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ON MULTIPOINT BOUNDARY VALUE PROBLEMS FOR INDEX-2
LINEAR SINGULAR DIFFERENCE EQUATIONS*

LE CONG LOIf

Abstract. On the background of a careful analysis of index-2 linear singular difference equations
with both constant and varying coefficients cases, multipoint boundary value problems for these equa-
tions are considered. Necessary and sufficient conditions for the solvability of multipoint boundary
value problems are established. Further, general solution formulae are explicitly constructed.
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1. Introduction. In recent years, there has been considerable interest in study-
ing linear singular difference equations (LSDEs) of the form

(1.1) ApTpi1 = Bpan +qn, n2>0,

where A,,, B, € R™*™ ¢, € R™ are given and rankA, =r (1 <r <m — 1) for all
n > 0 (see [2]-[8] and references therein). The index notion of a matrix pencil was
introduced to investigate Eq. (I.I]) with constant coefficients. Further, the solvability
of initial value problems (IVPs) has been studied thoroughly [4]-[6]. However, as
far as we know the qualitative questions such as the existence, uniqueness, etc. of
multipoint boundary value problems (MPBVPs) for (1) with constant coefficients
have not been discussed. In the varying coefficients case, the index-1 concept of Eq.
(TI) was also introduced in [2 8] and the solvability of IVPs as well as MPBVPs
for index-1 LSDEs has been considered in [2 B [§]. Later on, the index-2 concept
of Eq. (1) has been proposed, and basing on this index-2 notion, the condition of
solvability as well as the solution formula of IVPs for index-2 LSDE (LI]) have been
established in [7]. As discussed in [7], many valid results for index-1 case can be
extended to index-2 case, however, the extension meets with some difficulties.

The main goal of this paper is studying MPBVPs for index-2 LSDE (1)) in both
constant and varying coefficients cases. The index-2 of a matrix pencil and index-2
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of Eq. (II) turn to be the keystone in the analysis of MPBVPs. For index-2 LSDEs
with constant coefficients, similarly as in [4]-[6], one can solve Eq. (LI} by means
of index of a matrix pencil and Drazin inverse. It is well known that many results
for constant coefficients LSDEs cannot be directly generalized to varying coefficients
LSDEs (ref. [2, [3, [7, [8]). Thus, in the varying coeflicients case, our approach to
LSDEs is based on index-2 notion of Eq. ([I) and projections. We shall develop
some techniques of index-1 LSDEs in [3] [§] for index-2 LSDEs.

The paper is organized as follows. In Section 2 we recall some definitions and
preliminary results, as well as give some simple results concerning index-2 LSDE (L)).
Necessary and sufficient conditions for the solvability and a general formula solution
of MPBVPs for index-2 LSDE ([II]) will be established in Section 3.

2. Preliminaries. We start this section by recalling the Drazin inverse of a
matrix and the index notion of a matrix pencil, which have been studied in [4] [6].
Firstly, if M € R™*™ the index of M, denoted by ind(M), is the least non-negative
integer v such that kerM" = kerM¥*!. It is worth noting that the following theorem
plays an important role to study autonomous LSDEs.

THEOREM 2.1. [4] Suppose that M € R™*™ ind(M)= v and rankM"=t. Then

there exists a nonsingular matriz S € R™*™ such that

(2.1) MSHV ]3]51,

where W is a nonsingular t X t matriz and N is a nilpotent (m —t) X (m —t) matriz
with v=ind(N).

If M € R™*™ is given in the form (ZII), then the Drazin inverse of M, denoted
by MP, is defined by

W=t 0
MP = -
sly ols

It is easy to verify that
MMP = MPMm, MPMMP =MP, MFIMP = M* for k> Ind(M)
and the Drazin inverse is unique.

In what follows, we consider A, B € R™*™ and always assume that the matrix
pencil (4, B) is regular (i.e., there exists a scalar A\ € C such that AA + B is non-
singular) and let Ay := (A + B)"'A, By := (M + B)™"'B, fA:= M+ B)~'f for

~ ~ ~

f € R™. Observe that By = I — )\EA, hence, Ay and B, commute.

THEOREM 2.2. [d] Suppose that the matriz pencil (A, B) is reqular and f € R™.
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Then for all o, B € C for which (eA + B)~! and (BA + B)™! exist, the following
statements hold:

(i) ind(A,) = ind(Ap),

(ii) AnAL = AgAR,
(iii) AP By, = APBy and B2 A, = B Ay,
(iv) ngfa = Egﬁ; and Ef]”; = EBDfB

If (A, B) is regular and det(AA + B) # 0, then ind(A,) is called the index of
the pencil (A4, B), denoted by ind(A4, B), i.e., ind(A4, B) := ind(A,). Theorem
guarantees that the definition of the index of the matrix pencil does not depend on
the chosen value A.

Next, to study the index-2 LSDE (LT)) with variable coefficients, we start with
some basic definitions for non-autonomous LSDEs (see [2] [3| 8 [7]). Let @, be any
projection onto kerA,, and T, € GL(R™) for all n > 0 such that Tn|kerAn is an
isomorphism from kerA,, onto kerA,,_1, here we put A_; := Ay. Denote again by T,
the matrix induced by the operator T;,.

LEMMA 2.3. [7] The matriz Gy, := A, + B, T,,Qy, is nonsingular if and only if
kerA,_1 NS, = {0},
where S, :={z € R™ : B,z € imA4,}.
DEFINITION 2.4. [7] The LSDE (1)) is said to be of index-1 if

(i) rank4, =7,
(ii) kerA,_1 NS, ={0}.

Now we suppose that the matrices G,, are singular for all n > 0, i.e., Eq. ([LJ) is
of higher index. Put P, := I —@Q,, for alln > 0 and let A;} denote the Moore-Penrose
generalized inverse of A,.

LEMMA 2.5. [7] The following relation
(T, + TPy AL B, T, Qp)kerG,, = kerA,, 1 NS,
is valid.

It is worth noting that the matrices (T, + T}, P, A} B, T,,Q.,) are nonsingular for
all n > 0, consequently, we come to the following corollary.

COROLLARY 2.6. [7] dim(kerGy)= dim(ker A,_1 NS,), ¥n > 0.

LEMMA 2.7. [7] Let Qy, @n be two projections onto kerA,, and T,, T, € GL(R™)
such that Tn|kerA , Tn|kerA are two isomorphisms between kerA,, and kerA,,_1. Put
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Gy = Ap + ByT0Qn, Gy = Ay + B, T,Q,, and
Sin={2€R™:B,P,_1z € imG,}, §1,n ={zeR™: B, P, 1z € imén}.

Then, the following relations hold:

(2.2) Gn = Gn(Pp + T, T,Qn), Yn >0,
(2-3) gl,n = (ﬁn—l + fglen—lQn—l)Sl,nv Vn > 0,
(2.4) kerGp N S1ni1 = (Po + T T Q) (kerGyp N St p1), Vi > 0.

