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Abstract. In this paper, the primitive symmetric loop-free signed digraphs with the maximum

base are characterized.

Key words. Matrix, Symmetric, Primitive, Non-powerful, Base, Signed digraph.

AMS subject classifications. 05C20, 05C22, 15A09, 15A48, 15B35.

1. Introduction. A sign pattern matrix is a matrix each of whose entries is a

sign 1, −1 or 0. For a square sign pattern matrix M , notice that in the computations

of the entries of the powerMk, an “ambiguous sign” may arise when we add a positive

sign 1 to a negative sign −1. So a new symbol “#” was introduced in [8] to denote

the ambiguous sign, the set Γ = {0, 1,−1,#} is defined as the generalized sign set

and the addition and multiplication involving the symbol # are defined as follows:

(−1) + 1 = 1 + (−1) = #; a+# = #+ a = # (for all a ∈ Γ)

0 ·# = # · 0 = 0; b ·# = # · b = # (for all b ∈ Γ \ {0}).

In [8, 11], the matrices with entries in the set Γ are called generalized sign pattern

matrices. The addition and multiplication of generalized sign pattern matrices are

defined in the usual way, so that the sum and product of the generalized sign pattern

matrices are still generalized sign pattern matrices. In this paper, we assume that all

the matrix operations considered are operations of the matrices over Γ.

Definition 1.1. ([8]) A square generalized sign pattern matrix M is called

powerful if each power of M has no # entry.

Definition 1.2. ([12]) Let M be a square generalized sign pattern matrix of

order n and M,M2,M3, . . . be the sequence of powers of M . Suppose M b is the first
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power that is repeated in the sequence. Namely, suppose b is the least positive integer

such that there is a positive integer p such that

M b = M b+p.(1.1)

Then b is called the generalized base (or simply base) of M , and is denoted by b(M).

The least positive integer p such that (1.1) holds for b = b(M) is called the generalized

period (or simply period) of M , and is denoted by p(M).

We now introduce some graph theoretical concepts.

Let D = (V,A) denote a digraph on n vertices. Loops are permitted, but no

multiple arcs. A u → v walk in D is a sequence of vertices u, u1, . . . , uk = v and

a sequence of arcs e1 = (u, u1), e2 = (u1, u2), . . . , ek = (uk−1, v), where the vertices

and the arcs are not necessarily distinct. A closed walk is a u→ v walk where u = v.

A path is a walk with distinct vertices. A cycle is a closed u → v walk with distinct

vertices except for u = v. The length of a walk W is the number of arcs in W , denoted

by l(W ). A k-cycle is a cycle of length k, denoted by Ck.

A signed digraph S is a digraph where each arc of S is assigned a sign 1 or −1.

A generalized signed digraph S is a digraph where each arc of S is assigned a sign 1,

−1 or #.

The sign of the walk W in a (generalized) signed digraph, denoted by sgnW , is

defined to be
k
∏

i=1

sgn(ei), where e1, e2, . . . , ek is the sequence of arcs of W .

Let M = (mij) be a square (generalized) sign pattern matrix of order n. The

associated digraph D(M) = (V,A) of M (possibly with loops) is defined to be the

digraph with vertex set V = {1, 2, . . . , n} and arc set A = {(i, j)|mij 6= 0}. The asso-

ciated (generalized) signed digraph S(M) of M is obtained from D(M) by assigning

the sign of mij to each arc (i, j) in D(M), and we say D(M) is the underlying digraph

of S(M).

Let S be a (generalized) signed digraph on n vertices. Then there is a (generalized)

sign pattern matrix M of order n whose associated (generalized) signed digraph S(M)

is S. We say that S is powerful if M is powerful. Also the base b(S) and period p(S)

are defined to be those of M . Namely, we define b(S) = b(M) and p(S) = p(M).

A digraph D is said to be strongly connected if there exists a path from u to v

for all u, v ∈ V , and D is called primitive if there is a positive integer k such that for

each vertex x and each vertex y (not necessarily distinct) in D, there exists a walk of

length k from x to y. The least such k is called the primitive exponent (or exponent) of

D, denoted by exp(D). It is also well-known that a digraph D is primitive if and only

if D is strongly connected and the greatest common divisor (g.c.d.) of the lengths of
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all the cycles of D is 1. A (generalized) signed digraph S is called primitive if the

underlying digraph D is primitive, and in this case, we define exp(S) = exp(D).

A digraph D is symmetric if for every arc (u, v) in D, the arc (v, u) is also in D.

A (generalized) signed digraph S is called combinatorially symmetric (or symmetric)

if the underlying digraph D is symmetric. A digraph D is loop-free if D has no loops.

If a digraph D is symmetric and loop-free, we regard D as a simple graph.

