} \neq \emptyset$.
Suppose $l \leq k$ and $C_{l} \cup C_{k}$ has k^{\prime} vertices. We claim

$$
\begin{equation*}
\left|C_{l} \cap C_{k}\right| \leq k^{\prime}-1 \tag{3.1}
\end{equation*}
$$

If $\left|C_{l} \cap C_{k}\right|>k^{\prime}-1$, then $\left|C_{l} \cap C_{k}\right|=k^{\prime}=\left|C_{l} \cup C_{k}\right|$, and thus, C_{l}, C_{k} have the same vertices with $l=k=k^{\prime}$.

Suppose $C_{l}=v_{1} v_{2} \cdots v_{l} v_{1}$, take $\overleftarrow{C_{l}}=v_{1} v_{l} v_{l-1} \cdots v_{2} v_{1}$, then $C_{k} \neq C_{l}$ since they have different signs and $C_{k} \neq \overleftarrow{C}_{l}$ since all 2 -cycle are positive. But the vertices $v_{1}, v_{2}, \ldots, v_{l}$ are on the cycle C_{k}, we must have $\left(v_{i}, v_{j}\right) \in C_{k}$ or $\left(v_{i}, v_{j}\right) \in \overleftarrow{C_{k}}$ where $\left(v_{i}, v_{j}\right) \notin C_{l},\left(v_{i}, v_{j}\right) \notin \overline{C_{l}}$ and $1 \leq i<j \leq l$. Then $C^{\prime}=v_{i} v_{i+1} \cdots v_{j} v_{i}$ and $C^{\prime \prime}=v_{1} v_{2} \cdots v_{i} v_{j} v_{j+1} \cdots v_{l} v_{1}$ are two cycles in S with the sum $l\left(C^{\prime}\right)+l\left(C^{\prime \prime}\right)=l+2$
is odd, thus $l\left(C^{\prime}\right)$ or $l\left(C^{\prime \prime}\right)$ is odd and $3 \leq l\left(C^{\prime}\right), l\left(C^{\prime \prime}\right) \leq l-1$. Without loss of generality, we assume $l\left(C^{\prime}\right)$ is odd, so C^{\prime} and C_{l} (or C^{\prime} and C_{k}) have different signs and the sum $l\left(C^{\prime}\right)+l \leq l+k\left(\right.$ or $\left.l\left(C^{\prime}\right)+k \leq l+k\right)$; this is a contradiction.

So (3.1) holds, and thus, we have

$$
\begin{equation*}
\left|C_{l}\right|+\left|C_{k}\right|=\left|C_{l} \cup C_{k}\right|+\left|C_{l} \cap C_{k}\right| \leq 2 k^{\prime}-1 . \tag{3.2}
\end{equation*}
$$

Let $P_{1}\left(P_{2}\right)$ be the shortest path from $x(y)$ to $C_{l} \cup C_{k}$ and $P_{1}\left(P_{2}\right)$ intersect $C_{l} \cup C_{k}$ at $x^{\prime}\left(y^{\prime}\right)$ where $0 \leq l\left(P_{i}\right) \leq n-k^{\prime}, i=1,2$.

Subcase 2.2.1: $x^{\prime} \in C_{l}$ and $y^{\prime} \in C_{l}$.
Let $z \in C_{l} \cap C_{k}$, without loss of generality, we suppose $z \in Q_{C_{l}}\left(x^{\prime} \rightarrow y^{\prime}\right)$.
Set $w=l\left(P_{1}\right)+l\left(Q_{C_{l}}\left(x^{\prime} \rightarrow y^{\prime}\right)\right)+l\left(P_{2}\right), a=l\left(Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)\right), b=l\left(Q_{C_{l}}\left(y^{\prime} \rightarrow z\right)\right)$ and

$$
W= \begin{cases}P_{1}+Q_{C_{l}}\left(x^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & w \text { is odd } \\ P_{1}+C_{l} \backslash Q_{C_{l}}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)+P_{2}, & w \text { is even, } a \leq b \\ P_{1}+C_{l} \backslash Q_{C_{l}}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 Q_{C_{l}}\left(y^{\prime} \rightarrow z\right)+P_{2}, & w \text { is even, } a>b\end{cases}
$$

Let $W_{1}=W+C_{k}$ and $W_{2}=W+C_{l}+\frac{k-l}{2} C_{2}$. Then W_{1} and W_{2} are a pair of $S S S D$ walks from x to y with even length $\leq 2\left(n-k^{\prime}\right)+\left|C_{l}\right|+\left|C_{k}\right| \leq 2 n-1$ by (3.2). So there exists a pair of $S S S D$ walks of length $2 n-2$ from x to y.