Remark that the identity (24) ensures that the following definition does not
depend on the choice of the projections onto kerA,, and the isomorphisms between
kerA,, and kerA,,_,. For well-definedness, we put G_1 := Gy.

DEFINITION 2.8. [7] The LSDE (L) is said to be of index-2 if the following
conditions

(i) rankA, =7, 1<r<m-1,
(ii) dim(kerd,_1NS,)=m—s, 1<s<m-—1,
(iii) kean_l N Sl,n = {0}

hold for all n > 0.

From Corollary 2.6l we get that rankG,, does not depend on the choice of the
projections onto kerA,, and the isomorphisms between kerA,, and kerA,,_1, hence we
can suppose that rankG, =s, 1 < s <m — 1. Here, Q1,, denotes a projection onto
kerG,, and let T3, be a nonsingular operator with the restriction T17"|kean is an
isomorphism between kerG,, and kerG,_;. We also denote again by 71, the matrix
induced by the operator T ,,.

LEMMA 2.9. [7] The matriz G145 := Gp + BpPno_1T1 nQ1,n is nonsingular if and
only if

kean_l N Sl,n = {O}
Moreover, if G1 y, is nonsingular then
@1,7171 = Tl,an,nGiiLBnPnfl

is a projection from R™ onto kerG,,_1 along S1 .
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Recall that notations kerén and §1,n+1 have been introduced in Lemma [Z.71 We
now come to the following lemma which states the relationship between projections

@l,n and @l,n'
LEMMA 2.10. Suppose that LSDE (1)) is of indez-2 and let él,n be a projection

from R™ onto kerG,, along §17n+1. Then the following relation holds:

(2'5) 51,n = (ﬁn + TngnQn)@l,n-

Proof. Putting
Ql,n = (ﬁn + fngnQn)@l,n(Pn + Tnflfn@in)

and noting that (P, + Tn’lfn@n)(lsn + fn’lTnQn) =1, @%n = @Lna we obtain

Qin = Qlﬁn, ie., Ql,n is a projection.
Applying the relation ([Z2]) and observing that Gn@Ln =0, we have
én@l,n = Gn@l,n(Pn + Trjlfn@n) =0.

On the other hand, let x € R™ such that Ql,nx = 0, or equivalently, @1,n(Pn +
T;lfn@n)yﬁ = 0. Since @1,n is the projection onto l{ean along S1 41, it follows
(P, + T, T,Qn)x € S1nt1. This leads to z € (P, + T, *1,Q1)S1.n+1. Hence, using
the relation ([Z3)), we get x € §1,n+1. Thus, Q1 is a projection onto kerén along
§17n+1 meaning that

@l,n = (ﬁn + fngnQn)@l,n(Pn + Tn_lj:n@n)
Furthermore, observing that @l,n = Tl,n+1Q1,n+1G1_}1+1Bn+1Pn and
T TQn = QuT ' T,Q,, yields
@l,n(Pn + Tn_lfn@n) = @l,n-
Thus, we obtain Eq. (Z5). O

From now on, we put P, := I — Q1,, and ﬁlm =1 - @l,n-

LEMMA 2.11. [7] Suppose that the LSDE (1) is of index-2 and élyn =G, +
B, Py 1T1 nQ1,n. Then the following relations hold:

(26) (A?f}lGn = ﬁl,n; é\i;An = ﬁl,npna

(27) éi»}an = éi»}IBnPn—lﬁl,n—l + Tié@l,n—l + ﬁl,nTn_lQn—l-
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Suppose that the LSDE (LJ]) is of index-2. We also introduce an 1 operator T1 n
GL(Rm) whose restriction 7} n|kerG is an isomorphism between ker(,, and kean 1

Put G1 n = G + B Pn 1T1 an n- A similar result of the relation ([Z2) can be
established for index-2 LSDEs, namely, we obtain the following lemma.

LEMMA 2.12. Let the LSDE () be of index-2. Then the identity

(2.8) G = G (Put T 7@ + TQur Py T1 Q1
T Pac + T T 1@ 1) Tin@ — Q)
is valid for each n > 0.

Proof. Since Tn’lQn,l = QnTn’lQn,l and Pn,l.ﬁn,l = P,_1, we have that
(2.9) GnTngn,lﬁn,lfmém = Bnﬁn,lﬁ,ngjm - BnPn,lanéLn.
Observing that @1,nQn = 0, we come to the following identity

Qua(Po+ T T0Qn) = Q1 -

This gives

P+ T, T,Qn — @l,n = ﬁl,n(Pn + T, T Q).
Thus, we obtain
(2.10) By Py 1Ty nQn(Po + T, T0Qn — Qun) = 0.
Using the relation ([22]), we can easily see that
Tl_i (Poo1 + T, T 1Qn 1)T1 nQ1 n= = Q115 n(Pn—l + TN T Qe 1)T1 nQ1 -
Therefore, we have
2.11) GuTy (Pat + Ty T 1Qn 1) Tin@y = 0
Further, since T;_llfn_léjn_l = Qn_lT;_llfn_len_l, we get
(2.12) BnPn—1T1,n@1,an,i (Po1 + T7;11fn71©n—1)7~11,n51,n = BnPn—1T1,n51,n-

Finally, combining the relation (Z2)) with Eqs. (29)-@I2), and observing that
GpQ1,n =0 and Q1,,Q» = 0 implies that

él,n (Pn + Tn_lfn@n + Tn_lQn—lﬁn—lfl,nQan
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T (Pay + T T G 1) T1 Qs — Qi)
= (G + BpPo1T1.n01.0) (Pn + T W00 + T Qus Pys T1 Q1
+ T (Pao1 + Tn_—ljn—lén—l)fl,ném - @m)
=G+ Bnﬁn_1f1,n51,n - BnPn—1f1,n517n + BnPn—1T1,n51,n
— G,
which is Eq. (2.8)) as to be proved. O
The following fact easily follows from Lemma
COROLLARY 2.13. Suppose that the LSDE () is of index-2. Then the matriz
P’ﬂ+Tn_1fnén+Tn_1Qn71ﬁn71f1,n517n+T1j71 (Pnfl+T7;,11fn71©n71)f1,n51,n7@1,71

is nonsingular. Moreover,
(213) (Pu+ T, TuGn + T, Qu-1Paca T10Qy
-~ . = ~ —1
+ Tfé (Pnfl + TnifllTnlenfl)Tl,nQLn - Ql,n)
= ﬁn + f»,;lTnQn + TnilénflpnflTl,n@Ln

+ Tl_,rt (ﬁnfl + fn_,llTnlenfl)Tl,n@Ln - él,n-

3. Multipoint boundary value problems.

3.1. Constant coefficients case. We shall consider the LSDEs with constant
coefficients

(31) AI'H—I = Bxl + qi, 1= 0, N — 1,

together with the boundary conditions

N
(3.2) Z Cixi =7,
i=0
where A, B,C; € R™*™ ¢;,,v € R™ are given and suppose that v :=ind(A4, B) is
greater than one.