Let Sn = {S|S is a primitive symmetric signed digraph on n vertices}, S⋆n =

{S|S is a primitive symmetric loop-free signed digraph on n vertices}. Let En =

{exp(S)|S ∈ Sn}, E⋆n = {exp(S)|S ∈ S⋆n}, and Bn = {b(S)|S ∈ Sn}, B⋆
n = {b(S)|S ∈

S⋆n}. The primitive exponent and exponent sets En and E⋆n were discussed in [6, 7, 9,

10], and the base set Bn and B⋆
n were discussed in [4, 13].

Theorem 1.3. ([10]) Let D be a primitive symmetric digraph on n vertices.

Then:

(1) exp(D) ≤ 2n − 2 and the equality holds if and only if D is isomorphic to

G1, where G1 = (V,A), V = {1, 2, . . . , n}, A = {(i, i + 1), (i + 1, i)|1 ≤ i ≤

n− 1}
⋃

{(1, 1)}.

(2) En = {1, 2, . . . , 2n − 2}\D where D is the set of odd numbers in {n, n +

1, . . . , 2n− 2}.

Theorem 1.4. ([9]) Let D be a primitive symmetric loop-free digraph on n

vertices. Then:

(1) exp(D) ≤ 2n− 4.

(2) E⋆n = {2, 3, . . . , 2n− 4}\D where D is the set of odd numbers in {n− 2, n−

1, . . . , 2n− 5}.

Theorem 1.5. ([4, 5]) Let S be a primitive symmetric signed digraph on n

vertices. Then:

(1) b(S) ≤ 2n and the equality holds if and only if S has at least one negative

2-cycle and D is isomorphic to G1 where D is the underlying digraph of S.

(2) Bn = {1, 2, . . . , 2n}.

Theorem 1.6. ([13]) Let S be a primitive symmetric loop-free signed digraph on

n vertices. Then b(S) ≤ 2n− 1 and B⋆
n = {2, . . . , 2n− 1}.

A natural question is what primitive symmetric loop-free signed digraphs on n

vertices attain this upper bound 2n− 1? We answer this in Section 3.

2. Some preliminaries. In this section, we introduce some needed definitions,

theorems and lemmas. Other definitions and results not in this article can be found
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in [1, 2, 3].

Definition 2.1. ([12]) Two walks W1 and W2 in a signed digraph are called a

pair of SSSD walks, if they have the same initial vertex, same terminal vertex, and

same length, but they have different signs.

It is easy to see from the above relation between matrices and signed digraphs

that a (generalized) sign pattern matrix M is powerful if and only if the associated

(generalized) signed digraph S(M) has no pairs of SSSD walks. Thus, for a (gen-

eralized) signed digraph S, S is powerful if and only if S has no pairs of SSSD

walks.

In [12], You, Shao, and Shan obtained an important characterization of primitive

non-powerful signed digraphs from the characterization of powerful irreducible sign

pattern matrices (see [8]).

Theorem 2.2. ([12]) If S is a primitive signed digraph, then S is non-powerful if

and only if S has a pair of cycles C′ and C′′ (say, with lengths p1 and p2, respectively)

satisfying one of the following conditions:

(A1) p1 is odd, p2 is even and sgnC′′ = −1;

(A2) Both p1 and p2 are odd and sgnC′ = −sgnC′′.

A pair of cycles C′ and C′′ satisfying (A1) or (A2) is a “distinguished cycle pair”.

It is easy to check that if C′ and C′′ is a distinguished cycle pair with lengths p1 and

p2, respectively, then the closed walks W1 = p2C
′ (walk around C′ by p2 times) and

W2 = p1C
′′ have the same length p1p2 and different signs:

(sgnC′)p2 = −(sgnC′′)p1 .

The following result can be used to determine the base.

Theorem 2.3. [12] Let S be a primitive non-powerful signed digraph. Then:

(1) There is an integer k such that there exists a pair of SSSD walks of length k

from each vertex x to each vertex y in S.

(2) If there exists a pair of SSSD walks of length k from each vertex x to each

vertex y, then there also exists a pair of SSSD walks of length k+1 from each

vertex x to each vertex y in S.

(3) The minimal such k (as in (1)) is just b(S)-the base of S.

In the rest of the paper, for an undirected walk W of graph G and two vertices

x, y on W , let QW (x→ y) be the shortest path from x to y on W . Let Q(x→ y) be

the shortest path from x to y on G. For a cycle C, if x and y are two (not necessarily

distinct) vertices on C and P is a path from x to y along C, then C\P denotes the
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path or cycle from x to y along C obtained by deleting the edges of P .

The following lemmas will be useful.

Lemma 2.4. Let D be a symmetric digraph on n vertices. Suppose that there

exist a cycle C and an odd cycle C′ with lengths of k ≥ 1 and k′ ≥ 1 in D such that

C ∩C′ = ∅. Let P be the shortest path from C to C′, and for any x ∈ D, let P1 (P2)

be the shortest path from x to C (C′). Then we have

l(P1) + l(P ) + l(P2) ≤ 2(n− k − k′ + 1) + max

{[

k

2

]

,
k′ − 1

2

}

.(2.1)

Proof. Suppose P intersects C (C′) at v (v′).