Subcase 2.2.2: $x^{\prime} \in C_{l}$ and $y^{\prime} \in C_{k}$.
Suppose $z \in C_{l} \cap C_{k}$. Set $w=l\left(P_{1}\right)+l\left(Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)\right)+l\left(Q_{C_{k}}\left(z \rightarrow y^{\prime}\right)\right)+l\left(P_{2}\right)$, and

$$
W_{1}= \begin{cases}P_{1}+Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)+Q_{C_{k}}\left(z \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is even } \\ P_{1}+C_{l} \backslash Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)+Q_{C_{k}}\left(z \rightarrow y^{\prime}\right)+P_{2}, & \text { otherwise }\end{cases}
$$

and

$$
W_{2}= \begin{cases}P_{1}+C_{l} \backslash Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)+C_{k} \backslash Q_{C_{k}}\left(z \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is even; } \\ P_{1}+Q_{C_{l}}\left(x^{\prime} \rightarrow z\right)+C_{k} \backslash Q_{C_{k}}\left(z \rightarrow y^{\prime}\right)+P_{2}, & \text { otherwise }\end{cases}
$$

Then $\operatorname{sgn} W_{1}=-\operatorname{sgn} W_{2}, l\left(W_{1}\right)$ and $l\left(W_{2}\right)$ are even lengths. So there exists a pair of $S S S D$ walks from x to y with even length $\leq \max \left\{l\left(W_{1}\right), l\left(W_{2}\right)\right\} \leq 2\left(n-k^{\prime}\right)+$ $\left|C_{l}\right|+\left|C_{k}\right| \leq 2 n-1$ by (3.2). Thus, there exists a pair of $S S S D$ walks of length $2 n-2$ from x to y.

Subcase 2.2.3: $x^{\prime} \in C_{k}$ and $y^{\prime} \in C_{k}$.
Let $z \in C_{l} \cap C_{k}$, without loss of generality, we suppose $z \in Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)$.

Subcase 2.2.3.1: $\operatorname{sgn} C_{k}=-1$ and $\operatorname{sgn} C_{l}=1$.

$$
\text { Set } w=l\left(P_{1}\right)+l\left(Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)\right)+l\left(P_{2}\right), a=l\left(Q_{C_{k}}\left(x^{\prime} \rightarrow z\right)\right), b=l\left(Q_{C_{k}}\left(y^{\prime} \rightarrow z\right)\right),
$$

and

$$
W_{1}= \begin{cases}P_{1}+Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is even } \\ P_{1}+Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+C_{l}+P_{2}, & \text { otherwise }\end{cases}
$$

and

$$
W_{2}= \begin{cases}P_{1}+C_{k} \backslash Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & w \text { is odd } \\ P_{1}+C_{k} \backslash Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 Q_{C_{k}}\left(x^{\prime} \rightarrow z\right)+C_{l}+P_{2}, & w \text { is even, } a \leq b ; \\ P_{1}+C_{k} \backslash Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 Q_{C_{k}}\left(y^{\prime} \rightarrow z\right)+C_{l}+P_{2}, & w \text { is even, } a>b\end{cases}
$$

Subcase 2.2.3.2: $\operatorname{sgn} C_{k}=1$ and $\operatorname{sgn} C_{l}=-1$.

$$
\text { Set } w=l\left(P_{1}\right)+l\left(Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)\right)+l\left(P_{2}\right), a=l\left(Q_{C_{k}}\left(x^{\prime} \rightarrow z\right)\right), b=l\left(Q_{C_{k}}\left(y^{\prime} \rightarrow z\right)\right),
$$

and

$$
W_{1}= \begin{cases}P_{1}+Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is even } \\ P_{1}+C_{k} \backslash Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { otherwise }\end{cases}
$$

and

$$
W_{2}= \begin{cases}P_{1}+C_{k} \backslash Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 Q_{C_{k}}\left(x^{\prime} \rightarrow z\right)+C_{l}+P_{2}, & w \text { is even, } a \leq b ; \\ P_{1}+C_{k} \backslash Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 Q_{C_{k}}\left(y^{\prime} \rightarrow z\right)+C_{l}+P_{2}, & w \text { is even, } a>b . \\ P_{1}+Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 Q_{C_{k}}\left(x^{\prime} \rightarrow z\right)+C_{l}+P_{2}, & w \text { is odd, } a \leq b ; \\ P_{1}+Q_{C_{k}}\left(x^{\prime} \rightarrow y^{\prime}\right)+2 Q_{C_{k}}\left(y^{\prime} \rightarrow z\right)+C_{l}+P_{2}, & w \text { is odd, } a>b .\end{cases}
$$

