

STRONG LINEAR PRESERVERS OF G-TRIDIAGONAL MAJORIZATION ON \mathbb{R}^{N*}

ALI ARMANDNEJAD † and ZAHRA GASHOOL †

Abstract. An $n \times n$ real matrix (not necessarily nonnegative) A is g-doubly stochastic (generalized doubly stochastic) if all its row and column sums are one. The sets of all g-doubly stochastic and tridiagonal g-doubly stochastic matrices of order n are denoted by Ω_n and Ω_n^t , respectively. For $x, y \in \mathbb{R}^n$, it is said that x is g-tridiagonal majorized by y (written as $x \prec_{gt} y$) if there exists a tridiagonal g-doubly stochastic matrix A such that x = Ay. This paper characterizes all strong linear preservers of \prec_{qt} on \mathbb{R}^n and \mathbb{R}_n .

Key words. Doubly stochastic matrix, g-Tridiagonal majorization, Strong linear preserver.

AMS subject classifications. 15A04, 15A21.

1. Introduction. Majorization is a topic of much interest in various areas of mathematics and statistics. In the recent years, this concept has been attended specially. Assume that \mathbb{R}^n (respectively, \mathbb{R}_n) is the vector space of all real $n \times 1$ (respectively, $1 \times n$) vectors. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator and let \sim be a relation on \mathbb{R}^n . It is said that T strongly preserves \sim , if, for all $x, y \in \mathbb{R}^n$,

$$x \sim y \iff T(x) \sim T(y).$$

An $n \times n$ nonnegative matrix A is called doubly stochastic if all its row and column sums equal one. For $x, y \in \mathbb{R}^n$, it is said that x is vector majorized by y (written as $x \prec y$) if there exists a doubly stochastic matrix D such that x = Dy.

In [1, 6], the authors characterized all strong linear preservers of \prec on \mathbb{R}^n , as follows:

PROPOSITION 1.1. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. Then T strongly preserves \prec if and only if there exist $\alpha, \beta \in \mathbb{R}$ and a permutation matrix P such that $Tx = \alpha Px + \beta Jx$ for all $x \in \mathbb{R}^n$ and $\alpha(\alpha + n\beta) \neq 0$, where J is the $n \times n$ matrix with all entries equal one.

The following notation will be fixed throughout the paper: \mathbf{M}_n for the collection of all $n \times n$ real matrices, Ω_n for the set of all $n \times n$ g-doubly stochastic matrices,

^{*}Received by the editors on July 29, 2011. Accepted for publication on December 18, 2011. Handling Editor: Bryan L. Shader.

[†]Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7713936417, Rafsanjan, Iran (armandnejad@mail.vru.ac.ir, gashool@stu.vru.ac.ir).

116 A. Armandnejad and Z. Gashool

 Ω_n^t for the set of all $n \times n$ tridiagonal g-doubly stochastic matrices, **J** and **e** for the matrix and the vector with all entries equal one, respectively (the size of **J** and **e** are understood from the content), e_i for the ith element of the standard ordered basis of \mathbb{R}^n , and

$$A_{\mu} = \left(\begin{array}{cccc} 1-\mu_1 & \mu_1 & & 0 \\ \mu_1 & 1-\mu_1-\mu_2 & \mu_2 & & \\ & & \ddots & \mu_{n-1} \\ 0 & & & \mu_{n-1} & 1-\mu_{n-1} \end{array} \right),$$

where $\mu = (\mu_1, \dots, \mu_{n-1})^t \in \mathbb{R}^{n-1}$. It is easy to show that $\Omega_n^t = \{A_\mu : \mu \in \mathbb{R}^{n-1}\}$. The notation A^t stands for the transpose of a given matrix A. For a given vector $x \in \mathbb{R}^n$, $\operatorname{tr}(x)$ is the sum of all components of x. For a given linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$, the matrix representation of T with respect to the standard ordered basis of \mathbb{R}^n , is denoted by [T].

For $x, y \in \mathbb{R}^n$, it is said that x is gs-majorized by y (written as $x \prec_{gs} y$) if there exists an $n \times n$ g-doubly stochastic matrix D such that x = Dy. The linear operators strongly preserving \prec_{gs} on \mathbb{R}^n , have been characterized as follows; (see [2, 4, 3, 7] for more details).