We suppose that A € C such that det(AA + B) # 0. Multiply Eq. @BI) by
(A + B)~! from the left to obtain

(3.3) A\,\Ii_;,_l = EAIi +q, i=0,N-—-1,
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where @; := (AMA+ B)~1q; for alli = 0, N — 1. According to Theorem 2], there exists
a nonsingular matrix 7" € R™*™ such that

(3.4) T AT = { ¢ 0 ]

~ I-)C 0
T 'B\T =
0 U A [ }

0 I1-)\U

where C' € R™*" is nonsingular with r := rankgi and U € Rm=7)x(m=7) ig nilpotent
of the order v. Letting z; = Ty; and f; = T~'q;, then we can rewrite Eq. [3.3) as

C o0lly | _[I-AxC 0 u T I i=0,N—1
0 U ||y 0 I-XU || y® £ ’ ’
where y(l), fi(l) eR", 1(2), fi(Q) € R™~". Note that when v = 1 then U = 0, and in

this case, we easily obtain solutions of the above difference equation. The problem of
solving B.1]), B2)) is not difficult, hence, it is omitted here due to lack of space. In
this paper, we consider the case v > 2, i.e., U # 0. However, it is easy to see that
these results are still valid for the case v = 1. Since U has only the eigenvalue 0, it
yields that I — AU is nonsingular. Besides, noting that C' is a nonsingular matrix, we
find that all solutions of Eq. (8] are given by

1—1 N—i—1
+> (APB)) ARGy — (1 - AR AY) (B?EA)@?@-H, i=0,N,
=0

~
Il
o

—1
where Zg, Zy € R™ are arbitrary vectors. Here it is assumed that ) =0.
1=0
Notice that the formula (3] has also been established in [4]. Further, applying
Theorem 222 we see that the solution formula (1)) is independent of the chosen value
A

REMARK 3.1. An important special case is when A is nonsingular. To study
MPBVP @B, B2), instead of (B3], we usually use the following solution formula

AT'B) $0+Z ATB) A iy, i=0.N,

where Tg € R™ is an arbitrary vector. In another important special case, when B is
invertible, the solution to (B]) is given by

17—

N 1
(B'A)'B ¢y, i=0,N,
0

€xr; = (BilA)Nii.fN — Z

=
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where T € R™ is an arbitrary vector. These results were discussed in the theory of
boundary value problems for ordinary difference equations, we refer the reader to [IJ
for more details. The purpose of this paper is to study the MPBVP @), 32)) in
the case, where A and B are both singular.

Let X; (¢ =0, N) be the “fundamental solution” of Eq. (1)), i.e.,
AX,; 1 =BX;, i=0,N_1.
It is clear that

— (APB\)'AR A, + (BPA)Y (1 - ARA,), i=1D

Put XV = (ADBA) ‘APA,, xP = (BPA)Y (1 - APAy) (i = O,N), Dy =
oy () (2) S
Y CiX, 7, Dy Z CiX;” and v* :== v — > C;z;, where
i=0 i=0 i=0
i N—i—1
Zi = Z (A?B,\) A?(/]\i,l,1 I ADA)\ Z A,\ B/\ Qi+, 1= 0, N.
1=0 1=0

In what follows, we shall deal with the (m x 2m) matrix (D, D2) with columns of
D and D5 and the (2m x 2m) matrix

' 0 I—APA,

From Theorem [2Z2] it follows that the matrices (D1, D3) and R do not depend on the
chosen value \.

THEOREM 3.2. Suppose that the matriz pencil (A, B) is reqular and ind(A, B) >
2. Then the MPBVP @BI) and B2) has a unique solution for every q¢; € R™ (i =
0, N — 1) and every v € R™ if and only if

(3.6) ker(Dq, D2) = kerR
and it can be represented as
(3.7) 2 =XMe+ xB¢+ 2, i=0,N,

where (§7,¢T)T = (D1, D2)Tv* with (D1, D2)t the generalized inverse in Moore-
Penrose’s sense of (D1, Ds).

Proof. Due to our construction, the relation

kerR C ker(D1, D2)
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is valid.

Assume that the MPBVP @), (3.2) is uniquely solvable, and let (z,z%)7 €
ker(D1, D2). Then

D1zg + Dozn = 0.

Putting z} := Xi(l)fo + Xi(Q)iN (i = 0,N), we find that {z}}}, is a solution of the
homogeneous MPBVP @), (2) with ¢; =0, (i =0, N — 1) and v = 0. Since the
homogeneous MPBVP [B.1)) and (3:2) has only a trivial solution, it follows x} = 0 for
all i = 0, N. In particular, we have 2} = 0 and % = 0, hence,

(38) A\?A\)\.fo + (E/\DA\)\)N(I — A\?A\)\).f]v =0
and
(39) (A\?B\)\)NA\QA\,\jQ + (I — A\?A\,\).fjv =0.

From Eq. (34)) and the facts that

~ ct 0], ~ (I —\C)P 0 _
AP =T T BP=T1 71
A [0 o} P [ 0 (I-\U)! ’

it follows that

~p I 0 ~p 0 0

DA _ -1 _AD7. _ -1
(3.10) AAAAT[O O]T , I —ARA, T[O I]T ,
and

~ ~ 71 J—
(3.11) APBy =T I =AC) 0 T,
0 0
~p~ I-\C)PC 0 _

12 BPA, =1 71
(8.12) A [ 0 (I—)\U)lU}

Next, applying formulae BI0)-(312) and putting
T T T T
@ 95 ) =130, gy I8 ) =T "an
with gj(()l), gjj(\}) € R", we can reduce the equalities (3.8), (3.9) to

7P =0, (C—H(1 - )\C))Ng(()l) =0,
1N (2) and ¢ (3
(I-X0)"'U) gy =0 Uy =0,
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respectively. Thus, we obtain

wer[e]. seer[1]

where £ € R™™" and n € R" are arbitrary vectors, or Ty € ker(g/\DgA) and Ty €
ker(I — AP A)), hence (z1,2%)T € kerR. This means that the inclusion

ker(D1, D) C kerR
must be true, and consequently, (3.6) holds.

Conversely, let ([B:6]) be valid. Then for each ¢; € R™ (i =0, N — 1) and v € R™
a solution of the MPBVP B1l), (B2) is determined by (&3] and

DT + Doy ="

Let g; =0 for alli =0,N —1 and v = 0. Then Ty and Ty satisfy the following
equality

Dizg+ Doz = 0.

