Abstract. An $n \times n$ real matrix (not necessarily nonnegative) A is g-doubly stochastic (generalized doubly stochastic) if all its row and column sums are one. The sets of all g-doubly stochastic and tridiagonal g-doubly stochastic matrices of order n are denoted by Ω_n and $\Omega_{t,n}$, respectively. For $x, y \in \mathbb{R}^n$, it is said that x is tridiagonal majorized by y (written as $x \prec_{gt} y$) if there exists a tridiagonal g-doubly stochastic matrix A such that $x = Ay$. This paper characterizes all strong linear preservers of \prec_{gt} on \mathbb{R}^n and \mathbb{R}^n.

Key words. Doubly stochastic matrix, g-Tridiagonal majorization, Strong linear preserver.

AMS subject classifications. 15A04, 15A21.

1. Introduction. Majorization is a topic of much interest in various areas of mathematics and statistics. In the recent years, this concept has been attended specially. Assume that \mathbb{R}^n (respectively, \mathbb{R}_n) is the vector space of all real $n \times 1$ (respectively, $1 \times n$) vectors. Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a linear operator and let \sim be a relation on \mathbb{R}^n. It is said that T strongly preserves \sim, if, for all $x, y \in \mathbb{R}^n$,

$$x \sim y \iff T(x) \sim T(y).$$

An $n \times n$ nonnegative matrix A is called doubly stochastic if all its row and column sums equal one. For $x, y \in \mathbb{R}^n$, it is said that x is vector majorized by y (written as $x \prec y$) if there exists a doubly stochastic matrix D such that $x = Dy$.

In [1, 6], the authors characterized all strong linear preservers of \prec on \mathbb{R}^n, as follows:

Proposition 1.1. Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a linear operator. Then T strongly preserves \prec if and only if there exist $\alpha, \beta \in \mathbb{R}$ and a permutation matrix P such that $Tx = \alpha P x + \beta J x$ for all $x \in \mathbb{R}^n$ and $\alpha (\alpha + n \beta) \neq 0$, where J is the $n \times n$ matrix with all entries equal one.

The following notation will be fixed throughout the paper: M_n for the collection of all $n \times n$ real matrices, Ω_n for the set of all $n \times n$ g-doubly stochastic matrices,
for the set of all $n \times n$ tridiagonal g-doubly stochastic matrices, \mathbf{J} and \mathbf{e} for the matrix and the vector with all entries equal one, respectively (the size of \mathbf{J} and \mathbf{e} are understood from the content), e_i for the i^{th} element of the standard ordered basis of \mathbb{R}^n, and

$$A_\mu = \begin{pmatrix}
1 - \mu_1 & \mu_1 & 0 \\
\mu_1 & 1 - \mu_1 - \mu_2 & \mu_2 \\
0 & \ddots & \mu_{n-1} \\
0 & \mu_{n-1} & 1 - \mu_{n-1}
\end{pmatrix},$$

where $\mu = (\mu_1, \ldots, \mu_{n-1})^t \in \mathbb{R}^{n-1}$. It is easy to show that $\Omega_n^t = \{A_\mu : \mu \in \mathbb{R}^{n-1}\}$.

The notation A^t stands for the transpose of a given matrix A. For a given vector $x \in \mathbb{R}^n$, $\text{tr}(x)$ is the sum of all components of x. For a given linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$, the matrix representation of T with respect to the standard ordered basis of \mathbb{R}^n, is denoted by $[T]$.

For $x, y \in \mathbb{R}^n$, it is said that x is gs-majorized by y (written as $x \prec_{gs} y$) if there exists an $n \times n$ g-doubly stochastic matrix D such that $x = Dy$. The linear operators strongly preserving \prec_{gs} on \mathbb{R}^n, have been characterized as follows; (see [2, 4, 3, 7] for more details).

Proposition 1.2. [3, Corollary 2.5] Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. Then T strongly preserves gs-majorization if and only if $T(x) = \alpha Dx$ for some nonzero scalar $\alpha \in \mathbb{R}$ and invertible matrix $D \in \Omega_n$.

For $x, y \in \mathbb{R}^n$, it is said that x is tridiagonally majorized by y if there exists a tridiagonal doubly stochastic matrix D such that $x = Dy$, see [5].