In both Subcase 2.2.3.1 and Subcase 2.2.3.2, we have $\operatorname{sgn} W_{1}=-\operatorname{sgn} W_{2}, l\left(W_{1}\right)$ and $l\left(W_{2}\right)$ are even lengths. So there exists a pair of $S S S D$ walks from x to y with even length $\leq \max \left\{l\left(W_{1}\right), l\left(W_{2}\right)\right\} \leq 2\left(n-k^{\prime}\right)+\left|C_{l}\right|+\left|C_{k}\right| \leq 2 n-1$ by (3.2). Thus, there exists a pair of $S S S D$ walks of length $2 n-2$ from x to y.

From the above arguments, we have $b(S) \leq 2 n-2$ by Theorem 2.3,
By Lemmas 3.2 and 3.3, we can obtain the following corollary.
Corollary 3.4. Suppose $S \in \mathcal{S}_{n}^{\star}$ and $b(S)=2 n-1$, then every 2 -cycle in S is negative.

Now we characterize the primitive symmetric loop-free signed digraphs with the maximum base as follows.

Theorem 3.5. Suppose $S \in \mathcal{S}_{n}^{\star}$. Then $b(S)=2 n-1$ if and only if $S \in S D_{L}=$ $\left\{S D_{l} \mid 3 \leq l \leq n\right.$ and l is odd $\}$.

Proof. Sufficiency follows easily from Lemma 3.1

Necessity: Since S is primitive, there exists at least one odd cycle in S. Suppose $C=v_{1} v_{2} \cdots v_{l} v_{1}$ is an odd cycle with the shortest length l in S, then C and $\bar{C}=$ $v_{1} v_{l} \cdots v_{2} v_{1}$ is a pair of $S S S D$ walks because all 2 -cycles in S are negative by Corollary 3.4 and l is odd.

Since $b(S)=2 n-1$, there exist two vertices x, y such that there are no $S S S D$ walks of length $2 n-2$ from x to y. Let $P_{1}\left(P_{2}\right)$ be the shortest path from $x(y)$ to C and intersect C at $x^{\prime}\left(y^{\prime}\right)$ where $0 \leq l\left(P_{i}\right) \leq n-l, i=1,2$. Now we prove $l\left(P_{1}\right)=n-l$.

If $l=n, l\left(P_{1}\right)=n-l$ holds clearly. If $l<n$, we suppose $l\left(P_{1}\right) \leq n-l-1$, set $w=l\left(P_{1}\right)+l\left(Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)\right)+l\left(P_{2}\right)$ and

$$
W= \begin{cases}P_{1}+Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { if } w \text { is odd } \\ P_{1}+C \backslash Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)+P_{2}, & \text { otherwise }\end{cases}
$$

Let $W_{1}=W+C$ and $W_{2}=W+\overleftarrow{C}$, then W_{1} and W_{2} are a pair of SSSD walks from x to y with even lengths $l\left(W_{1}\right)=l\left(W_{2}\right) \leq(n-l-1)+l+(n-l)+l=2 n-1$. Then there exists a pair of $S S S D$ walks of length $2 n-2$ from x to y; this is a contradiction.

Therefore, $l\left(P_{1}\right)=n-l$. Similarly, we can show $l\left(P_{2}\right)=n-l$ and $x=y$. It implies that for any $v \in S$ and $v \notin C$, we have $v \in P_{1}$ and $v \in P_{2}$. Thus, we assume $P_{1}=x_{1} x_{2} \cdots x_{n-l} x^{\prime}$ and $P_{2}=x_{1} x_{2} \cdots x_{n-l} y^{\prime}$ where $x_{1}=x=y$.