Case 1: P1 ∩ C′ = ∅ and P2 ∩ C = ∅.

Subcase 1.1: (P1 ∪ P2) ∩ P = ∅.

It is easy to see that l(P1) + l(P ) + l(P2) ≤ 2(n − k − k′ + 1) ≤ 2(n − k − k′ +

1) + max
{

[

k
2

]

, k
′
−1
2

}

.

Subcase 1.2: (P1 ∪ P2) ∩ P 6= ∅.

We have P1 ∩ P 6= ∅ or P2 ∩ P 6= ∅. Without loss of generality, we may assume

P1 ∩ P 6= ∅. Suppose z is the first vertex on P1 ∩ P . Then l(P1) + l(P ) + l(P2) ≤

l(QP1
(x → z)) + l(QP (z → v)) + l(P ) + l(QP1

(x → z)) + l(QP (z → v′)) = 2(l(P ) +

l(QP1
(x→ z))) ≤ 2(n− k − k′ + 1).

Case 2: P1 ∩ C′ 6= ∅.

Suppose z is the first vertex on P1∩C
′. We have l(P1)+l(P )+l(P2) ≤ (l(QP1

(x→

z)) + l(QC′(z → v′)) + l(P )) + l(P ) + l(QP1
(x → z)) = 2(l(P ) + l(QP1

(x → z))) +

l(QC′(z → v′)) ≤ 2(n− k − k′ + 1) + k′
−1
2 .

Case 3: P2 ∩ C 6= ∅.

Suppose z is the first vertex on P2∩C. We have l(P1)+ l(P )+ l(P2) ≤ l(QP2
(x→

z)) + l(P ) + (l(QP2
(x → z)) + l(QC(z → v)) + l(P )) = 2(l(P ) + l(QP2

(x → z))) +

l(QC(z → v)) ≤ 2(n− k − k′ + 1) +
[

k
2

]

.

Combining the above three cases, we see that (2.1) holds.

Lemma 2.5. Let D be a symmetric digraph on n vertices. Suppose that there

exist a cycle C and an odd cycle C′ with lengths of k ≥ 1 and k′ ≥ 1 in D such that

C ∩C
′

= ∅. Let P be the shortest path from C to C′, d(x, y) be the distance from x to

y. Then for any two vertices x, y ∈ D, there exist x′ ∈ C, y′ ∈ C′ or x′ ∈ C′, y′ ∈ C
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such that

d(x, x′) + l(P ) + d(y, y′) ≤ 2(n− k − k′ + 1) + max

{[

k

2

]

,
k′ − 1

2

}

.(2.2)

Proof. Note that l(P ) ≤ n − k − k′ + 1. Thus, we only need to consider the

following three cases.

Case 1: x ∈ C or y ∈ C. Without loss of generality, we may assume x ∈ C.

Take x′ = x, and for any y ∈ D, there exists y′ ∈ C′ such that d(y, y′) ≤
[

k
2

]

+ n − k − k′ + 1. So d(x, x′) + l(P ) + d(y, y′) ≤ 2(n − k − k′ + 1) +
[

k
2

]

≤

2(n− k − k′ + 1) + max
{

[

k
2

]

, k
′
−1
2

}

.

Case 2: x ∈ C′ or y ∈ C′. Without loss of generality, we may assume x ∈ C′.

Taking x′ = x, and for any y ∈ D, there exists y′ ∈ C such that d(y, y′) ≤
k′

−1
2 + n − k − k′ + 1. So d(x, x′) + l(P ) + d(y, y′) ≤ 2(n − k − k′ + 1) + k′

−1
2 ≤

2(n− k − k′ + 1) + max
{

[

k
2

]

, k
′
−1
2

}

.

Case 3: x 6∈ C ∪ C′ and y 6∈ C ∪ C′.

Let P1 and P ′

1 be the shortest path from x to C and C′ respectively, and let P2

and P ′

2 be the shortest path from y to C and C′ respectively. Assume the result does

not hold. Then we have

l(P1) + l(P ) + l(P ′

2) > 2(n− k − k′ + 1) + max

{[

k

2

]

,
k′ − 1

2

}

,

and

l(P ′

1) + l(P ) + l(P2) > 2(n− k − k′ + 1) + max

{[

k

2

]

,
k′ − 1

2

}

.

Therefore, l(P1)+ l(P ′

1)+2l(P )+ l(P2)+ l(P ′

2) > 4(n−k−k′+1)+2max
{

[

k
2

]

, k′
−1
2

}

.

On the other hand, by Lemma 2.4, we have

l(P1) + l(P ) + l(P ′

1) ≤ 2(n− k − k′ + 1) + max

{[

k

2

]

,
k′ − 1

2

}

,

and

l(P2) + l(P ) + l(P ′

2) ≤ 2(n− k − k′ + 1) + max

{[

k

2

]

,
k′ − 1

2

}

.