PROPOSITION 1.2. [3, Corollary 2.5] Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. Then T strongly preserves gs-majorization if and only if $T(x) = \alpha Dx$ for some nonzero scalar $\alpha \in \mathbb{R}$ and invertible matrix $D \in \Omega_n$.

For $x, y \in \mathbb{R}^n$, it is said that x is tridiagonally majorized by y if there exists a tridiagonal doubly stochastic matrix D such that x = Dy, see [5].

DEFINITION 1.3. Let $x, y \in \mathbb{R}^n$. We say that x is g-tridiagonally majorized by y (written as $x \prec_{gt} y$) if there exists a tridiagonal g-doubly stochastic matrix D such that x = Dy.

In the present paper, we find the structure of strong linear preservers of \prec_{gt} on \mathbb{R}^n and \mathbb{R}_n . In fact we will prove the following theorem:

THEOREM 1.4. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. Then T strongly preserves \prec_{gt} if and only if there exist $a, b \in \mathbb{R}$ such that $(a - b)(a + (n - 1)b) \neq 0$ and [T] is one of the following matrices

1	a	b	b	• • •	b		1	b	b	• • •	b	a`	\
1	b	a	b		b		[b	b		a	b	
						or							
	:	:	:		:			:	:		:	:	
(b	b	b	• • •	a /		(a	b	•••	b	b,	/

Strong Linear Preservers of g-Tridiagonal Majorization on \mathbb{R}^n

In other words, T strongly preserves \prec_{gt} if and only if there exist $\alpha, \beta \in \mathbb{R}$ such that $\alpha(\alpha + n\beta) \neq 0$ and $[T] = \alpha I + \beta \mathbf{J}$ or $[T] = \alpha P + \beta \mathbf{J}$, where P is the backward identity matrix.

2. g-Tridiagonally majorization. In this section, we mention some properties of \prec_{at} on \mathbb{R}^n and also we present some preliminaries to prove Theorem 1.4.

PROPOSITION 2.1. [3, Lemma 3.6] Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear operator such that $T(x) = \alpha Dx + \beta Jx$ for some $\alpha, \beta \in \mathbb{R}$ and invertible matrix $D \in \Omega_n$. Then T is invertible if and only if $\alpha(\alpha + n\beta) \neq 0$.

LEMMA 2.2. Let $x, y \in \mathbb{R}^n$. If every two consecutive components of y are distinct, then $x \prec_{at} y$ if and only if tr(x) = tr(y).

Proof. If $x \prec_{gt} y$, it is easy to see that tr(x) = tr(y). Conversely, suppose that every two consecutive components of y are distinct. For every j $(1 \le j \le n-1)$, put $\mu_j = \frac{\sum_{i=1}^j (x_i - y_i)}{y_{j+1} - y_j}$. With a direct calculation it is easy to see that $x = A_\mu y$, where $\mu = (\mu_1, \ldots, \mu_{n-1})^t$, and hence $x \prec_{gt} y$.

The following theorem gives an equivalent condition for \prec_{gt} on \mathbb{R}^n .

THEOREM 2.3. Let x and y be two distinct vectors in \mathbb{R}^n . Assume that $i_1 < i_2 <$ $\dots < i_k \text{ and } \{i_1, i_2, \dots, i_k\} = \{j : 1 \le j \le n-1, y_j = y_{j+1}\}.$ Then $x \prec_{gt} y$ if and only if $\sum_{j=i_{l-1}+1}^{i_l} x_j = \sum_{j=i_{l-1}+1}^{i_l} y_j$ for every l $(1 \le l \le k+1)$, where $i_{k+1} = n$ and $i_0 = 0.$