Definition 1.3. Let $x, y \in \mathbb{R}^n$. We say that x is g-tridiagonally majorized by y (written as $x \prec_{gt} y$) if there exists a tridiagonal g-doubly stochastic matrix D such that $x = Dy$.

In the present paper, we find the structure of strong linear preservers of \prec_{gt} on \mathbb{R}^n and \mathbb{R}_n. In fact we will prove the following theorem:

Theorem 1.4. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. Then T strongly preserves \prec_{gt} if and only if there exist $a, b \in \mathbb{R}$ such that $(a - b)(a + (n - 1)b) \neq 0$ and $[T]$ is one of the following matrices

$$\begin{pmatrix}
 a & b & b & \ldots & b \\
 b & a & b & \ldots & b \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 b & b & b & \ldots & a
\end{pmatrix} \quad \text{or} \quad \begin{pmatrix}
 b & b & \ldots & b & a \\
 b & b & \ldots & a & b \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a & b & \ldots & b & b
\end{pmatrix}.$$
In other words, T strongly preserves \prec_{gt} if and only if there exist $\alpha, \beta \in \mathbb{R}$ such that $\alpha(\alpha + n\beta) \neq 0$ and $[T] = \alpha I + \beta J$ or $[T] = \alpha P + \beta J$, where P is the backward identity matrix.

2. g-Tridiagonally majorization. In this section, we mention some properties of \prec_{gt} on \mathbb{R}^n and also we present some preliminaries to prove Theorem 1.3.

Proposition 2.1. [Lemma 3.6] Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a linear operator such that $T(x) = \alpha Dx + \beta Jx$ for some $\alpha, \beta \in \mathbb{R}$ and invertible matrix $D \in \Omega_n$. Then T is invertible if and only if $\alpha(\alpha + n\beta) \neq 0$.

Lemma 2.2. Let $x, y \in \mathbb{R}^n$. If every two consecutive components of y are distinct, then $x \prec_{gt} y$ if and only if $tr(x) = tr(y)$.

Proof. If $x \prec_{gt} y$, it is easy to see that $tr(x) = tr(y)$. Conversely, suppose that every two consecutive components of y are distinct. For every $j (1 \leq j \leq n - 1)$, put $\mu_j = \sum_{i=j}^{n} \frac{x_i - y_i}{y_{j+1} - y_j}$. With a direct calculation it is easy to see that $x = A_\mu y$, where $\mu = (\mu_1, \ldots, \mu_{n-1})^t$, and hence $x \prec_{gt} y$. □

The following theorem gives an equivalent condition for \prec_{gt} on \mathbb{R}^n.

Theorem 2.3. Let x and y be two distinct vectors in \mathbb{R}^n. Assume that $i_1 < i_2 < \cdots < i_k$ and $\{i_1, i_2, \ldots, i_k\} = \{j : 1 \leq j \leq n - 1, y_j = y_{j+1}\}$. Then $x \prec_{gt} y$ if and only if $\sum_{j=i_{l-1}+1}^{i_l} x_j = \sum_{j=i_{l-1}+1}^{i_l} y_j$ for every $l (1 \leq l \leq k + 1)$, where $i_{k+1} = n$ and $i_0 = 0$.