So, l(P1)+ l(P ′

1)+ 2l(P )+ l(P2)+ l(P ′

2) ≤ 4(n− k− k′ +1)+ 2max
{

[

k
2

]

, k′
−1
2

}

;

this is a contradiction.

Combining the above three cases, we obtain (2.2).
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3. Characterization of the primitive symmetric loop-free signed di-

graphs with the maximum base. It was shown in [8] that if a primitive signed

digraph S is powerful, then b(S) = exp(D), where D is the underlying digraph of S.

So for a primitive powerful symmetric (loop-free) signed digraph, Theorems 1.3 and

1.4 give the results, and if S is a primitive symmetric (loop-free) signed digraph on n

vertices with base 2n− 1, S must be non-powerful.

Let S⋆n = {S|S is a primitive symmetric loop-free signed digraph on n vertices}.

For a cycle C in a (generalized) signed digraph S, if sgnC = 1 (or −1), then we call

C a positive (or negative) cycle.

Let n ≥ 4, l (3 ≤ l ≤ n) be odd, and let Dl = (V,A) be a digraph on n

vertices with vertex set V = {1, 2, . . . , n} and arc set A = {(i, i+ 1), (i+ 1, i)|1 ≤ i ≤

n− 1} ∪ {(1, l), (l, 1)}. Clearly, Dl is a primitive symmetric loop-free digraph.

Lemma 3.1. Let n ≥ 4, l (3 ≤ l ≤ n) be odd, and let SDl be a signed digraph

with Dl as its underlying digraph, where every 2-cycle in SDl is negative. Then

(1) SDl ∈ S⋆n and SDl is non-powerful.

(2) b(SDl) = 2n− 1.

Proof. (1) It follows from Theorem 2.2 and the definitions.

(2) It is obvious that b(SDl) ≤ 2n − 1 by Theorem 1.5. Since there are no

SSSD walks of even length 2n− 2 from n to n, b(SDl) ≥ 2n− 1. Combining the two

inequalities, we obtain b(SDl) = 2n− 1.

Lemma 3.2. Suppose S ∈ S⋆n. If there exists a vertex v in V (S) such that v is

contained in a positive 2-cycle C′ and a negative 2-cycle C′′, then b(S) ≤ 2n− 2.

Proof. Since there exist a positive 2-cycle C′ and a negative 2-cycle C′′ in S, S

is non-powerful, C′, C′′ is a “distinguished cycle pair”, there exists a pair of SSSD

walks of length 2 from v to v.

Since S is primitive, there exists an odd cycle C = v1v2 · · · vlv1 with length l

(≥ 3) in S. Let x and y be any two (not necessarily distinct) vertices in V (S).

Let P be the shortest path from v to C and let P intersect C at v′. Suppose

there are k vertices on P where k ≥ 1. Then P ∪ C has k + l − 1 vertices.

Let P1 be the shortest path from x to P ∪ C and let P1 intersect P ∪ C at x′

where 0 ≤ l(P1) ≤ n− k − l+ 1, let P2 be the shortest path from y to P ∪C and let

P2 intersect P ∪C at y′ where 0 ≤ l(P2) ≤ n− k − l+ 1.

We consider the following three cases.

Case 1: x′ ∈ P , y′ ∈ P .
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Set a = l(QP (x
′ → v)), b = l(QP (v → y′)) and

W =

{

P1 +QP (x
′ → v) + P +QP (v

′ → y′) + P2, if a ≤ b;

P1 +QP (x
′ → v′) + P +QP (v → y′) + P2, otherwise.

Then l(W ) ≤ (n − k − l + 1) + (k − 1) + (k − 1) + (n − k − l + 1) = 2n− 2l. If

l(W ) is even, we set W1 = W . Otherwise, we set W1 = W + C. Therefore, l(W1) is

even, and l(W1) ≤ 2n− l, thus W1 +C′ and W1 +C′′ are a pair of SSSD walks from

x to y with even length ≤ 2n− l+2 ≤ 2n− 1. Therefore, there exists a pair of SSSD

walks of length 2n− 2 from x to y.

Case 2: Either x′ or y′ belongs to P . Without loss of generality, we may assume

x′ ∈ P and y′ 6∈ P .

Set w = l(P1) + l(QP (x
′ → v)) + l(P ) + l(QC(v

′ → y′)) + l(P2) and

W =

{

P1 +QP (x
′ → v) + P +QC(v

′ → y′) + P2, if w is even;

P1 +QP (x
′ → v) + P + C \QC(v

′ → y′) + P2, otherwise.

Then l(W ) is even, and l(W ) ≤ (n− l− k+1)+ (k− 1)+ (k− 1)+ (l− 1)+ (n−

l − k + 1) = 2n− l − 1, thus W + C′ and W + C′′ are a pair of SSSD walks from x

to y with even length ≤ 2n− l + 1 ≤ 2n− 2. Therefore, there exists a pair of SSSD

walks of length 2n− 2 from x to y.

Case 3: x′ 6∈ P , y′ 6∈ P .

Subcase 3.1: If v′ ∈ QC(x
′ → y′).