Therefore, we have (z,7%)T € ker(D1, D2) = kerR. Now (B.5) ensures that the
homogeneous MPBVP (B1), (32) has only a trivial solution.

According to the formula (33]), any solution of ([B]) can be expressed as (3.1
where £, ( € R are constant vectors. This solution satisfies the boundary condition

B2) if and only if
D&+ D¢ ="

which means that (¢7,¢T)T = (D1, D3)Tv*. Thus, the unique solution of @B.1)), B3.2)
has the representation (3.7)). O

It is easy to see that dim(kerR) = m. Denote p := dim(ker(Dy, D3)). We now
consider a case, when ([B.6) does not hold, i.e., p > m and the problem B.1I), (32)
has either no solution or an infinite number of solutions. We denote by {w}™,
certain base of ker R. Using the fact that kerR C ker(D1, D2), we can extend {w}™
to a basis {w?}!_, of ker(D1,D3). Let u?, v) € R™ be the first and the second
groups of components of w?, i.e., w) = (u?T,v?T)T, (i = 1,p). We construct the
column matrices ®; := Xi(l)l/l + Xi(Q)V (i = 0,N), where U = (u0,,4,... ud), V=
(V9155 0]) € R™*(P=m) " To represent solutions of the MPVBP @), B2) we

introduce a linear operator £ acting in R™(N+1 defined by

N T
Ll ... )T = ((Axl — Bxo)T,...,(Azy — Bxy )7, (Z Cixi)T) .
i=0
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LEMMA 3.3, kerl = {((®0a)7,...,(@na)T)" :a c R},

Proof. Suppose that x = (z,...,2%)T € {((CIDOa)T, cee (@Na)T)T ta € Rp*m},
e., there exists a vector a € RP™™ such that z; = ®;a, ¢ = 0, N. This leads to
T; = Xi(l)Ua + Xi(2)Va. From Eqs. B10)-BI2), by simple computations we find

AxS, = Bx!Y and Ax) =BX®, i=0,N-1.
Using the above equations, we have
(Azy — B:L'O) oo (Azy — B:EN,l)T)T
(AxM = Bx{Mua)", ... (AxP - BX](Vlll)ua)T)T

T
(((AX<2> BXPWa)",. . ((AXY - BXY )Va)")

O+ /—\/\

N
Denote 'z := Y Ciz; = Dilla + DyVa. Since U and V are column matrices whose
i=0

columns are u?, v? and (u?T,viOT)T € ker(D1, D2) (i =m + 1,p), it gives that DU +
D3V = 0, which immediately implies 't = 0. Thus, we obtain Lx = 0, which means
that

{(((I)Oa)T, ceey ((I)Na)T)T S Rp—m} C kerL.

Conversely, assume that x = (7, ..., 2%)T € kerL, i.e,
A$i+1 :B$i, iZO,N— 1,
N
Z CiIi =0.

i=0
Due to the formula B3], z; = Xi(l)f + Xi(Q)C (i = 0,N), where vectors £, € R™
satisfy the relation D1€ + Do = 0, hence we have (¢7,¢T)T € ker(Dq, Ds). Since

(ugT, ng)T (k =1, p) is the basis of ker(D1, Ds), there exists a sequence {ar}y_; such

P
that (¢7,¢0)T = Y ak(uk LU ")T, hence & = Z apud and ¢ = Z ayvy). Thus,
k=1 k=1 k=1

p
Za’f x M 0+X(2) 0)+ Z ak(X(l)u +X(2) 0) i=0,N.
k=m+1

Observing that (ugT,ng)T € kerR, i.e., 121\ A\Aug =0and (I — ;1\ Ao =0 for all
k=1, m, we find Xi(l)ug =0 and X( )vk =0forall k=1,m,i=0,N. Thus,

P P
:ci:Xi(l) Z akungXi(Q) Z apvy, i=0,N.
k=m+1 k=m+1
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Taking a := (i1, ..., 0p)T € RPT™, we get z; = Xi(l)l/{a + Xi(Q)Va (i=0,N), ie.,
z; = ®;a for all i = 0, N where a € RP~™. Thus, we obtain

z e {((@a)",...,( @xa)")" :a e R,

kerl C {((®oa)”,..., (@Na)T)T ca€RPT™Y O

Next, we let ¢ := dim(ker(D,D2)”) and denote by {w;}?; certain base of
ker(D1, Dy)T. Letting W € R9*™ be a row matrix whose rows are vectors w; (i =
1,q), we come to the following theorem.

THEOREM 3.4. Let the matrixz pencil (A, B) be regular and ind(A, B) > 2. Then,
the problem BI), B2) is solvable if and only if

(3.13) Wn* = 0.
Moreover, a general solution of B1)), B2)) has the following form
(3.14) 2= X+ XD+ 2+ ®ia, i=0,N,

where a € RP~™ is an arbitrary vector and (¢7,¢T)T = (Dy, Do)t y* with (Dy, D2)*
the generalized inverse in Moore-Penrose’s sense of (D1, D2).

Proof. The problem &), (B2)) is solvable if and only if

(qga U qg—lv VT)T € imﬁa

i.e., there exists z = (zf,...,2%)T € R™WNV+D satisfying Lz = (¢7,...,q%_1,7")7T.

Equivalently, there exist vectors &, ( € R™ such that z; = Xi(l)erXi@)CJrzi (t=0,N)
N

and Y Ciz; = ~. Thus, the system BI), [B2) possesses a solution if and only
i=0

if there exist vectors £,( € R™ such that D1§ + D3¢ = ~*. Using the fact that

im(Dy, Ds) = (ker(D1, D2)T)* we come to the conclusion that the MPBVP (&1,

B2) is solvable if and only if v* € (ker(Dl7 D5)T)L. Thus, the problem (1), (3.2)

possesses a solution if and only if BI3)) is valid.

Finally, thanks to Lemma and the formula (31), to show that BI4) is a
general solution formula of the problem BII), (82) we only need to prove that Z;
is given by z; = XZ-(I)E + Xi(2)C + 2z; (i = 0,N) with (¢7,¢T)T = (Dy, D2)tv*, is a
particular solution of the above mentioned problem. O

Theorem and Theorem .4l imply the following corollary.

COROLLARY 3.5. (Fredholm alternative) Suppose that the matriz pencil (A, B)
is regular, ind(A, B) > 2 and let p := dim(ker(Dy, D3)). Then
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(i) either p = m and the MPBVP @BI), B2) is uniquely solvable for any data
i (i=0,N—1) and ~;

(ii) or p > m and the MPBVP @I B2) is solvable if and only if the condition
BI13) is valid.

Moreover, the solution formula BI4]) holds.

