STRONG LINEAR PRESERVERS OF G-TRIDIAGONAL MAJORIZATION ON $\mathbb{R}^{N *}$

ALI ARMANDNEJAD ${ }^{\dagger}$ AND ZAHRA GASHOOL ${ }^{\dagger}$

Abstract

An $n \times n$ real matrix (not necessarily nonnegative) A is g-doubly stochastic (generalized doubly stochastic) if all its row and column sums are one. The sets of all g-doubly stochastic and tridiagonal g-doubly stochastic matrices of order n are denoted by Ω_{n} and Ω_{n}^{t}, respectively. For $x, y \in \mathbb{R}^{n}$, it is said that x is g-tridiagonal majorized by y (written as $x \prec_{g t} y$) if there exists a tridiagonal g-doubly stochastic matrix A such that $x=A y$. This paper characterizes all strong linear preservers of $\prec_{g t}$ on \mathbb{R}^{n} and \mathbb{R}_{n}.

Key words. Doubly stochastic matrix, g-Tridiagonal majorization, Strong linear preserver.

AMS subject classifications. 15A04, 15A21.

1. Introduction. Majorization is a topic of much interest in various areas of mathematics and statistics. In the recent years, this concept has been attended specially. Assume that \mathbb{R}^{n} (respectively, \mathbb{R}_{n}) is the vector space of all real $n \times 1$ (respectively, $1 \times n$) vectors. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator and let \sim be a relation on \mathbb{R}^{n}. It is said that T strongly preserves \sim, if, for all $x, y \in \mathbb{R}^{n}$,

$$
x \sim y \Longleftrightarrow T(x) \sim T(y) .
$$

An $n \times n$ nonnegative matrix A is called doubly stochastic if all its row and column sums equal one. For $x, y \in \mathbb{R}^{n}$, it is said that x is vector majorized by y (written as $x \prec y$) if there exists a doubly stochastic matrix D such that $x=D y$.

In [1, 6], the authors characterized all strong linear preservers of \prec on \mathbb{R}^{n}, as follows:

Proposition 1.1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator. Then T strongly preserves \prec if and only if there exist $\alpha, \beta \in \mathbb{R}$ and a permutation matrix P such that $T x=\alpha P x+\beta \boldsymbol{J} x$ for all $x \in \mathbb{R}^{n}$ and $\alpha(\alpha+n \beta) \neq 0$, where \boldsymbol{J} is the $n \times n$ matrix with all entries equal one.

The following notation will be fixed throughout the paper: \mathbf{M}_{n} for the collection of all $n \times n$ real matrices, Ω_{n} for the set of all $n \times n$ g-doubly stochastic matrices,

[^0]Ω_{n}^{t} for the set of all $n \times n$ tridiagonal g-doubly stochastic matrices, \mathbf{J} and \mathbf{e} for the matrix and the vector with all entries equal one, respectively (the size of \mathbf{J} and \mathbf{e} are understood from the content), e_{i} for the $\mathrm{i}^{\text {th }}$ element of the standard ordered basis of \mathbb{R}^{n}, and
\[

A_{\mu}=\left($$
\begin{array}{ccccc}
1-\mu_{1} & \mu_{1} & & & 0 \\
\mu_{1} & 1-\mu_{1}-\mu_{2} & \mu_{2} & & \\
& & & \ddots & \mu_{n-1} \\
0 & & & \mu_{n-1} & 1-\mu_{n-1}
\end{array}
$$\right)
\]

where $\mu=\left(\mu_{1}, \ldots, \mu_{n-1}\right)^{t} \in \mathbb{R}^{n-1}$. It is easy to show that $\Omega_{n}^{t}=\left\{A_{\mu}: \mu \in \mathbb{R}^{n-1}\right\}$. The notation A^{t} stands for the transpose of a given matrix A. For a given vector $x \in$ $\mathbb{R}^{n}, \operatorname{tr}(x)$ is the sum of all components of x. For a given linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, the matrix representation of T with respect to the standard ordered basis of \mathbb{R}^{n}, is denoted by $[T]$.