Set w = l(P1) + l(QC(x
′ → y′)) + l(P2) and

W =

{

P1 +QC(x
′ → y′) + 2P + P2, if w is even;

P1 +QC(x
′ → y′) + 2P + C + P2, otherwise.

Then l(W ) is even, and l(W ) ≤ (n−l−k+1)+ (l−1)
2 +2(k−1)+l+(n−l−k+1) =

2n − l
2 −

1
2 , thus W + C′ and W + C′′ are a pair of SSSD walks with even length

≤ 2n− l+ 3
2 < 2n− 1. Therefore, there exists a pair of SSSD walks of length 2n− 2

from x to y.

Subcase 3.2: If v′ 6∈ QC(x
′ → y′).

Set w = l(P1) + l(QC(x
′ → y′)) + l(P2).

If w is odd, then set W = P1 +QC(x
′ → y′) + C + 2P + P2.

If w is even, then set a = l(QC(x
′ → v′)), b = l(QC(y

′ → v′)) and

W =

{

P1 + 2QC(x
′ → v′) +QC(x

′ → y′) + 2P + P2, if a ≤ b;

P1 +QC(x
′ → y′) + 2QC(y

′ → v′) + 2P + P2, otherwise.
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Then l(W ) is even, and l(W ) ≤ (n−l−k+1)+ (l−1)
2 +l+2(k−1)+(n−l−k+1) =

2n− l
2 −

1
2 . Thus, W + C′ and W + C′′ are a pair of SSSD walks with even length

≤ 2n− l+ 3
2 < 2n− 1. Therefore, there exists a pair of SSSD walks of length 2n− 2

from x to y.

Combining the three cases, we have b(S) ≤ 2n− 2 by Theorem 2.3.

Lemma 3.3. Suppose S ∈ S⋆n and S is non-powerful. If every 2-cycle is positive,

then b(S) ≤ 2n− 2.

Proof. Since S is primitive and non-powerful, Theorem 2.2 applies.

Let x and y be any two (not necessarily distinct) vertices in S.

Case 1: If (A1) of Theorem 2.2 holds.

In this case, there exist an odd cycle Cl(l ≥ 3) and an even cycle Ck(k ≥ 4) such

that sgnCk = −1.

Subcase 1.1: Cl ∩ Ck = ∅.

Let P be the shortest path from Cl to Ck and P intersect Cl(Ck) at v(v′). By

Lemma 2.5, there exist x′ ∈ Cl, y
′ ∈ Ck or x′ ∈ Ck, y

′ ∈ Cl such that (2.2) holds.

Without loss of generality, suppose there exist x′ ∈ Cl, y
′ ∈ Ck such that (2.2) holds.

For convenience, let P1 be the shortest path from x to x′ and P2 be the shortest path

from y to y′.

Set w = l(P1) + l(QCl
(x′ → v)) + l(P ) + l(QCk

(v′ → y′)) + l(P2) and

W1 =

{

P1 +QCl
(x′ → v) + P +QCk

(v′ → y′) + P2, if w is even;

P1 + Cl \QCl
(x′ → v) + P +QCk

(v′ → y′) + P2, otherwise.

and

W2 =

{

P1 +QCl
(x′ → v) + P + Ck \QCk

(v′ → y′) + P2, if w is even;

P1 + Cl \QCl
(x′ → v) + P + Ck \QCk

(v′ → y′) + P2, otherwise.

Then l(W1) and l(W2) are even because l(QCk
(v′ → y′)) and l(Ck \QCk

(v′ → y′))

have the same parity, sgnQCk
(v′ → y′) = −sgnCk \ QCk

(v′ → y′) and sgn(W1) =

−sgn(W2) because sgnCk = −1 and every 2-cycle is positive.

So W2,W3 = W1 + l(W2)−l(W1)
2 C2 are a pair of SSSD walks from x to y with

even length l(W2) ≤ 2(n− k − l + 1) + max
{

l−1
2 , k

2

}

+ l + k < 2n− 2 by (2.2), and

thus, there exists a pair of SSSD walks of length 2n− 2 from x to y.

Subcase 1.2: Cl ∩ Ck 6= ∅.

Suppose Cl ∪ Ck has k′ vertices. Let P1 (P2) be the shortest path from x (y) to
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Cl ∪ Ck and P1 (P2) intersect Cl ∪ Ck at x′ (y′) where 0 ≤ l(Pi) ≤ n− k′, i = 1, 2.

Subcase 1.2.1: x′ ∈ Cl and y′ ∈ Cl.

Suppose z ∈ Cl ∩Ck, without loss of generality, we suppose z ∈ QCl
(x′ → y′).

Set w = l(P1) + l(QCl
(x′ → y′)) + l(P2), a = l(QCl

(x′ → z)), b = l(QCl
(y′ → z))

and

W =







P1 +QCl
(x′ → y′) + P2, if w is even;

P1 + Cl \QCl
(x′ → y′) + 2QCl

(x′ → z) + P2, if w is odd and a ≤ b;

P1 + Cl \QCl
(x′ → y′) + 2QCl

(y′ → z) + P2, if w is odd and a > b.