3.2. Varying coefficients case. In this subsection, we shall deal with the MP-
BVPs for the non-autonomous LSDEs as follows

N
(3.16) Z Cizi =7,
i=0

where A;, B;,C; € R™*™_ ¢;,v € R™ are given and suppose that the LSDE 315 is
of index-2 in the sense that the following relations hold:

(i) rankA; =7, 1<r<m-1,
(ii) dim(ker4;,—1NS;)=m—s, 1<s<m-1,
(iii) kerGi_l N Sl,i = {O}

for all i = 0, N — 1. Further, here it is assumed that A_; := Agp, G_1 := Gp and
Q1,N—1 is projection onto kerG x_; such that Q1 n—1Qn—1 = 0.

Now, we describe shortly the decomposition technique for index-2 LSDEs (see [7]
for details). We decompose the index-2 LSDE solution z; into

Ty = Qi1 + B P12 + Pi1Qui—175 = wi + us + Pi_qv;.

Multiplying Eq. (BI5) by Plﬁllél_zl, Qiﬁl,iéfj, and @1161_2, respectively, using
the relations (2.6]), (Z7) and the fact that @MQZ- = 0, and carrying out some technical
computations, we decouple the index-2 LSDE (B.18) into the system

Uiyl = Pzﬁuajzlqzuz + Rﬁl,iéii%a o
—Qiviy1 = Qi\Pl,iAGi%BiUi + T wi + QiPriGriq,  i=0,N—1.
0 =T vi +QuiGLia,
Thus, we obtain
v = —T1,i@1,iéfj% t=0,N—1,
w; = *TiQiﬁl,ié\iiBiUi — TiQivit1 — TiQiﬁl,iai%Qia i=0,N—-1,
Uiyl = Piﬁl,iél_jBiUi + Piﬁl,iéizl%v i=0,N—-1
We denote
I := (I - 1QiP1 G} Bi)PioaPrio1, i=0,N—1
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and
k
(@) ._ D -1 TN — 1.7
M =] PiaPriciaGri o Bia, i=1N, k==Ti—1,
=0

71 e ~

where it is assumed that [] = I. Observing that (P;_1 P ;—1)?> = Pi_1 P ;_1, we get
1=0

the solution of the LSDE (B3] as follows

i1
(3.17) zi = (M P20+ > MO, PPLCTLar)
k=0
+ TiQiTLiJrIQ\LiJrlal_j_g.l%Jrl
- (Tinﬁl,iéfﬂ1 + Pi—lTl,iQ\I,iéi%)in i=0,N—-2,

N-2
(818) an-1 =Ty (ME5 50+ > MY, PG L)
k=0
*TNleNfléjl,NflfN
- (TN—1QN—1P1,N—1G1_,}V_1 + PN—2T1,N—1Q1,N—1G1_,}V_1)(JN—1

and

N-1
(3.19) zn = M](Vjv_)l-fo + Z M](V]\i)k,QPkPLkGiiQk + QN-_1ZN + Pyo1Q1,N-1T N,
k=0
—1
where T, Zn € R™ are arbitrary vectors and it is assumed that > = 0.
k=0
REMARK 3.6. Similar to Remark Bl if A; (resp., B;) is nonsingular for each
i =0, N — 1 then we will use the corresponding solution formulae for (.15]), (B.I6)

i—1 i-1 i—k—2
Ti = (HA;71171Bi—l—1>j0 +y ( 11 A;}l,IBi_l_1>A,;1qk, i=0.N,
=0 k=0 = 1=0
or
N-1 -1 k-1
Tr; = ( H Bl—lAl)jN _ (H Bl_lAl)Bk_IQk, i=0.N,
=i k=i =i

where Zo, Ty € R™ are arbitrary vectors instead of the formulae [BI7)-(319). See
[1] for details. The formulae BIT)—(BI9) are useful in the case, where 4; and B; are
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both singular, and Eq. @I0) is of index-2. Further, it is clear that these formulae
are an extension of the above mentioned formulae.

LEMMA 3.7. Let the LSDE BI5) be of index-2. Then the matrices

I1;, HiM(i)p HiMi(i)k,QPkﬁl,kél_’i; nQiTl,i+1@1,i+léi%+1v

7—

(TinﬁLi + PiflTl,iQ\I,i)aill
are independent of the choice of the T;, Q; and T ;.

Proof. Let i be another transformation, whose restriction ﬁ‘ker 4, 1s an isomor-
phism from kerA; onto kerA; 1 and @Z be another projection onto kerA;, ]51 = Iféi.
We denote (771 = A; + Bﬂi@i Let él,i be a projection onto keréi along St i+1,

ﬁl,i =1 él,i’ Tlﬂ"keréq, denote an isomorphism from keréi onto keréi_l and put

= ~ ~ o~ = ~ -~ =1 ~ =2
Gi,i:=Gi+BiPi1T1,Q,,;, I:=(I—-TiQiP1,G,,;Bi)Pi_1P1, 1.

First, we put

Zi = JSiJrTflTin‘Jrff1©i71371T1,i@1,i+T1}-1 (151'71+Tf_11Tz‘71Qif1)T1,i@1,i*é1,i~

From the identities (Z8) and 2I3), we have

1 ~

(3.20) iézﬁlzélz = i@zﬁuzzél—zl
Using the facts that élléz =0, f{lTiQi = @ififlTiQi and

Ty (P + T\ Ti1Qir) T1,iQu = Q17 (P + T4 T 1Qi 1) ThiQu i,
we see that

T,QiP1iPi = —T;Q:Qy ;P = ~TiQ:Q .,
Ti@iﬁl,ii_lﬂQi = TiQi(I - él,i)éii_lTiQi = T;Qs,

fi@iﬁl,ii_1Qvi—1Pi—1T1,i@1,i = i@z(f — @171')@ii_léi—lpi—lTl,i@Li
= @1—13—171,1‘@1,1‘

and

Ti@iﬁl,iff,il (ﬁi—l + iillﬂ—lQi—l)Tu@l,i =0.
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Combining the above relations with Eq. (Z3)), it follows that

(3.21) ﬁézﬁlzzz = - Tz@z@lz +T1:Q; + @iqﬂqu@m

= —T,Qi(P; + fflTiQi)@\l,i +T1;Q; + @i—lPi—lTl,i@Li

=TQiP1; +Qi—1Pi—1T1,:Q1-
Thus,

:(I*TinﬁLi B Qz 1P 1T11Q11G B) 11P1z1

Observe that
131'71131,1'71 =P 11— P 1(P +T "Tio1Qi 1)Q1 i1=P 1P i1
and

@1,1'71151'71131,1'71 = @1,1'71(1 - ©i71)131,i71 =0.