For $x, y \in \mathbb{R}^{n}$, it is said that x is gs-majorized by y (written as $x \prec_{g s} y$) if there exists an $n \times n$ g-doubly stochastic matrix D such that $x=D y$. The linear operators strongly preserving $\prec_{g s}$ on \mathbb{R}^{n}, have been characterized as follows; (see [2, 4, 3, 7] for more details).

Proposition 1.2. 3, Corollary 2.5] Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator. Then T strongly preserves gs-majorization if and only if $T(x)=\alpha D x$ for some nonzero scalar $\alpha \in \mathbb{R}$ and invertible matrix $D \in \Omega_{n}$.

For $x, y \in \mathbb{R}^{n}$, it is said that x is tridiagonally majorized by y if there exists a tridiagonal doubly stochastic matrix D such that $x=D y$, see [5].

Definition 1.3. Let $x, y \in \mathbb{R}^{n}$. We say that x is g-tridiagonally majorized by y (written as $x \prec_{g t} y$) if there exists a tridiagonal g-doubly stochastic matrix D such that $x=D y$.

In the present paper, we find the structure of strong linear preservers of $\prec_{g t}$ on \mathbb{R}^{n} and \mathbb{R}_{n}. In fact we will prove the following theorem:

Theorem 1.4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator. Then T strongly preserves $\prec_{g t}$ if and only if there exist $a, b \in \mathbb{R}$ such that $(a-b)(a+(n-1) b) \neq 0$ and $[T]$ is one of the following matrices

$$
\left(\begin{array}{ccccc}
a & b & b & \cdots & b \\
b & a & b & \cdots & b \\
\vdots & \vdots & \vdots & & \vdots \\
b & b & b & \cdots & a
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ccccc}
b & b & \cdots & b & a \\
b & b & \cdots & a & b \\
\vdots & \vdots & & \vdots & \vdots \\
a & b & \cdots & b & b
\end{array}\right)
$$

In other words, T strongly preserves $\prec_{g t}$ if and only if there exist $\alpha, \beta \in \mathbb{R}$ such that $\alpha(\alpha+n \beta) \neq 0$ and $[T]=\alpha I+\beta \mathbf{J}$ or $[T]=\alpha P+\beta \mathbf{J}$, where P is the backward identity matrix.
2. g-Tridiagonally majorization. In this section, we mention some properties of $\prec_{g t}$ on \mathbb{R}^{n} and also we present some preliminaries to prove Theorem 1.4.

Proposition 2.1. [3, Lemma 3.6] Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear operator such that $T(x)=\alpha D x+\beta \boldsymbol{J} x$ for some $\alpha, \beta \in \mathbb{R}$ and invertible matrix $D \in \Omega_{n}$. Then T is invertible if and only if $\alpha(\alpha+n \beta) \neq 0$.

Lemma 2.2. Let $x, y \in \mathbb{R}^{n}$. If every two consecutive components of y are distinct, then $x \prec_{g t} y$ if and only if $\operatorname{tr}(x)=\operatorname{tr}(y)$.

Proof. If $x \prec_{g t} y$, it is easy to see that $\operatorname{tr}(x)=\operatorname{tr}(y)$. Conversely, suppose that every two consecutive components of y are distinct. For every $j(1 \leq j \leq n-1)$, put $\mu_{j}=\frac{\sum_{i=1}^{j}\left(x_{i}-y_{i}\right)}{y_{j+1}-y_{j}}$. With a direct calculation it is easy to see that $x=A_{\mu} y$, where $\mu=\left(\mu_{1}, \ldots, \mu_{n-1}\right)^{t}$, and hence $x \prec_{g t} y$.

The following theorem gives an equivalent condition for $\prec_{g t}$ on \mathbb{R}^{n}.
Theorem 2.3. Let x and y be two distinct vectors in \mathbb{R}^{n}. Assume that $i_{1}<i_{2}<$ $\cdots<i_{k}$ and $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}=\left\{j: 1 \leq j \leq n-1, y_{j}=y_{j+1}\right\}$. Then $x \prec_{g t} y$ if and only if $\sum_{j=i_{l-1}+1}^{i_{l}} x_{j}=\sum_{j=i_{l-1}+1}^{i_{l}} y_{j}$ for every $l(1 \leq l \leq k+1)$, where $i_{k+1}=n$ and $i_{0}=0$.