ThenW1 = W+Ck andW2 = W+ k
2C2 are a pair of SSSD walks from x to y with

even length l(W1) = l(W2) ≤ 2(n−k′)+ |Cl|+ |Ck| = 2(n−k′)+ |Cl∪Ck|+ |Cl∩Ck| ≤

2(n− k′) + k′ + (k′ − 1) = 2n− 1. Thus, there exists a pair of SSSD walks of length

2n− 2 from x to y.

Subcase 1.2.2: x′ ∈ Cl and y′ ∈ Ck.

Suppose z ∈ Cl ∩ Ck. Set w = l(P1) + l(QCl
(x′ → z)) + l(QCk

(z → y′)) + l(P2)

and

W1 =

{

P1 +QCl
(x′ → z) +QCk

(z → y′) + P2, if w is even;

P1 + Cl \QCl
(x′ → z) +QCk

(z → y′) + P2, otherwise.

W2 =

{

P1 +QCl
(x′ → z) + Ck \QCk

(z → y′) + P2, if w is even;

P1 + Cl \QCl
(x′ → z) + Ck \QCk

(z → y′) + P2, otherwise.

Then sgnW1 = −sgnW2, l(W1) and l(W2) are even lengths with l(W1) ≤ l(W2).

So W2 and W3 = W1 + l(W2)−l(W1)
2 C2 are a pair of SSSD walks from x to y with

even length l(W2) ≤ 2(n− k′) + |Cl|+ |Ck| ≤ 2n− 1, and thus, there exists a pair of

SSSD walks of length 2n− 2 from x to y.

Subcase 1.2.3: x′ ∈ Ck and y′ ∈ Ck. Suppose z ∈ Cl ∩ Ck, without loss of

generality, we suppose z ∈ QCk
(x′ → y′).

Set w = l(P1)+ l(QCk
(x′ → y′))+ l(P2), a = l(QCk

(x′ → z)), b = l(QCk
(y′ → z))

and

W1 =

{

P1 +QCk
(x′ → y′) + P2, if w is even;

P1 +QCk
(x′ → y′) + Cl + P2, otherwise.

W2 =







P1 + Ck \QCk
(x′ → y′) + P2, w is even;

P1 + Ck \QCk
(x′ → y′) + 2QCk

(x′ → z) + Cl + P2, w is odd, a ≤ b;

P1 + Ck \QCk
(x′ → y′) + 2QCk

(y′ → z) + Cl + P2, w is odd, a > b.
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Then sgnW1 = −sgnW2, l(W1) and l(W2) are even lengths with l(W1) ≤ l(W2).

So W2 and W3 = W1 + l(W2)−l(W1)
2 C2 are a pair of SSSD walks from x to y with

even length l(W2) ≤ 2(n − k′) + |Cl| + |Ck| ≤ 2n − 1. Thus, there exists a pair of

SSSD walks of length 2n− 2 from x to y.

Case 2: If (A2) of Theorem 2.2 holds.

In this case, there exist two odd cycles have different signs. Suppose Cl and Ck

are two odd cycles such that sgnCl = −sgnCk and the sum l + k is the least length

where l, k(≥ 3) are odd.

Subcase 2.1: Cl ∩ Ck = ∅.

Without loss of generality, we assume sgnCl = 1 and sgnCk = −1.

Let P, P1, P2, v, v
′, x′, y′ be defined as Subcase 1.1. Set w = l(P1) + l(QCl

(x′ →

v)) + l(P ) + l(QCk
(v′ → y′)) + l(P2), and

W1 =

{

P1 +QCl
(x′ → v) + P +QCk

(v′ → y′) + P2, if w is even;

P1 + Cl \QCl
(x′ → v) + P +QCk

(v′ → y′) + P2, otherwise.

and

W2 =

{

P1 + Cl \QCl
(x′ → v) + P + Ck \QCk

(v′ → y′) + P2, if w is even;

P1 +QCl
(x′ → v) + P + Ck \QCk

(v′ → y′) + P2, otherwise.

Then l(W1), l(W2) are even lengths, and sgnW1 = −sgnW2 since sgnQCk
(v′ →

y′) = −sgnCk \QCk
(v′ → y′). So there exist a pair of SSSD walks from x to y with

even length no more than max{l(W1), l(W2)} ≤ 2(n− l− k + 1) +max
{

l−1
2 , k−1

2

}

+

l + k < 2n − 2 by (2.2). Thus, there exists a pair of SSSD walks of length 2n − 2

from x to y.

Subcase 2.2: Cl ∩ Ck 6= ∅.

Suppose l ≤ k and Cl ∪ Ck has k′ vertices. We claim

|Cl ∩ Ck| ≤ k′ − 1.(3.1)

If |Cl ∩ Ck| > k′ − 1, then |Cl ∩ Ck| = k′ = |Cl ∪ Ck|, and thus, Cl, Ck have the

same vertices with l = k = k′.