Further, we note that

LiBiQio1 = G (Ai + BiIT,Q)QiT, ' Qi 1= PLiT Qi
implying that
Qui-1 = T1,:Q1,G1 | BiP,
= Tl,in,i@;}B T1:Q1.:G1 1 BiQi—1
= Tl,i@l,iél_ﬂlBi-

This leads to
I = (I- T,Q: PGy B) 1P P = Hi_(I_TiQiﬁl,iéi%Bi)Qvi—lpi—lﬁl,i—l-
Since
(I- TiQiﬁl,ié;%Bi)Qvi—l = Qi1 — TiQiﬁl,iGigBiQi—léi—l
= Qi1 — Tinﬁl,iﬁl,inlQi—léi—1
=Qi—1 — TQi(I — Q1.)Q:T ' Qi
=0,
we have ﬁi =1II;.
Applying the identities (28], (ZI3]) we get

~ ~1 ~
SN ~ - = a1
Pi1P1i1Gy ;o = PioaPri1Zi1Gy .
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On the other hand, since

151'71131,1'71151'71 = 131'71 — 151‘—1@1,1‘—1(1 - @z‘—l) = 131‘—1}71,1'71 = 151'71131,1'—1,

~

ﬁi—lpl,iqi—:llﬂ'—l@—l =P (I- @1,1'_1)@1—172_,117}—1621'—1 =0,

~

~ -~ N
P 1P 1T, Qi—2 P21 j—1Q1,i—1

o~

=P (- Ql,ifl)@i—11’:1‘7_11@1'—2]3'—27—11,1'—1@171'—1 =0

and

éflpmelff,il_l(é‘fz + i:lgTi72Qi72)T1,i71Q\1,ifl
= ﬁi—lﬁl,i—lél,iqiﬁq(151'—2 + i_,lgTi—QQi—Q)Tu—l@Li—l =0,

we have that

= ~-1

~ ~ -~ ~ 1 ~ ~ 1 ~ ~ ~
Pz'71P1,i71G1,i71 = Pi71p1,i71G1,i_1 = Piflpl,i71G1,i_1 - Qi71pi71p1,i71G171-_1-

Observing that T1,Q;—1 = (I- Tin‘ﬁuai%Bi)13171131,1'—1621'71@1'71 = 0, we obtain

—~ —~1
- . 2 ~ ~ - ~
WP P1i1Gy oy =P PGy — ILQia Pica PGy

. ~
=ILP 1 P1i1Gy g,

hence

—~ 1
. =2 ~ N oy
Py P1io1Gy oy =P PGy

o N . N
Since Gy ; 1Bi—1Qi—2 = P1,;1T;_1Qi—2 and P,_1 Py ;- 1Q;—1 = 0, we have

Hi]Diflﬁl,ifléi%_lBi71©i72pi72ﬁ1,i72a£%_2
= HiPiq131,1'71671_,}_1Bi—lQFQ@FQP;zﬁLFQ671_,}_2
= HiPi_1ﬁ1,i—1ﬁl,i—1T:11Qi—2@i—2p'—2ﬁ1,i—261_,1172
= Hz‘Pi—l131,1‘—1Qi—le_ll@i—2P‘—2131,i—2@£§_2
=0.
Thus,

—~ —~1 —~ 1
;P11 P1,i-1Gy ;1 Bi—1Pi2P1,i—2Gy ;5

~ . . Ly
=1ILP 1P 1Gy; 1 BioaPiaPr i oGy, .
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Thus, the matrices HiMi(i)l, HiMi(i)k_2Pk]31,k@f,1€ do not depend on the choice of the
T;, Q; and T 4, as it was to be proved.

From Eqgs. (2.8), 21I3) it follows that
-1
T Qle z+1Q1 z+1G1 i+1 — TQ Tl z+1Q1 z+1Zl+1G1 i+1°

Besides, Ql il = Ql l+1( i1+ Tz+1T +1Qi+1), therefore, we get
TiQiTLiJrlQl ¢+1Zz'+1G1_%+1 =TiQiT1,i+1Q1 i1 (P1,z'+1(Pi+1 + Tl+1T +1Qit1)
+1Q’LP Tl z+1Q1 i+1 + T1 1+1(P + T IT Qz)Tl z+1Q1 z+1> 1 1+1

= nQiTl,i+1Q1,i+1Gii+1v

or equivalently,

1
T:QiTh z+1Q1 i+1Gri = TiQi T, z+1Q1 z+1G1 i1

From Eqgs. 320)-321)), it follows that

~ -1

TQzPI'LGlrL*TQzPI'LGll +Q’L IR 1T1’LQ1’L 11,

further,

a1
P, 1T11Q11G11 =PF;_ 1T11Q11(P11(P +T 1TQ)+Q1T 1Qi 1P 1T11Q11

+T1ji1(ﬁi—1 +T T?, le I)Tl le 1>G111 = z 1T1 lez 117
giving

~ = =l ~ o~ =~ =l o~ ~ ~ o~
TiQiP1,:Gy; + Pi1Th,:Qq,G,; = TiQipl,iGl_; + QiflpiflTl,in,iGl_,%

-1—131‘—1T1,i@\1,z‘éiz1
= T’zQzﬁlzéff}

+((I = P—1) Py + ﬁifl)Tl,iQ\I,ial_,zl
= TzQzlSuCAr'l_zl + Pi—1T1,i@1,i@1_j-

Thus, we obtain

~ ~—1

(TQ1P11+P1 llele)Glz (TQ1P11+R llele) ,} d

From the formulae (BI7)-BI9), it follows that the “fundamental solution” of
equations

AiX'H-l = BiX,L', 1= 07 N -1
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can be determined as X; := HiMi(i)l, i =0,N—1and Xy := MJ(VAPI. We define
R = diag(P,lﬁL,l,I — PN,1]31,N,1) and the matrix (D1, Dy), whose columns are

N
the columns of the matrices D; := Y C;X; and
i=0

Dy = *CNflTNleNfléjl,Nfl +COn@nN-1+ CNPNflél,Nfb

LEMMA 3.8. Suppose that the LSDE BI8) is of index-2. Then the following
condition

(3.22) ker(D1, Dg) = kerR
does not depend on the chosen T;, Q; and Th ;.