Proof. If $x \prec_{g t} y$, then there exists $A_{\mu} \in \Omega_{n}^{t}$ such that $x=A_{\mu} y$. Consequently, for every $j(1 \leq j \leq n), x_{j}=\mu_{j-1}\left(y_{j-1}-y_{j}\right)+\mu_{j}\left(y_{j+1}-y_{j}\right)+y_{j}$, where $y_{0}=$ $\mu_{0}=y_{n+1}=\mu_{n}=0$. For every $j \in\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}, y_{j}=y_{j+1}$ then $\sum_{j=i_{l-1}+1}^{i_{l}} x_{j}=$ $\sum_{j=i_{l-1}+1}^{i_{l}} y_{j}$, for every $l(1 \leq l \leq k+1)$. Conversely, put $y^{1}=\left(y_{1}, y_{2}, \ldots, y_{i_{1}}\right)^{t}$ and $x^{1}=\left(x_{1}, x_{2}, \ldots, x_{i_{1}}\right)^{t}$. Then every two consecutive components of y^{1} are distinct. Since $\sum_{j=1}^{i_{1}} x_{j}=\sum_{j=1}^{i_{1}} y_{j}, x^{1} \prec_{g t} y^{1}$ by Lemma 2.2. Then there exists $A_{1} \in \Omega_{i_{1}}^{t}$ such that $x^{1}=A_{1} y^{1}$. Now, for every $l(2 \leq l \leq k+1)$ put $x^{l}=\left(x_{i_{l-1}+1}, x_{i_{l-1}+2}, \ldots, x_{i_{l}}\right)^{t}$ and $y^{l}=\left(y_{i_{l-1}+1}, y_{i_{l-1}+2}, \ldots, y_{i_{l}}\right)^{t}$. Since $\sum_{j=i_{l-1}+1}^{i_{l}} x_{j}=\sum_{j=i_{l-1}+1}^{i_{l}} y_{j}, x^{l} \prec_{g t} y^{l}$ by Lemma 2.2. Then there exists $A_{l} \in \Omega_{i_{l}-i_{l-1}}^{t}$ such that $x^{l}=A_{l} y^{l}$. Put $A:=\oplus_{j=1}^{k} A_{j}$, it follows that $A \in \Omega_{n}^{t}$ and $x=A y$, therefore $x \prec_{g t} y$. $\mathrm{\square}$

Lemma 2.4. Let $y \in \mathbb{R}^{n}$. Assume that $i_{1}<i_{2}<\cdots<i_{k}$ and $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}=$ $\left\{j: 1 \leq j \leq n-1, y_{j}=y_{j+1}\right\}$. Then $H_{y}:=\left\{x \in \mathbb{R}^{n}: x \prec_{g t} y\right\}$ is an affine set with dimension $n-(k+1)$.

Proof. By Theorem 2.3 it follows that:

$$
H_{y}=\left\{x \in \mathbb{R}^{n}: \sum_{j=i_{l-1}+1}^{i_{l}} x_{j}=\sum_{j=i_{l-1}+1}^{i_{l}} y_{j}, \forall l \in\{1, \ldots, k+1\}\right\},
$$

where $i_{k+1}=n$ and $i_{0}=0$. If $\lambda \in \mathbb{R}, x, z \in H_{y}$, it is clear that $\lambda x+(1-\lambda) z \in H_{y}$, so H_{y} is an affine set. Since every $x \in H_{y}$ have to satisfy $k+1$ equations, it is easy to see that $\operatorname{dim} H_{y}=n-(k+1)$.