Suppose Cl = v1v2 · · · vlv1, take
←−
Cl = v1vlvl−1 · · · v2v1, then Ck 6= Cl since they

have different signs and Ck 6=
←−
Cl since all 2-cycle are positive. But the vertices

v1, v2, . . . , vl are on the cycle Ck, we must have (vi, vj) ∈ Ck or (vi, vj) ∈
←−
Ck where

(vi, vj) 6∈ Cl, (vi, vj) 6∈
←−
Cl and 1 ≤ i < j ≤ l. Then C′ = vivi+1 · · · vjvi and

C′′ = v1v2 · · · vivjvj+1 · · · vlv1 are two cycles in S with the sum l(C′) + l(C′′) = l+ 2
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is odd, thus l(C′) or l(C′′) is odd and 3 ≤ l(C′), l(C′′) ≤ l − 1. Without loss of

generality, we assume l(C′) is odd, so C′ and Cl (or C
′ and Ck) have different signs

and the sum l(C′) + l ≤ l + k (or l(C′) + k ≤ l + k); this is a contradiction.

So (3.1) holds, and thus, we have

|Cl|+ |Ck| = |Cl ∪Ck|+ |Cl ∩Ck| ≤ 2k′ − 1.(3.2)

Let P1(P2) be the shortest path from x(y) to Cl∪Ck and P1 (P2) intersect Cl∪Ck

at x′ (y′) where 0 ≤ l(Pi) ≤ n− k′, i = 1, 2.

Subcase 2.2.1: x′ ∈ Cl and y′ ∈ Cl.

Let z ∈ Cl ∩ Ck, without loss of generality, we suppose z ∈ QCl
(x′ → y′).

Set w = l(P1) + l(QCl
(x′ → y′)) + l(P2), a = l(QCl

(x′ → z)), b = l(QCl
(y′ → z))

and

W =







P1 +QCl
(x′ → y′) + P2, w is odd;

P1 + Cl \QCl
(x′ → y′) + 2QCl

(x′ → z) + P2, w is even, a ≤ b;

P1 + Cl \QCl
(x′ → y′) + 2QCl

(y′ → z) + P2, w is even, a > b.

Let W1 = W + Ck and W2 = W + Cl +
k−l
2 C2. Then W1 and W2 are a pair of

SSSD walks from x to y with even length ≤ 2(n− k′)+ |Cl|+ |Ck| ≤ 2n− 1 by (3.2).

So there exists a pair of SSSD walks of length 2n− 2 from x to y.

Subcase 2.2.2: x′ ∈ Cl and y′ ∈ Ck.

Suppose z ∈ Cl ∩ Ck. Set w = l(P1) + l(QCl
(x′ → z)) + l(QCk

(z → y′)) + l(P2),

and

W1 =

{

P1 +QCl
(x′ → z) +QCk

(z → y′) + P2, if w is even;

P1 + Cl \QCl
(x′ → z) +QCk

(z → y′) + P2, otherwise.

and

W2 =

{

P1 + Cl \QCl
(x′ → z) + Ck \QCk

(z → y′) + P2, if w is even;

P1 +QCl
(x′ → z) + Ck \QCk

(z → y′) + P2, otherwise.

Then sgnW1 = −sgnW2, l(W1) and l(W2) are even lengths. So there exists a pair

of SSSD walks from x to y with even length ≤ max{l(W1), l(W2)} ≤ 2(n − k′) +

|Cl|+ |Ck| ≤ 2n−1 by (3.2). Thus, there exists a pair of SSSD walks of length 2n−2

from x to y.

Subcase 2.2.3: x′ ∈ Ck and y′ ∈ Ck.

Let z ∈ Cl ∩ Ck, without loss of generality, we suppose z ∈ QCk
(x′ → y′).
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Subcase 2.2.3.1: sgnCk = −1 and sgnCl = 1.

Set w = l(P1)+ l(QCk
(x′ → y′))+ l(P2), a = l(QCk

(x′ → z)), b = l(QCk
(y′ → z)),

and

W1 =

{

P1 +QCk
(x′ → y′) + P2, if w is even;

P1 +QCk
(x′ → y′) + Cl + P2, otherwise.

and

W2 =







P1 + Ck \QCk
(x′ → y′) + P2, w is odd;

P1 + Ck \QCk
(x′ → y′) + 2QCk

(x′ → z) + Cl + P2, w is even, a ≤ b;

P1 + Ck \QCk
(x′ → y′) + 2QCk

(y′ → z) + Cl + P2, w is even, a > b.

Subcase 2.2.3.2: sgnCk = 1 and sgnCl = −1.