Proof. If $x \prec_{gt} y$, then there exists $A_\mu \in \Omega_n^k$ such that $x = A_\mu y$. Consequently, for every $j (1 \leq j \leq n)$, $x_j = \mu_j - 1 (y_j - y_{j+1}) + \mu_j (y_{j+1} - y_j) + y_j$, where $y_0 = y_n = \mu_0 - 1 = \mu_n = 0$. For every $j \in \{i_1, i_2, \ldots, i_k\}$, $y_j = y_{j+1}$ then $\sum_{j=i_{l-1}+1}^{i_l} x_j = \sum_{j=i_{l-1}+1}^{i_l} y_j$, for every $l (1 \leq l \leq k + 1)$. Conversely, put $y^1 = (y_1, y_2, \ldots, y_1)^t$ and $x^1 = (x_1, x_2, \ldots, x_1)^t$. Then every two consecutive components of y^1 are distinct. Since $\sum_{j=1}^{i_1} x_j = \sum_{j=1}^{i_1} y_j$, $x^1 \prec_{gt} y^1$ by Lemma 2.2. Then there exists $A_1 \in \Omega_{i_1}^1$ such that $x^1 = A_1 y^1$. Now, for every $l (2 \leq l \leq k + 1)$ put $x^l = (x_{i_{l-1}+1}, x_{i_{l-1}+2}, \ldots, x_n)^t$ and $y^l = (y_{i_{l-1}+1}, y_{i_{l-1}+2}, \ldots, y_n)^t$. Since $\sum_{j=i_{l-1}+1}^{i_l} x_j = \sum_{j=i_{l-1}+1}^{i_l} y_j$, $x^l \prec_{gt} y^l$ by Lemma 2.2. Then there exists $A_l \in \Omega_{i_{l-1}+1}^1$ such that $x^l = A_l y^l$. Put $A := \oplus_{l=1}^{k} A_l$, it follows that $A \in \Omega_n^k$ and $x = Ay$, therefore $x \prec_{gt} y$. □

Lemma 2.4. Let $y \in \mathbb{R}^n$. Assume that $i_1 < i_2 < \cdots < i_k$ and $\{i_1, i_2, \ldots, i_k\} = \{j : 1 \leq j \leq n - 1, y_j = y_{j+1}\}$. Then $H_y := \{x \in \mathbb{R}^n : x \prec_{gt} y\}$ is an affine set with dimension $n - (k + 1)$.

Proof. By Theorem 2.3 it follows that: $H_y = \{x \in \mathbb{R}^n : \sum_{j=i_{l-1}+1}^{i_l} x_j = \sum_{j=i_{l-1}+1}^{i_l} y_j, \forall l \in \{1, \ldots, k + 1\}\}$,
where \(i_{k+1} = n \) and \(i_0 = 0 \). If \(\lambda \in \mathbb{R}, x, z \in H_y \), it is clear that \(\lambda x + (1 - \lambda)z \in H_y \), so \(H_y \) is an affine set. Since every \(x \in H_y \) have to satisfy \(k + 1 \) equations, it is easy to see that \(\dim H_y = n - (k + 1) \).

Corollary 2.5. Let \(y \in \mathbb{R}^n \). Then \(\dim H_y = 0 \) if and only \(y \in \text{Span}\{e\} \).

Proposition 2.6. Let \(T : \mathbb{R}^n \to \mathbb{R}^n \) be a linear operator. If \(T \) strongly preserves \(\prec_{gt} \), then the following statements are true:

(i) \(T \) is invertible.

(ii) \(\text{tr}(Te_i) = \text{tr}(Te_j) \), for every \(i, j \in \{1, \ldots, n\} \).

(iii) \(Te \in \text{Span}\{e\} \).

(iv) \([T] \) is a multiple of a \(g \)-doubly stochastic matrix.

Proof. (i) Suppose \(T(x) = 0 \). Since \(T \) is linear, \(T(0) = 0 = T(x) \). Then it is obvious that \(T(x) = T(0) \). Therefore, \(x \prec_{gt} 0 \) because \(T \) strongly preserves \(gt \)-majorization. Then, there exists an \(R \in \mathcal{O}_n^+ \) such that \(x = R0 \). So, \(x = 0 \), and hence \(T \) is invertible. (ii) Using Theorem 2.3, \(e_j \prec_{gt} e_{j+1} \) for every \(j, 1 \leq j \leq n-1 \). Then \(Te_j \prec_{gt} Te_{j+1} \) for every \(j, 1 \leq j \leq n-1 \) and hence \(\text{tr}(Te_i) = \text{tr}(Te_j) \), for every \(i, j \in \{1, \ldots, n\} \). (iii) Since \(T \) is invertible, there exists \(a \in \mathbb{R}^n \) such that \(Ta = e \). By Corollary 2.3, \(\dim(H_a) = \dim(H_{Te_a}) = 0 \) and hence \(Te \in \text{Span}\{e\} \). (v) It is clear that by (ii) and (iii), \([T] \) is a multiple of a \(g \)-doubly stochastic matrix.