Now we prove $x^{\prime}=y^{\prime}$. Suppose $x^{\prime} \neq y^{\prime}$. Then $1 \leq l\left(Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)\right) \leq \frac{l-1}{2}$, $\frac{l+1}{2} \leq l\left(C \backslash Q_{C}\left(x^{\prime} \rightarrow y^{\prime}\right)\right) \leq l-1$. Let W, W_{1}, W_{2} defined as above. Thus, W_{1} and W_{2} are a pair of $S S S D$ walks from x to y with even lengths $l\left(W_{1}\right)=l\left(W_{2}\right) \leq$ $(n-l)+(l-1)+(n-l)+l=2 n-1$. Then there exists a pair of SSSD walks of length $2 n-2$ from x to y; this is a contradiction. Thus, $x^{\prime}=y^{\prime}(\in V(C))$, denoted by v_{l}.

Now we see that D_{l} is isomorphic to the subgraph of D where D is the underlying digraph of S. In fact, D_{l} is isomorphic to D. For this purpose, we only need to show D has no more arcs.

Firstly, there are no more arcs between vertex x_{n-l} and vertex $v_{i}(1 \leq i \leq l)$ by the same reason why $x^{\prime}=y^{\prime}$. Secondly, there are no more arcs between vertex x_{j} $(1 \leq j \leq n-l-1)$ and vertex $v_{i}(1 \leq i \leq l)$ and there are no more arcs between vertex $x_{j}(1 \leq j \leq n-l)$ and vertex $x_{i}(1 \leq i \leq n-l)$ because the path $P_{1}=x_{1} x_{2} \cdots x_{n-l} v_{l}$ is the shortest path from x_{1} to C. Finally, there are no more arcs between vertex v_{j} $(1 \leq j \leq l)$ and vertex $v_{i}(1 \leq i \leq l)$ because the cycle C is the shortest odd cycle in S.

Thus, D_{l} is isomorphic to D and $S \in S D_{L}$ because all 2-cycles in S are negative by Corollary 3.4 [

Acknowledgment. We would like to thank the referee for valuable comments and suggestions.

REFERENCES

[1] J.A. Bondy and U.S.R. Murty. Graph Theory With Applications. Macmillan, London, 1976.
[2] R.A. Brualdi and H.J. Ryser. Combinatorial Matrix Theory. Cambridge University Press, Cambridge, 1991.
[3] R.A. Brualdi and B.L. Shader. Matrices of Sign-solvable Linear Systems. Cambridge University Press, Cambridge 1995.
[4] B. Cheng and B.L. Liu. The bases sets of primitive zero-symmetric sign pattern matrices. Linear Algebra Appl., 428:715-731, 2008.
[5] B. Cheng and B.L. Liu. Primitive zero-symmetric sign pattern matrices with the maximum base. Linear Algebra Appl., 433:365-379, 2010.
[6] J.C. Holladay and R.S. Varga. On powers of non-negative matrices. Proc. Amer. Math. Soc., 9:631-634, 1958.
[7] M. Lewin. On exponents of primitive matrices. Numer. Math., 18:154-161, 1971.
[8] Z. Li, F. Hall, and C. Eschenbach. On the period and base of a sign pattern matrix. Linear Algebra Appl., 212/213:101-120, 1994.
[9] B.L. Liu, B.D. McKay, N. Wormald, and K.M. Zhang. The exponent set of symmetric primitive $(0,1)$ matrices with zero trace. Linear Algebra Appl., 133:121-131, 1990.
[10] J.Y. Shao. On the exponent set of symmetric primitive matrices. Sci. Sinica Ser. A, 9:931-939, 1986.
[11] J. Stuart, C. Eschenbach, and S. Kirkland. Irreducible sign k-potent sign pattern matrices. Linear Algebra Appl., 294:85-92, 1999.
[12] L.H. You, J.Y. Shao, and H.Y. Shan. Bounds on the bases of irreducible generalized sign pattern matrices. Linear Algebra Appl., 427:285-300, 2007.
[13] L.H. You and Y.H. Wu. Primitive non-powerful symmetric loop-free signed digraphs with given base and minimum number of arcs. Linear Algebra Appl., 434:1215-1227, 2011.

[^0]: *Received by the editors on May 23, 2011. Accepted for publication on January 15, 2012. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P.R. China (ylhua@scnu.edu.cn, ysyhgnc@163.com). The first author is supported by National Natural Science Foundation of China (10901061, 11071088) and the Zhujiang Technology Star Foundation of Guangzhou (2011Z2200090).