Proof. Assume that Qz is another projection onto kerA; and T} (resp., Tl,i) is
another transformation with 7} lkera, (resp., T1ﬂ|kerG ) being an isomorphism from

ker A; onto kerA;_; (resp., kerG; onto keréi_l). Here, the matrices B, G, Qvu, ]3171-,
él,z‘ and ﬁl are defined in the proof of Lemma 371 We put

N
Dy =Y CiXy, X =1,MY,, i=0,N—1, Xy =M,
=0

Dy = ~CnaTN-1QN-1Q1 y_1 + ONQn-1+ CNPn-1Qy 3
and
é = diag(ﬁ_lﬁL_l,I — ﬁN—lﬁl,N—1)7
1

WhereM( : HlelplzllGlzllell(iZO; )

Lemma [371] ensures that X; = X, for all i = 0, N — 1. Besides, using Eq @)

and the facts that Py_ 1P1N 1TN IQN 5 =0, Py_ 2P1N oIy 1 = Py_ 2P1N 9
we have

~—1

MM = Py_ 1P1N 1G1N 1Bn- iy 1My~

(V= 1)
N—-1 :

Applying Lemma [3.7] again and noting that

~ ~1
- = ~ N . - . .
Py aPin1Gy vy =Pv-1PiN-1Gy oy —QN-1Pv-1Pin-1Gy g,
we obtain

MJ(VN,)l = M](Vj\i)l - @N—lPN—1ﬁ1,N—léi}V,1BN—1HN—1M](VN,;U7
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or
Xy =Xn— @NﬂPN71131,N71(A;17,}V,1BN71XN71-
This implies that
(3.23) Dy =D — CN@N—1PN—1ﬁ1,N—161_,}V_1BN—1XN—1-
According to Eq. ([2H]), we get
TN71@N7151,N71 = TNleNflél,Nfl and 15N—151,N71 = -ﬁNle\l,Nfl-
Therefore,
Dy =Dy+Cn(Qn_1—Qn_1) + Cn(Py_1 — PN—l)@l,N—h
or equivalently,

(3.24) Dy = Dy + Cn(Qn_1 — QN71)}31,N71-

Now suppose that Eq. B22) is valid. Let (z1,z%)7 € ker(Dy, D) then
D1%o + Do = 0.
From Egs. (323)-(324)), the above equation can be rewritten as follows
Dizo + Doy — CN@NAPN71131,N71(A;£}V,1BN71XN71fo
+ON(QN_1 — QNfl)ﬁl,Nfle = 0.
Put
§ = _QVN—IPN—1ﬁ1,N—1éi}v_1BN—1XN—1-fO
and
C:=(Qn_1— QNfl)ﬁl,NflfN-
Using the facts that @N_l = QN_léN_l and @171\;_1@1\;_1 =0, we have

Doy (€ +Q) = *CNéNf1PN7lﬁl,Nflal_,}v_lBNleNflfO
+ON(QNn—1 — QNfl)ﬁl,Nfle~

This gives

DiZo + Da(Zy +€+¢) = 0.
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This means that (zf,(Zn + & + C)T)T € ker(Dy,D3) = kerR. It ensures that
P_1P 1% =0and (I — Pv_1P1 n-1)(@Nn + £+ () = 0. Now applying Eq. ([21) we

come to the conclusion that ]5,1]317,1 = ]5,1]31,,1. Further, ]5,1 = ]3,1P,1, hence

o~

P,1P17,1 = ﬁflpflﬁlﬁfl. This 1rnphes that

~

(3.25) PPy 1% = 0.

On the other hand, since P_lﬁL_la’co =0and Xy_1 = XN_lP_lﬁL_l, it follows that
XnN-1Zo = 0. Thus, £ = 0 and we obtain (I — Py_1P; n—1)(Zn + ¢) = 0. Observing
that ¢ = Qn-1¢ and Py 1P v 1QNn-1 =0, we get

IN +Qn-1(= PNflﬁl,Nflﬂ_fN~

This relation leads to that @LN,JCN =0, hence ( = (@N,l —@nN-1)Zn. This implies
that

Qn-1ZN + Qn-1(Qn-1 — Qn_1)TN =0
or we have @N_le = 0. Thus,
Qn-17N + ﬁN—l@l,N—le =0.
This means that
Qn_1Tn + 13N—151,N715N =0.
The last equation is equivalent to
(3.26) (I — 15N,11A517N,1)53N =0.

Combining Egs. (@28)-(B20), we come to the conclusion that (z2,z%)7 € kerR.
Thus, the inclusion ker(D;, Dy) C kerR is proved. To show the converse inclu-

sion, we observe that for arbitrary (a’cg,fc%)T S keré7 i.e, ﬁ_llgl,_lfco = 0 and
(I — ﬁN—lﬁl,N—l)-fN = 0. Due to )?z = j(v'iﬁ_lﬁL_l (Z = O,]\[)7 it implies that

51:790 = 0. Notice that the equality (I — ]5N71]317N,1):EN = 0 is equivalent to the
following relation

Qn_17n + ﬁN—1©1,N_1jN =0.

Moreover, since @171\,_1]5]\[,1]51,]\],1 = 0 it follows @LN_I:TCN = 0. Therefore, we
obtain DeZy = 0. It implies that ﬁlfo + DyZn =0 or (zt, 7T e ker(f)l, 132) O
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We denote by

i—1
z; =11, Z Mi(i)k,gpkpl,kGii(Jk + Tin‘Tl,iHQ1,i+1Gi%+1qz‘+1 - TiQiPLiGi%Qi
k=0

_Pi—lTl,in,iGi%QM t=0,N—2,

N-2
. (NoD) 5 5 Aot _ ~
ay—1:=1y_1 E My =3 PePLeGL e — TN-1QN-1PiN—1Gy v _1av—1
k=0

N o
—Pn_2Ti N-1Q1,N—1G] y_1aN—1,

N-1 N
N 5 A
ZN = Z M](V_)k_QPkPLkGLiQk and v =7 — Zczzz
k=0 i=0
Note that Lemma [3.8 guarantees that the following theorem does not depend on the
chosen T;, @; and T7 ;.

THEOREM 3.9. Let the LSDE BI8) be of index-2. Then the MPBVP BI3),
BI8) is uniquely solvable for every q; € R™ (i =0, N — 1) and every v € R™ if and
only if the condition B22) holds. Moreover, the unique solution can be represented
as

xl:Xl§+Zla ZZOaN_27
(3.27) N1 = Xna&+anv1 = TNaQN-1Q1 NG,
Ny = XnE+2n +Qn-1(+ Pv_1Q1,nv-1C,

where (§7,¢TT = (D1, D2)Tv* with (D1, D2)% the generalized inverse in Moore-
Penrose’s sense of (D1, Ds).

Proof. The proof of Theorem [3.9]is quite similar to that of Theorem [3.2] hence
it will be outlined only.

First, observe that the equations corresponding to (B.8) and (3.9) are

(3.28) (I- TOQOISLO@LOBO)P—1131,—1500 =0
and
(3.29) XNTo+ QN_1ZN + PNflél,Nflﬂ_fN =0.