Now, we prove the main theorem of this paper. Every linear operator \(T : \mathbb{R}^n \to \mathbb{R}^n \) strongly preserves \(\prec_{gt} \) if and only if \(\alpha T : \mathbb{R}^n \to \mathbb{R}^n \) strongly preserves \(\prec_{gt} \) for all \(\alpha \in \mathbb{R} \setminus \{0\} \). So in the following proof, we assume without loss of generality that \(\text{tr}(Te_i) = \cdots = \text{tr}(Te_n) = 1 \).

Proof of Theorem 1.2. Let \(A = [a_{ij}] = [T] \). If \(n \leq 2 \), then the concepts \(\prec_{gt} \) and \(\prec_{gs} \) are the same on \(\mathbb{R}^n \), and hence the proof is complete by Proposition 1.2.

We assume without loss of generality that \(n \geq 3 \). The fact that the conditions (i) and (ii) are sufficient for \(T \) to be a strong linear preserver of \(\prec_{gt} \) is easy to prove. So we prove the necessity of the conditions. Suppose that \(T \) strongly preserves \(\prec_{gt} \), then \(T \) is invertible, by Proposition 2.6. Put \(\Phi := \{x \in \mathbb{R}^n : x \prec_{gt} e_1\} \). From Theorem 2.3, we have \(\Phi = \{x \in \mathbb{R}^n : x_1 + x_2 = 1, x_3 = \cdots = x_n = 0\} \) and \(\dim \Phi = 1 \). Since \(T \) is a strong linear preserver of \(\prec_{gt} \), \(T(\Phi) = \{Tx \in \mathbb{R}^n : x \prec_{gt} e_1\} \). By invertibility of \(T \), we have \(\dim \Phi = \dim T(\Phi) = 1 \).

Since \(Te_1 \in T(\Phi) \) and \(\dim T(\Phi) = 1 \), \(Te_1 \) has \((n - 1) \) equal consecutive components and hence \(Te_1 = (a_1, b, b, \ldots, b)^t \) or \(Te_1 = (b, b, a_{n,1})^t \) for some \(b \in \mathbb{R} \). Put \(\Psi := \{x \in \mathbb{R}^n : x \prec_{gt} e_n\} \). From Theorem 2.3, we have \(\Psi = \{x \in \mathbb{R}^n : x_{n-1} + x_n = 1, x_{n-2} = \cdots = x_1 = 0\} \) and \(\dim \Psi = 1 \). With a similar argument as above we may establish \(Te_n = (a_1, c, \ldots, c)^t \) or \(Te_n = (c, \ldots, c, a_{n,n})^t \), for some \(c \in \mathbb{R} \). Now, we consider all possible forms of \(Te_1 \) and \(Te_n \).
Let $T(e_1) = (b, \ldots, b, a_{n,1})^t$. We have

\[e_2 \prec_{gt} e_1 \Rightarrow T e_2 \prec_{gt} T e_1 \]
\[\Rightarrow (a_{1,2}, a_{2,2}, \ldots, a_{n,2})^t \prec_{gt} (b, \ldots, b, a_{n,1})^t \]
\[\Rightarrow a_{n-2,2} = \cdots = a_{2,2} = a_{1,2} = b \]
\[\Rightarrow T e_2 = (b, \ldots, b, a_{n-1,2}, a_{n,2})^t. \]

For every j $(1 \leq j \leq n - 1)$, $e_{j+1} \prec_{gt} e_j$. So with a similar argument as above

\[T e_j = (b, \ldots, b, a_{n-j+1,j}, \ldots, a_{n,j})^t. \]

It follows that

\[A = \begin{pmatrix}
 b & \ldots & b & a_{1,n} \\
 \vdots & \ddots & \vdots & \vdots \\
 b & \ldots & b & a_{n,1} \\
 a_{n,1} & \ast & \cdots & \ast
\end{pmatrix}, \quad (1) \]

Let $T e_1 = (a_{1,1}, b, \ldots, b)^t$. Similarly one may show that

\[A = \begin{pmatrix}
 a_{1,1} & \ast \\
 b & \ddots \\
 \vdots & \ddots & \ddots \\
 b & \ldots & b & a_{n,n}
\end{pmatrix}. \quad (2) \]