Corollary 2.5. Let $y \in \mathbb{R}^{n}$. Then $\operatorname{dim} H_{y}=0$ if and only $y \in \operatorname{Span}\{\boldsymbol{e}\}$.
Proposition 2.6. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator. If T strongly preserves $\prec_{g t}$, then the following statements are true:
(i) T is invertible.
(ii) $\operatorname{tr}\left(T e_{i}\right)=\operatorname{tr}\left(T e_{j}\right)$, for every $i, j \in\{1, \ldots, n\}$.
(iii) $T \boldsymbol{e} \in \operatorname{Span}\{\boldsymbol{e}\}$.
(v) $[T]$ is a multiple of a g-doubly stochastic matrix.

Proof. (i) Suppose $T(x)=0$. Since T is linear, $T(0)=0=T(x)$. Then it is obvious that $T(x) \prec_{g t} T(0)$. Therefore, $x \prec_{g t} 0$ because T strongly preserves gtmajorization. Then, there exists an $R \in \Omega_{n}^{t}$ such that $x=R 0$. So, $x=0$, and hence T is invertible. (ii) Using Theorem [2.3, $e_{j} \prec_{g t} e_{j+1}$ for every $j(1 \leq j \leq n-1)$. Then $T e_{j} \prec_{g t} T e_{j+1}$ for every $j(1 \leq j \leq n-1)$ and hence $\operatorname{tr}\left(T e_{i}\right)=\operatorname{tr}\left(T e_{j}\right)$, for every $i, j \in\{1, \ldots, n\}$. (iii) Since T is invertible, there exists $a \in \mathbb{R}^{n}$ such that $T a=\mathbf{e}$. By Corollary 2.5, $\operatorname{dim}\left(H_{a}\right)=\operatorname{dim}\left(H_{T a}\right)=0$ and hence $T \mathbf{e} \in \operatorname{Span}\{\mathbf{e}\}$. (v) It is clear that by $(i i)$ and $(i i i),[T]$ is a multiple of a g-doubly stochastic matrix.

Now, we prove the main theorem of this paper. Every linear operator $T: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} strongly preserves $\prec_{g t}$ if and only if $\alpha T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ strongly preserves $\prec_{g t}$ for all $\alpha \in \mathbb{R} \backslash\{0\}$. So in the following proof, we assume without loss of generality that $\operatorname{tr}\left(T e_{1}\right)=\cdots=\operatorname{tr}\left(T e_{n}\right)=1$.

Proof of Theorem 1.4. Let $A=\left[a_{i j}\right]=[T]$. If $n \leq 2$, then the concepts $\prec_{g t}$ and $\prec_{g s}$ are the same on \mathbb{R}^{n}, and hence the proof is complete by Proposition 1.2, We assume without loss of generality that $n \geqslant 3$. The fact that the conditions (i) and (ii) are sufficient for T to be a strong linear preserver of $\prec_{g t}$ is easy to prove. So we prove the necessity of the conditions. Suppose that T strongly preserves $\prec_{g t}$, then T is invertible, by Proposition [2.6. Put $\Phi:=\left\{x \in \mathbb{R}^{n}: x \prec_{g t} e_{1}\right\}$. From Theorem [2.3] we have $\Phi=\left\{x \in \mathbb{R}^{n}: x_{1}+x_{2}=1, x_{3}=\cdots=x_{n}=0\right\}$ and $\operatorname{dim} \Phi=1$. Since T is a strong linear preserver of $\prec_{g t}, T(\Phi)=\left\{T x \in \mathbb{R}^{n}: x \prec_{g t}\right.$ $\left.e_{1}\right\}=\left\{T x \in \mathbb{R}^{n}: T x \prec_{g t} T e_{1}\right\}$. By invertibility of T, we have $\operatorname{dim} \Phi=\operatorname{dim} T(\Phi)=1$. Since $T e_{1} \in T(\Phi)$ and $\operatorname{dim} T(\Phi)=1, T e_{1}$ has $(n-1)$ equal consecutive components and hence $T e_{1}=\left(a_{1,1}, b, \ldots, b\right)^{t}$ or $T e_{1}=\left(b, \ldots, b, a_{n, 1}\right)^{t}$ for some $b \in \mathbb{R}$. Put $\Psi:=\left\{x \in \mathbb{R}^{n}: x \prec_{g t} e_{n}\right\}$. From Theorem [2.3, we have $\Psi=\left\{x \in \mathbb{R}^{n}: x_{n-1}+x_{n}=\right.$ $\left.1, x_{n-2}=\cdots=x_{1}=0\right\}$ and $\operatorname{dim} \Psi=1$. With a similar argument as above we may establish $T e_{n}=\left(a_{1, n}, c, \ldots, c\right)^{t}$ or $T e_{n}=\left(c, \ldots, c, a_{n, n}\right)^{t}$, for some $c \in \mathbb{R}$. Now, we consider all possible forms of $T e_{1}$ and $T e_{n}$.