Set w = l(P1)+ l(QCk
(x′ → y′))+ l(P2), a = l(QCk

(x′ → z)), b = l(QCk
(y′ → z)),

and

W1 =

{

P1 +QCk
(x′ → y′) + P2, if w is even;

P1 + Ck \QCk
(x′ → y′) + P2, otherwise.

and

W2 =















P1 + Ck \QCk
(x′ → y′) + 2QCk

(x′ → z) + Cl + P2, w is even, a ≤ b;

P1 + Ck \QCk
(x′ → y′) + 2QCk

(y′ → z) + Cl + P2, w is even, a > b.

P1 +QCk
(x′ → y′) + 2QCk

(x′ → z) + Cl + P2, w is odd, a ≤ b;

P1 +QCk
(x′ → y′) + 2QCk

(y′ → z) + Cl + P2, w is odd, a > b.

In both Subcase 2.2.3.1 and Subcase 2.2.3.2, we have sgnW1 = −sgnW2, l(W1)

and l(W2) are even lengths. So there exists a pair of SSSD walks from x to y with

even length ≤ max{l(W1), l(W2)} ≤ 2(n− k′) + |Cl|+ |Ck| ≤ 2n− 1 by (3.2). Thus,

there exists a pair of SSSD walks of length 2n− 2 from x to y.

From the above arguments, we have b(S) ≤ 2n− 2 by Theorem 2.3.

By Lemmas 3.2 and 3.3, we can obtain the following corollary.

Corollary 3.4. Suppose S ∈ S⋆n and b(S) = 2n− 1, then every 2-cycle in S is

negative.

Now we characterize the primitive symmetric loop-free signed digraphs with the

maximum base as follows.

Theorem 3.5. Suppose S ∈ S⋆n. Then b(S) = 2n− 1 if and only if S ∈ SDL =

{SDl|3 ≤ l ≤ n and l is odd }.

Proof. Sufficiency follows easily from Lemma 3.1.
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Necessity: Since S is primitive, there exists at least one odd cycle in S. Suppose

C = v1v2 · · · vlv1 is an odd cycle with the shortest length l in S, then C and
←−
C =

v1vl · · · v2v1 is a pair of SSSD walks because all 2-cycles in S are negative by Corollary

3.4 and l is odd.

Since b(S) = 2n − 1, there exist two vertices x, y such that there are no SSSD

walks of length 2n− 2 from x to y. Let P1 (P2) be the shortest path from x (y) to C

and intersect C at x′(y′) where 0 ≤ l(Pi) ≤ n− l, i = 1, 2. Now we prove l(P1) = n− l.

If l = n, l(P1) = n − l holds clearly. If l < n, we suppose l(P1) ≤ n − l − 1, set

w = l(P1) + l(QC(x
′ → y′)) + l(P2) and

W =

{

P1 +QC(x
′ → y′) + P2, if w is odd;

P1 + C \QC(x
′ → y′) + P2, otherwise.

Let W1 = W +C and W2 = W +
←−
C , then W1 and W2 are a pair of SSSD walks

from x to y with even lengths l(W1) = l(W2) ≤ (n−l−1)+l+(n−l)+l = 2n−1. Then

there exists a pair of SSSD walks of length 2n−2 from x to y; this is a contradiction.

Therefore, l(P1) = n − l. Similarly, we can show l(P2) = n − l and x = y. It

implies that for any v ∈ S and v 6∈ C, we have v ∈ P1 and v ∈ P2. Thus, we assume

P1 = x1x2 · · ·xn−lx
′ and P2 = x1x2 · · ·xn−ly

′ where x1 = x = y.

Now we prove x′ = y′. Suppose x′ 6= y′. Then 1 ≤ l(QC(x
′ → y′)) ≤ l−1

2 ,
l+1
2 ≤ l(C \ QC(x

′ → y′)) ≤ l − 1. Let W, W1, W2 defined as above. Thus, W1

and W2 are a pair of SSSD walks from x to y with even lengths l(W1) = l(W2) ≤

(n − l) + (l − 1) + (n − l) + l = 2n− 1. Then there exists a pair of SSSD walks of

length 2n− 2 from x to y; this is a contradiction. Thus, x′ = y′ (∈ V (C)), denoted

by vl.

Now we see that Dl is isomorphic to the subgraph of D where D is the underlying

digraph of S. In fact, Dl is isomorphic to D. For this purpose, we only need to show

D has no more arcs.

Firstly, there are no more arcs between vertex xn−l and vertex vi (1 ≤ i ≤ l) by

the same reason why x′ = y′. Secondly, there are no more arcs between vertex xj

(1 ≤ j ≤ n− l−1) and vertex vi (1 ≤ i ≤ l) and there are no more arcs between vertex

xj (1 ≤ j ≤ n− l) and vertex xi (1 ≤ i ≤ n− l) because the path P1 = x1x2 · · ·xn−lvl

is the shortest path from x1 to C. Finally, there are no more arcs between vertex vj

(1 ≤ j ≤ l) and vertex vi (1 ≤ i ≤ l) because the cycle C is the shortest odd cycle in

S.

Thus, Dl is isomorphic to D and S ∈ SDL because all 2-cycles in S are negative

by Corollary 3.4.
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