Proof. If $x \prec_{gt} y$, then there exists $A_{\mu} \in \Omega_n^t$ such that $x = A_{\mu} y$. Consequently, for every j $(1 \le j \le n), x_j = \mu_{j-1}(y_{j-1} - y_j) + \mu_j(y_{j+1} - y_j) + y_j$, where $y_0 = y_0$ $\mu_0 = y_{n+1} = \mu_n = 0.$ For every $j \in \{i_1, i_2, \dots, i_k\}, y_j = y_{j+1}$ then $\sum_{j=i_{l-1}+1}^{i_l} x_j = i_{l-1} + j_{l-1} + j_{l$ $\sum_{j=i_{l-1}+1}^{i_l} y_j$, for every $l \ (1 \le l \le k+1)$. Conversely, put $y^1 = (y_1, y_2, \dots, y_{i_1})^t$ and $x^{1} = (x_{1}, x_{2}, \ldots, x_{i_{1}})^{t}$. Then every two consecutive components of y^{1} are distinct. Since $\sum_{j=1}^{i_1} x_j = \sum_{j=1}^{i_1} y_j$, $x^1 \prec_{gt} y^1$ by Lemma 2.2. Then there exists $A_1 \in \Omega_{i_1}^t$ such that $x^1 = A_1 y^1$. Now, for every l $(2 \le l \le k+1)$ put $x^l = (x_{i_{l-1}+1}, x_{i_{l-1}+2}, \dots, x_{i_l})^t$ and $y^l = (y_{i_{l-1}+1}, y_{i_{l-1}+2}, \dots, y_{i_l})^t$. Since $\sum_{j=i_{l-1}+1}^{i_l} x_j = \sum_{j=i_{l-1}+1}^{i_l} y_j, x^l \prec_{gt} y^l$ by Lemma 2.2. Then there exists $A_l \in \Omega_{i_l-i_{l-1}}^t$ such that $x^l = A_l y^l$. Put $A := \bigoplus_{j=1}^k A_j$, it follows that $A \in \Omega_n^t$ and x = Ay, therefore $x \prec_{gt} y$.

LEMMA 2.4. Let $y \in \mathbb{R}^n$. Assume that $i_1 < i_2 < \cdots < i_k$ and $\{i_1, i_2, \ldots, i_k\} =$ $\{j: 1 \leq j \leq n-1, y_j = y_{j+1}\}$. Then $H_y := \{x \in \mathbb{R}^n : x \prec_{gt} y\}$ is an affine set with dimension n - (k+1).

Proof. By Theorem 2.3, it follows that:

$$H_y = \{ x \in \mathbb{R}^n : \sum_{j=i_{l-1}+1}^{i_l} x_j = \sum_{j=i_{l-1}+1}^{i_l} y_j, \forall l \in \{1, \dots, k+1\} \}$$

117

ELA

A. Armandnejad and Z. Gashool

where $i_{k+1} = n$ and $i_0 = 0$. If $\lambda \in \mathbb{R}$, $x, z \in H_y$, it is clear that $\lambda x + (1 - \lambda)z \in H_y$, so H_y is an affine set. Since every $x \in H_y$ have to satisfy k + 1 equations, it is easy to see that dim $H_y = n - (k + 1)$. \Box

COROLLARY 2.5. Let $y \in \mathbb{R}^n$. Then dim $H_y = 0$ if and only $y \in \text{Span}\{e\}$.

PROPOSITION 2.6. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. If T strongly preserves \prec_{gt} , then the following statements are true:

(i) T is invertible.

(*ii*) $\operatorname{tr}(Te_i) = \operatorname{tr}(Te_j)$, for every $i, j \in \{1, \ldots, n\}$.

(*iii*) $T e \in \text{Span}\{e\}$.

(v) [T] is a multiple of a g-doubly stochastic matrix.

Proof. (i) Suppose T(x) = 0. Since T is linear, T(0) = 0 = T(x). Then it is obvious that $T(x) \prec_{gt} T(0)$. Therefore, $x \prec_{gt} 0$ because T strongly preserves gtmajorization. Then, there exists an $R \in \Omega_n^t$ such that x = R0. So, x = 0, and hence T is invertible. (ii) Using Theorem 2.3, $e_j \prec_{gt} e_{j+1}$ for every j $(1 \le j \le n-1)$. Then $Te_j \prec_{gt} Te_{j+1}$ for every j $(1 \le j \le n-1)$ and hence $tr(Te_i) = tr(Te_j)$, for every $i, j \in \{1, \ldots, n\}$. (iii) Since T is invertible, there exists $a \in \mathbb{R}^n$ such that $Ta = \mathbf{e}$. By Corollary 2.5, $dim(H_a) = dim(H_{Ta}) = 0$ and hence $T\mathbf{e} \in \text{Span}\{\mathbf{e}\}$. (v) It is clear that by (ii) and (iii), [T] is a multiple of a g-doubly stochastic matrix. \square

Now, we prove the main theorem of this paper. Every linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$ strongly preserves \prec_{gt} if and only if $\alpha T : \mathbb{R}^n \to \mathbb{R}^n$ strongly preserves \prec_{gt} for all $\alpha \in \mathbb{R} \setminus \{0\}$. So in the following proof, we assume without loss of generality that $tr(Te_1) = \cdots = tr(Te_n) = 1$.