ELA

Strong Linear Preservers of g-Tridiagonal Majorization on \mathbb{R}^{n}
Let $T\left(e_{1}\right)=\left(b, \ldots, b, a_{n, 1}\right)^{t}$. We have

$$
\begin{aligned}
e_{2} \prec_{g t} e_{1} & \Rightarrow T e_{2} \prec_{g t} T e_{1} \\
& \Rightarrow\left(a_{1,2}, a_{2,2}, \ldots, a_{n, 2}\right)^{t} \prec_{g t}\left(b, \ldots, b, a_{n, 1}\right)^{t} \\
& \Rightarrow a_{n-2,2}=\cdots=a_{2,2}=a_{1,2}=b \\
& \Rightarrow T e_{2}=\left(b, \ldots, b, a_{n-1,2}, a_{n, 2}\right)^{t} .
\end{aligned}
$$

For every $j(1 \leq j \leq n-1)$, $e_{j+1} \prec_{g t} e_{j}$. So with a similar argument as above $T e_{j}=\left(b, \ldots, b, a_{n-j+1, j}, \ldots, a_{n, j}\right)$. It follows that

$$
A=\left(\begin{array}{cccc}
b & \cdots & b & a_{1, n} \tag{1}\\
\vdots & & & \\
b & & & * \\
a_{n, 1} & & &
\end{array}\right)
$$

Let $T e_{1}=\left(a_{1,1}, b, \ldots, b\right)^{t}$. Similarly one may show that

$$
A=\left(\begin{array}{cccc}
a_{1,1} & & & * \tag{2}\\
b & \ddots & & \\
\vdots & & & \\
b & \cdots & b & a_{n, n}
\end{array}\right)
$$

Let $T e_{n}=\left(c, \ldots, c, a_{n, n}\right)^{t}$. We have

$$
\begin{aligned}
e_{n-1} \prec_{g t} e_{n} & \Rightarrow T e_{n-1} \prec_{g t} T e_{n} \\
& \Rightarrow\left(a_{1, n-1}, a_{2, n-1}, \ldots, a_{n, n-1}\right)^{t} \prec_{g t}\left(c, \ldots, c, a_{n n}\right)^{t} \\
& \Rightarrow a_{1, n-1}=a_{2, n-1}=\cdots=a_{n-2, n-1}=c \\
& \Rightarrow T e_{n-1}=\left(c, \ldots, c, a_{n-1, n-1}, a_{n, n-1}\right)^{t} .
\end{aligned}
$$

For every $i(2 \leq i \leq n-3), e_{n-i} \prec_{g t} e_{n-i+1}$, so with an argument same as the above $T e_{i}=\left(c, \ldots, c, a_{i, i}, \ldots, a_{n, i}\right)^{t}$. It follows that

$$
A=\left(\begin{array}{cccc}
a_{1,1} & c & \cdots & c \tag{1}\\
& \ddots & & \vdots \\
* & & & c \\
& & & a_{n, n}
\end{array}\right)
$$

Let $T e_{n}=\left(a_{1, n}, c, \ldots, c\right)^{t}$. Similarly one may show that

$$
A=\left(\begin{array}{cccc}
* & & & a_{1, n} \tag{2}\\
& & & c \\
& & & \vdots \\
a_{n, 1} & c & \cdots & c
\end{array}\right)
$$