Let $T e_n = (c, \ldots, c, a_{n,n})^t$. We have

\[e_{n-1} \prec_{gt} e_n \Rightarrow T e_{n-1} \prec_{gt} T e_n \]
\[\Rightarrow (a_{1,n-1}, a_{2,n-1}, \ldots, a_{n,n-1})^t \prec_{gt} (c, \ldots, c, a_{n,n})^t \]
\[\Rightarrow a_{1,n-1} = a_{2,n-1} = \cdots = a_{n-2,n-1} = c \]
\[\Rightarrow T e_{n-1} = (c, \ldots, c, a_{n-1,n-1}, a_{n,n-1})^t. \]

For every i $(2 \leq i \leq n - 3)$, $e_{n-1} \prec_{gt} e_{n-i+1}$, so with an argument same as the above

\[T e_i = (c, \ldots, c, a_{i,i}, \ldots, a_{n,i})^t. \]

It follows that

\[A = \begin{pmatrix}
 a_{1,1} & c & \cdots & c \\
 \ast & \ddots & \vdots & \vdots \\
 \ast & \ddots & c & \ast \\
 a_{n,1} & c & \cdots & c
\end{pmatrix}, \quad (1)^* \]

Let $T e_n = (a_{1,n}, c, \ldots, c)^t$. Similarly one may show that

\[A = \begin{pmatrix}
 \ast & a_{1,n} \\
 \ast & \ddots & \ddots \\
 a_{n,1} & c & \cdots & c
\end{pmatrix}. \quad (2)^* \]
Since \(n \geq 3 \), and \(T \) is invertible the only possible cases are: (1), (2)* and (2), (1)*. In view of Theorem 2.3, \(A \) is a multiple of a g-doubly stochastic matrix. Therefore \(A \) has one of the following forms:

\[
\begin{pmatrix}
 a & b & b & \cdots & b \\
 b & a & b & \cdots & b \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 b & b & b & \cdots & a \\
\end{pmatrix}
\quad \text{or} \quad
\begin{pmatrix}
 b & b & \cdots & b & a \\
 b & b & \cdots & a & b \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a & b & \cdots & b & b \\
\end{pmatrix}
\]

Using Proposition 2.1 to obtain \((a - b)(a + (n - 1)b) \neq 0\) in each case, these as done.

Corollary 2.7. Let \(P \in M_n \) be a permutation matrix. Then the linear operator \(T : \mathbb{R}^n \to \mathbb{R}^n \), defined by \(T(x) = Px \), strongly preserves \(\triangleleft_{gt} \) if and only if \(P \) is identity or backward identity matrix.

Now, we consider the \(gt \)-majorization on \(\mathbb{R}_n \). Let \(x, y \in \mathbb{R}_n \). We say that \(x \) is g-tridiagonally majorized by \(y \) (written as \(x \triangleleft_{gt} y \)) if there exists a tridiagonal g-doubly stochastic matrix \(D \) such that \(x = yD \). Since the transpose of every tridiagonal g-doubly stochastic matrix is tridiagonal g-doubly stochastic too, we have \(x \triangleleft_{gt} y \) if and only if \(x^t \triangleleft_{gt} y^t \) for every \(x, y \in \mathbb{R}_n \).

Corollary 2.8. Let \(T : \mathbb{R}_n \to \mathbb{R}_n \) be a linear operator. Then \(T \) strongly preserves \(\triangleleft_{gt} \) if and only if there exist \(\alpha, \beta \in \mathbb{R} \) such that \(\alpha(\alpha + n\beta) \neq 0 \) and \(Tx = \alpha xP + \beta xJ \) for all \(x \in \mathbb{R}_n \), where \(P \) is the identity or the backward identity matrix.

Proof. Define \(S : \mathbb{R}^n \to \mathbb{R}^n \) by \(Sx = [T(x^t)]^t \) for all \(x \in \mathbb{R}^n \). It is easy to see that \(S \) strongly preserves \(\triangleleft_{gt} \) and hence Theorem 1.3 is applicable to \(S \).

Acknowledgments. The authors would like to thank an anonymous referee for helpful comments and remarks.

REFERENCES