Proof of Theorem 1.4. Let $A = [a_{ij}] = [T]$. If $n \leq 2$, then the concepts \prec_{gt} and \prec_{gs} are the same on \mathbb{R}^n , and hence the proof is complete by Proposition 1.2. We assume without loss of generality that $n \geq 3$. The fact that the conditions (i)and (ii) are sufficient for T to be a strong linear preserver of \prec_{gt} is easy to prove. So we prove the necessity of the conditions. Suppose that T strongly preserves \prec_{gt} , then T is invertible, by Proposition 2.6. Put $\Phi := \{x \in \mathbb{R}^n : x \prec_{gt} e_1\}$. From Theorem 2.3, we have $\Phi = \{x \in \mathbb{R}^n : x_1 + x_2 = 1, x_3 = \cdots = x_n = 0\}$ and dim $\Phi = 1$. Since T is a strong linear preserver of \prec_{gt} , $T(\Phi) = \{Tx \in \mathbb{R}^n : x \prec_{gt} e_1\} = \{Tx \in \mathbb{R}^n : Tx \prec_{gt} Te_1\}$. By invertibility of T, we have dim $\Phi = \dim T(\Phi) = 1$. Since $Te_1 \in T(\Phi)$ and dim $T(\Phi) = 1$, Te_1 has (n-1) equal consecutive components and hence $Te_1 = (a_{1,1}, b, \ldots, b)^t$ or $Te_1 = (b, \ldots, b, a_{n,1})^t$ for some $b \in \mathbb{R}$. Put $\Psi := \{x \in \mathbb{R}^n : x \prec_{gt} e_n\}$. From Theorem 2.3, we have $\Psi = \{x \in \mathbb{R}^n : x_{n-1} + x_n =$ $1, x_{n-2} = \cdots = x_1 = 0\}$ and dim $\Psi = 1$. With a similar argument as above we may establish $Te_n = (a_{1,n}, c, \ldots, c)^t$ or $Te_n = (c, \ldots, c, a_{n,n})^t$, for some $c \in \mathbb{R}$. Now, we consider all possible forms of Te_1 and Te_n .

118

Let
$$T(e_1) = (b, \dots, b, a_{n,1})^t$$
. We have
 $e_2 \prec_{gt} e_1 \Rightarrow Te_2 \prec_{gt} Te_1$
 $\Rightarrow (a_{1,2}, a_{2,2}, \dots, a_{n,2})^t \prec_{gt} (b, \dots, b, a_{n,1})^t$
 $\Rightarrow a_{n-2,2} = \dots = a_{2,2} = a_{1,2} = b$
 $\Rightarrow Te_2 = (b, \dots, b, a_{n-1,2}, a_{n,2})^t$.

For every j $(1 \le j \le n-1)$, $e_{j+1} \prec_{gt} e_j$. So with a similar argument as above $Te_j = (b, \ldots, b, a_{n-j+1,j}, \ldots, a_{n,j})$. It follows that

$$A = \begin{pmatrix} b & \cdots & b & a_{1,n} \\ \vdots & & & \\ b & & & * \\ a_{n,1} & & & \end{pmatrix}.$$
 (1)

Let $Te_1 = (a_{1,1}, b, \ldots, b)^t$. Similarly one may show that

$$A = \begin{pmatrix} a_{1,1} & & * \\ b & \ddots & \\ \vdots & & \\ b & \cdots & b & a_{n,n} \end{pmatrix}.$$
 (2)

Let $Te_n = (c, \ldots, c, a_{n,n})^t$. We have

$$e_{n-1} \prec_{gt} e_n \Rightarrow Te_{n-1} \prec_{gt} Te_n$$

$$\Rightarrow (a_{1,n-1}, a_{2,n-1}, \dots, a_{n,n-1})^t \prec_{gt} (c, \dots, c, a_{nn})^t$$

$$\Rightarrow a_{1,n-1} = a_{2,n-1} = \dots = a_{n-2,n-1} = c$$

$$\Rightarrow Te_{n-1} = (c, \dots, c, a_{n-1,n-1}, a_{n,n-1})^t.$$

For every $i \ (2 \le i \le n-3), e_{n-i} \prec_{gt} e_{n-i+1}$, so with an argument same as the above $Te_i = (c, \ldots, c, a_{i,i}, \ldots, a_{n,i})^t$. It follows that

$$A = \begin{pmatrix} a_{1,1} & c & \cdots & c \\ & \ddots & & \vdots \\ & * & & c \\ & & & & a_{n,n} \end{pmatrix}.$$
 (1)*

