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Abstract. On the background of a careful analysis of index-2 linear singular difference equations

with both constant and varying coefficients cases, multipoint boundary value problems for these equa-

tions are considered. Necessary and sufficient conditions for the solvability of multipoint boundary

value problems are established. Further, general solution formulae are explicitly constructed.

Key words. Index, Matrix pencil, Linear singular difference equations, Multipoint boundary

value problems.

AMS subject classifications. 15A06, 39A05, 39A10.

1. Introduction. In recent years, there has been considerable interest in study-

ing linear singular difference equations (LSDEs) of the form

Anxn+1 = Bnxn + qn, n ≥ 0,(1.1)

where An, Bn ∈ Rm×m, qn ∈ Rm are given and rankAn = r (1 ≤ r ≤ m− 1) for all

n ≥ 0 (see [2]–[8] and references therein). The index notion of a matrix pencil was

introduced to investigate Eq. (1.1) with constant coefficients. Further, the solvability

of initial value problems (IVPs) has been studied thoroughly [4]–[6]. However, as

far as we know the qualitative questions such as the existence, uniqueness, etc. of

multipoint boundary value problems (MPBVPs) for (1.1) with constant coefficients

have not been discussed. In the varying coefficients case, the index-1 concept of Eq.

(1.1) was also introduced in [2, 8] and the solvability of IVPs as well as MPBVPs

for index-1 LSDEs has been considered in [2, 3, 8]. Later on, the index-2 concept

of Eq. (1.1) has been proposed, and basing on this index-2 notion, the condition of

solvability as well as the solution formula of IVPs for index-2 LSDE (1.1) have been

established in [7]. As discussed in [7], many valid results for index-1 case can be

extended to index-2 case, however, the extension meets with some difficulties.

The main goal of this paper is studying MPBVPs for index-2 LSDE (1.1) in both

constant and varying coefficients cases. The index-2 of a matrix pencil and index-2
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of Eq. (1.1) turn to be the keystone in the analysis of MPBVPs. For index-2 LSDEs

with constant coefficients, similarly as in [4]–[6], one can solve Eq. (1.1) by means

of index of a matrix pencil and Drazin inverse. It is well known that many results

for constant coefficients LSDEs cannot be directly generalized to varying coefficients

LSDEs (ref. [2, 3, 7, 8]). Thus, in the varying coefficients case, our approach to

LSDEs is based on index-2 notion of Eq. (1.1) and projections. We shall develop

some techniques of index-1 LSDEs in [3, 8] for index-2 LSDEs.

The paper is organized as follows. In Section 2 we recall some definitions and

preliminary results, as well as give some simple results concerning index-2 LSDE (1.1).

Necessary and sufficient conditions for the solvability and a general formula solution

of MPBVPs for index-2 LSDE (1.1) will be established in Section 3.

2. Preliminaries. We start this section by recalling the Drazin inverse of a

matrix and the index notion of a matrix pencil, which have been studied in [4, 6].

Firstly, if M ∈ Rm×m, the index of M , denoted by ind(M), is the least non-negative

integer ν such that kerMν = kerMν+1. It is worth noting that the following theorem

plays an important role to study autonomous LSDEs.

Theorem 2.1. [4] Suppose that M ∈ Rm×m, ind(M)= ν and rankMν= t. Then

there exists a nonsingular matrix S ∈ Rm×m such that

M = S

[
W 0

0 N

]
S−1,(2.1)

where W is a nonsingular t× t matrix and N is a nilpotent (m− t)× (m− t) matrix

with ν=ind(N).

If M ∈ Rm×m is given in the form (2.1), then the Drazin inverse of M , denoted

by MD, is defined by

MD = S

[
W−1 0

0 0

]
S−1.

It is easy to verify that

MMD = MDM, MDMMD = MD, Mk+1MD = Mk for k ≥ Ind(M)

and the Drazin inverse is unique.

In what follows, we consider A,B ∈ Rm×m and always assume that the matrix

pencil (A,B) is regular (i.e., there exists a scalar λ ∈ C such that λA + B is non-

singular) and let Âλ := (λA + B)−1A, B̂λ := (λA + B)−1B, f̂λ := (λA + B)−1f for

f ∈ Rm. Observe that B̂λ = I − λÂλ, hence, Âλ and B̂λ commute.

Theorem 2.2. [4] Suppose that the matrix pencil (A,B) is regular and f ∈ Rm.
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Then for all α, β ∈ C for which (αA + B)−1 and (βA + B)−1 exist, the following

statements hold:

(i) ind(Âα) = ind(Âβ),

(ii) ÂαÂ
D
α = ÂβÂ

D
β ,

(iii) ÂD
α B̂α = ÂD

β B̂β and B̂D
α Âα = B̂D

β Âβ,

(iv) ÂD
α f̂α = ÂD

β f̂β and B̂D
α f̂α = B̂D

β f̂β.

If (A,B) is regular and det(λA + B) 6= 0, then ind(Âλ) is called the index of

the pencil (A,B), denoted by ind(A,B), i.e., ind(A,B) := ind(Âλ). Theorem 2.2

guarantees that the definition of the index of the matrix pencil does not depend on

the chosen value λ.

Next, to study the index-2 LSDE (1.1) with variable coefficients, we start with

some basic definitions for non-autonomous LSDEs (see [2, 3, 8, 7]). Let Qn be any

projection onto kerAn and Tn ∈ GL(Rm) for all n ≥ 0 such that Tn|kerAn

is an

isomorphism from kerAn onto kerAn−1, here we put A−1 := A0. Denote again by Tn

the matrix induced by the operator Tn.