Using the facts that P,1]31,,1 = P0]3170, To = I and PyQg = 0, we obtain that Eq.
B2]) yields

PyPyoTo = 0.
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Moreover, X yTg = XNP0]31,0:E0 =0, hence, Eq. (3:29) implies that

QN-1TN + PN—1@1,N—150N =0,
or equivalently,

I- PNflﬁl,Nfl)ﬂ_fN =0.
In the proof of the converse part, we note that the solution formula B3] is

replaced with the formulae (BI7)—-@EI9). Since X; = X;P_1P; 1, Vi = 0, N and
P_1P; 1%y = 0, it gives X;To = 0 (i = 0,N). Using the fact that Py_1Qn_1 =

0, we can conclude that the equality @n-1Zny + Pn-1Q1,v—1Zn = O implies that
Qn-1Zy =0 and Py_1Q1,v—1Zn = 0. Besides, since

IN =QN_1ZN + PN_1Q1, N 1TN + Pn_1Pi N 1T N,
we get Ty = PN,1]31,N,1:EN. This leads to

Qi N-1ZN = Qi N1 Pv_1Pin-1Zny = Qin—1(I —Qn-1)Pi,n—1Zny =0. O

Next, we have the following useful lemma.

LEMMA 3.10. The dimensions of kerR and ker(D1, D) are independent of the
choice of T;, Q; and Ty ;, moreover, dim(kerR) = m and dim (ker(Dl,Dg)) =:p>
m.

Proof. Firstly, we observe that
(3.30) ker(P; Py ;) = kerA; @ kerGy, i=—1,N — 1.
Indeed, let £ € ker(PiﬁM) means that Piﬁl,if = 0. We write £ as £ = ]3171-5 + @1,i§~
Clearly, @1,:£ € kerG,. Furthermore, since PP ;£ = 0, it implies that P; ;§ =
(Pz + Qi)Pl,ig = Qipl,’ig € kerA,;. Thus, we get
ker(PZﬁM) C kerA; + kerG;, i=-1,N —1.

Conversely, for arbitrary £ = y+z € kerA4;+ kerG;, we see that Pz-ﬁuf = Piﬁl,iQier
PiPI,in,'L'Z =0. T‘heI‘GfOI’G7

kerA; + kerG; C ker(Piﬁl,i), 1=—1,N—1,
which yields

ker(Piﬁu) = kerA; + kerG;, i=-1,N—1.
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On the other hand, since @MQZ- = 0, it is easy to verify that kerA; N kerG; = {0}.
This leads to the identity ([B.30), as it was to be proved.

Noting that rankA; = r and rankG; = s for all i = —1, N — 1 and applying Eq.
B30), we obtain that

rank(Pi]/D\u) =r+s—-m, i=-—1,N-—1.

In particular, we have rank(P,lﬁL,l) = r+s—m and rank(PN,lﬁLN,l) =r+s—m.
It follows that dim(kerR) = m.

Now using notations and the arguments in the proof of Lemma [3.8, we consider
a linear operator F from ker(Dy, Ds) to ker(Dy, D3), defined by

FE T = (67 (C+ @1~ Qu-1)PrviC
*@Nf1PN71131,N71@i}v,lBNAXN—lﬁ)T)T-

Let (y*,2")T € ker(D1, D3) be arbitrary, i.e., D1y + Dyz = 0. Then we determine
two vectors £ and ¢ by £ =y and

C=z4+(Qn-1— @N—l)ﬁl,N—IZ + @N—1PN—1131,N—1éi}v,1BN—1XN—1y-

From Eq. (Z3) and the facts that @N,lQN,l = Q@Qn_1 and @1,]\],1@]\],1 =0, we
obtain

FE T =" "
Moreover, it is easy to see that
ﬁlf + 52C =0, ie., (§T7 CT)T S ker(ﬁl, 52)

This implies that F is sujective, hence f(ker(ﬁl, 132)) = ker(Dy, D3). According to

the property of the linear operator, we get dirn]-'(ker(ﬁl7 Dg)) < dim(ker(ﬁl7 52)),
hence

dim(ker(Dl, Dg)) < dim(ker(ﬁl, 52))
Similarly, we also have the following inequality

dim(ker(ﬁl, 52)) < dim(ker(Dl, Dg)),
which implies that

dim (ker(f)l, 52)) = dim (ker(Dl7 Dz)) .
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Thus, dim(ker(Dl,Dg)) does not depend on the choice of T;, @); and T3 ;. On the
other hand, the following inclusion

kerR C ker(D1q, D2)

is always valid. Therefore, dim(ker(Dl, Dg)) i=p>m. 0O

As a direct consequence of Theorem [3.9 and Lemma [3.10 we come to the following
corollary.

COROLLARY 3.11. Suppose that the LSDE B15) is of index-2. Then the MPBVP
BI5), BI0) is uniquely solvable if and only if dim(ker(Dy, D3)) = m.

Now we turn to the case when ([3.22)) is not valid, i.e., p > m and the MPVBP
3I15), (BI6) has either no solution or an infinite number of solutions. Using the same
notations as in the constant coefficients case, we define column matrices ®; := X,U
(1= O,ANi—Q)7 Oy :=Xnoald — TN—1QN—1@1,N—1V and ®n = XnU+ QN V+
Pn_1Q1,n—1V and a linear operator £ acting in Rm(N“),

N T
E(xOT, e ,:L'%)T = ((Aol'l — B():L'())T, ey (ANflfL'N — BNfll‘Nfl)T, (Z Czl‘z)T) .
=0

The counterpart of Lemma [3.3] is now as follows.
LEMMA 3.12.  kerl = {((®0a)7, ..., (@na)T)" : a € R},

Proof. The proof is similar to that for Lemma [3.3] except that now we note that
Tn-1Qn-1 = @N-2TN-1@QNn-1, AiQi =0 (i = N =2, N—1), GN_1Q1,n-1 = 0,
X;=X,P_1P1_1 (=0,N), and the equality (I — PN,lPLN,l)vg = 0 is equivalent
to the relation QN,lvg + PN,lQLN,lv,? = 0 and implies that Q1,N71v;2 = 0 for each
k=1,m. 0

THEOREM 3.13. Suppose that the LSDE B0 is of index-2 and p > m. Then,
the problem [BIH), BI0) possesses a solution if and only if

(3.31) W™ = 0.
Moreover, a general solution of B15), BI8) can be given by

11:X1§+21+@1a, ’I:ZO,N72,
(3.32) N1 = XNl +2v-1 = TN 1QN1@N-1C + PN aa,
N = XnE+2nv + QN1+ Pvo1Qn-1C + Pa,

where a € RP~™ is an arbitrary vector and (¢7,¢T)T = (D1, Do)t y* with (Dy, Da)*
the generalized inverse in Moore-Penrose’s sense of (D1, Ds).
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Proof. The proof of Theorem [3.13] is similar to that of Theorem [3.4] and will be
omitted. O

Combining Theorem and Theorem [B.13] we come to the following statement.

COROLLARY 3.14. (Fredholm alternative) Assume that the LSDE BIH) is of
indez-2 and let p := dim(ker(Dy, Dy)). Then

(i) either p=m and the problem [BI3), BI8) is uniquely solvable for any data
g (i=0,N—1) and ~;

(ii) orp > m and the problem [B.150), BI0) is solvable if and only if the condition
B31) is valid.

Moreover, the solution formula [332)) holds.
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