Let $Te_n = (a_{1,n}, c, \ldots, c)^t$. Similarly one may show that

$$A = \begin{pmatrix} * & a_{1,n} \\ & c \\ & \vdots \\ a_{n,1} & c & \cdots & c \end{pmatrix}.$$
 (2)*

119

120

A. Armandnejad and Z. Gashool

Since $n \ge 3$, and T is invertible the only possible cases are: $(1), (2)^*$ and $(2), (1)^*$. In view of Theorem 2.3, A is a multiple of a g-doubly stochastic matrix. Therefore A has one of the following forms:

1	a	b	b	 b		1	b	b	 b	a
	b	a	b	 b			b	b	 a	b
	÷	÷	÷	:	or		÷	÷	÷	: .
	b	b	b	 a /		ĺ	a	b	 b	b /

Using Proposition 2.1 to obtain $(a-b)(a+(n-1)b) \neq 0$ in each case, these as done.

COROLLARY 2.7. Let $P \in \mathbf{M}_n$ be a permutation matrix. Then the linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$, defined by T(x) = Px, strongly preserves \prec_{gt} if and only if P is identity or backward identity matrix.

Now, we consider the gt-majorization on \mathbb{R}_n . Let $x, y \in \mathbb{R}_n$. We say that x is g-tridiagonally majorized by y (written as $x \prec_{rgt} y$) if there exists a tridiagonal gdoubly stochastic matrix D such that x = yD. Since the transpose of every tridiagonal g-doubly stochastic matrix is tridiagonal g-doubly stochastic too, we have $x \prec_{rgt} y$ if and only if $x^t \prec_{gt} y^t$ for every $x, y \in \mathbb{R}_n$.

COROLLARY 2.8. Let $T : \mathbb{R}_n \to \mathbb{R}_n$ be a linear operator. Then T strongly preserves \prec_{rgt} if and only if there exist $\alpha, \beta \in \mathbb{R}$ such that $\alpha(\alpha + n\beta) \neq 0$ and $Tx = \alpha xP + \beta xJ$ for all $x \in \mathbb{R}_n$, where P is the identity or the backward identity matrix.

Proof. Define $S : \mathbb{R}^n \to \mathbb{R}^n$ by $Sx = [T(x^t)]^t$ for all $x \in \mathbb{R}^n$. It is easy to see that S strongly preserves \prec_{qt} and hence Theorem 1.4 is applicable to S. \square

Acknowledgments. The authors would like to thank an anonymous referee for helpful comments and remarks.

REFERENCES

- T. Ando. Majorization, doubly stochastic matrices, and comparison of eigenvalues. Linear Algebra and its Applications, 118:163–248, 1989.
- [2] A. Armandnejad and H. Heydari. Linear functions preserving gd-majorization from M_{n,m} to M_{n,k}. Bulletin of the Iranian Mathematical Society, 37(1):215–224, 2011.
- [3] A. Armandnejad and A. Salemi. The structure of linear preservers of gs-majorization. Bulletin of the Iranian Mathematical Society, 32(2):31–42, 2006.
- [4] A. Armandnejad and A. Salemi. On linear preservers of lgw-majorization on $\mathbf{M}_{n,m}$. Bulletin of the Malaysian Mathematical Society, to appear.
- [5] G. Dahl. Tridiagonal doubly stochastic matrices. Linear Algebra and its Applications, 390:197– 208, 2004.

Strong Linear Preservers of g-Tridiagonal Majorization on \mathbb{R}^n 121

- [6] A.M. Hasani and M. Radjabalipour. The structure of linear operators strongly preserving majorizations of matrices. *Electronic Journal of Linear Algebra*, 15:260–268, 2006.
- [7] F. Khalooei and A. Salemi. The Structure of linear preservers of left matrix majorization on R^p. Electronic Journal of Linear Algebra, 18:88–97, 2009.