Since $n \geq 3$, and T is invertible the only possible cases are: (1), (2) ${ }^{\star}$ and (2), (1) ${ }^{\star}$. In view of Theorem [2.3, A is a multiple of a g-doubly stochastic matrix. Therefore A has one of the following forms:

$$
\left(\begin{array}{ccccc}
a & b & b & \cdots & b \\
b & a & b & \cdots & b \\
\vdots & \vdots & \vdots & & \vdots \\
b & b & b & \cdots & a
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ccccc}
b & b & \cdots & b & a \\
b & b & \cdots & a & b \\
\vdots & \vdots & & \vdots & \vdots \\
a & b & \cdots & b & b
\end{array}\right)
$$

Using Proposition 2.1 to obtain $(a-b)(a+(n-1) b) \neq 0$ in each case, these as done.
Corollary 2.7. Let $P \in \mathbf{M}_{n}$ be a permutation matrix. Then the linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, defined by $T(x)=P x$, strongly preserves $\prec_{g t}$ if and only if P is identity or backward identity matrix.

Now, we consider the gt-majorization on \mathbb{R}_{n}. Let $x, y \in \mathbb{R}_{n}$. We say that x is g-tridiagonally majorized by y (written as $x \prec_{r g t} y$) if there exists a tridiagonal gdoubly stochastic matrix D such that $x=y D$. Since the transpose of every tridiagonal g-doubly stochastic matrix is tridiagonal g-doubly stochastic too, we have $x \prec_{r g t} y$ if and only if $x^{t} \prec_{g t} y^{t}$ for every $x, y \in \mathbb{R}_{n}$.

Corollary 2.8. Let $T: \mathbb{R}_{n} \rightarrow \mathbb{R}_{n}$ be a linear operator. Then T strongly preserves $\prec_{r g t}$ if and only if there exist $\alpha, \beta \in \mathbb{R}$ such that $\alpha(\alpha+n \beta) \neq 0$ and $T x=\alpha x P+\beta x \boldsymbol{J}$ for all $x \in \mathbb{R}_{n}$, where P is the identity or the backward identity matrix.

Proof. Define $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $S x=\left[T\left(x^{t}\right)\right]^{t}$ for all $x \in \mathbb{R}^{n}$. It is easy to see that S strongly preserves $\prec_{g t}$ and hence Theorem 1.4 is applicable to S. \square

Acknowledgments. The authors would like to thank an anonymous referee for helpful comments and remarks.

REFERENCES

[1] T. Ando. Majorization, doubly stochastic matrices, and comparison of eigenvalues. Linear Algebra and its Applications, 118:163-248, 1989.
[2] A. Armandnejad and H. Heydari. Linear functions preserving gd-majorization from $\mathbf{M}_{n, m}$ to $\mathbf{M}_{n, k}$. Bulletin of the Iranian Mathematical Society, 37(1):215-224, 2011.
[3] A. Armandnejad and A. Salemi. The structure of linear preservers of gs-majorization. Bulletin of the Iranian Mathematical Society, 32(2):31-42, 2006.
[4] A. Armandnejad and A. Salemi. On linear preservers of lgw-majorization on $\mathbf{M}_{n, m}$. Bulletin of the Malaysian Mathematical Society, to appear.
[5] G. Dahl. Tridiagonal doubly stochastic matrices. Linear Algebra and its Applications, 390:197208, 2004.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society Volume 23, pp. 115-121, January 2012
[6] A.M. Hasani and M. Radjabalipour. The structure of linear operators strongly preserving majorizations of matrices. Electronic Journal of Linear Algebra, 15:260-268, 2006.
[7] F. Khalooei and A. Salemi. The Structure of linear preservers of left matrix majorization on \mathbb{R}^{p}. Electronic Journal of Linear Algebra, 18:88-97, 2009.

[^0]: *Received by the editors on July 29, 2011. Accepted for publication on December 18, 2011. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7713936417, Rafsanjan, Iran (armandnejad@mail.vru.ac.ir, gashool@stu.vru.ac.ir).