Lemma 2.3. [7] The matrix Gn := An +BnTnQn is nonsingular if and only if

kerAn−1 ∩ Sn = {0},

where Sn := {z ∈ Rm : Bnz ∈ imAn}.

Definition 2.4. [7] The LSDE (1.1) is said to be of index-1 if

(i) rankAn ≡ r,

(ii) kerAn−1 ∩ Sn = {0}.

Now we suppose that the matrices Gn are singular for all n ≥ 0, i.e., Eq. (1.1) is

of higher index. Put Pn := I−Qn for all n ≥ 0 and let A+
n denote the Moore-Penrose

generalized inverse of An.

Lemma 2.5. [7] The following relation

(Tn + TnPnA
+
nBnTnQn)kerGn = kerAn−1 ∩ Sn

is valid.

It is worth noting that the matrices (Tn + TnPnA
+
nBnTnQn) are nonsingular for

all n ≥ 0, consequently, we come to the following corollary.

Corollary 2.6. [7] dim(kerGn)= dim(ker An−1 ∩ Sn), ∀n ≥ 0.

Lemma 2.7. [7] Let Qn, Q̃n be two projections onto kerAn and Tn, T̃n ∈ GL(Rm)

such that Tn|kerAn

, T̃n|kerAn

are two isomorphisms between kerAn and kerAn−1. Put
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Gn := An +BnTnQn, G̃n := An +BnT̃nQ̃n and

S1,n := {z ∈ R
m : BnPn−1z ∈ imGn}, S̃1,n := {z ∈ R

m : BnP̃n−1z ∈ imG̃n}.

Then, the following relations hold:

G̃n = Gn(Pn + T−1
n T̃nQ̃n), ∀n ≥ 0,(2.2)

S̃1,n = (P̃n−1 + T̃−1
n−1Tn−1Qn−1)S1,n, ∀n ≥ 0,(2.3)

kerG̃n ∩ S̃1,n+1 = (P̃n + T̃−1
n TnQn)(kerGn ∩ S1,n+1), ∀n ≥ 0.(2.4)

Remark that the identity (2.4) ensures that the following definition does not

depend on the choice of the projections onto kerAn and the isomorphisms between

kerAn and kerAn−1. For well-definedness, we put G−1 := G0.

Definition 2.8. [7] The LSDE (1.1) is said to be of index-2 if the following

conditions

(i) rankAn ≡ r, 1 ≤ r ≤ m− 1,

(ii) dim(kerAn−1 ∩ Sn) ≡ m− s, 1 ≤ s ≤ m− 1,

(iii) kerGn−1 ∩ S1,n = {0}

hold for all n ≥ 0.

From Corollary 2.6, we get that rankGn does not depend on the choice of the

projections onto kerAn and the isomorphisms between kerAn and kerAn−1, hence we

can suppose that rankGn ≡ s, 1 ≤ s ≤ m − 1. Here, Q1,n denotes a projection onto

kerGn and let T1,n be a nonsingular operator with the restriction T1,n|kerGn

is an

isomorphism between kerGn and kerGn−1. We also denote again by T1,n the matrix

induced by the operator T1,n.

Lemma 2.9. [7] The matrix G1,n := Gn +BnPn−1T1,nQ1,n is nonsingular if and

only if

kerGn−1 ∩ S1,n = {0}.

Moreover, if G1,n is nonsingular then

Q̂1,n−1 := T1,nQ1,nG
−1
1,nBnPn−1

is a projection from Rm onto kerGn−1 along S1,n.
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Recall that notations kerG̃n and S̃1,n+1 have been introduced in Lemma 2.7. We

now come to the following lemma which states the relationship between projections

Q̂1,n and
̂̃
Q1,n.

Lemma 2.10. Suppose that LSDE (1.1) is of index-2 and let
̂̃
Q1,n be a projection

from Rm onto kerG̃n along S̃1,n+1. Then the following relation holds:

̂̃
Q1,n = (P̃n + T̃−1

n TnQn)Q̂1,n.(2.5)

Proof. Putting

Q̄1,n := (P̃n + T̃−1
n TnQn)Q̂1,n(Pn + T−1

n T̃nQ̃n)

and noting that (Pn + T−1
n T̃nQ̃n)(P̃n + T̃−1

n TnQn) = I, Q̂2
1,n = Q̂1,n, we obtain

Q̄2
1,n = Q̄1,n, i.e., Q̄1,n is a projection.

Applying the relation (2.2) and observing that GnQ̂1,n = 0, we have

G̃nQ̄1,n = GnQ̂1,n(Pn + T−1
n T̃nQ̃n) = 0.

On the other hand, let x ∈ Rm such that Q̄1,nx = 0, or equivalently, Q̂1,n(Pn +

T−1
n T̃nQ̃n)x = 0. Since Q̂1,n is the projection onto kerGn along S1,n+1, it follows

(Pn + T−1
n T̃nQ̃n)x ∈ S1,n+1. This leads to x ∈ (P̃n + T̃−1

n TnQn)S1,n+1. Hence, using

the relation (2.3), we get x ∈ S̃1,n+1. Thus, Q̄1,n is a projection onto kerG̃n along

S̃1,n+1 meaning that

̂̃
Q1,n = (P̃n + T̃−1

n TnQn)Q̂1,n(Pn + T−1
n T̃nQ̃n).

Furthermore, observing that Q̂1,n = T1,n+1Q1,n+1G
−1
1,n+1Bn+1Pn and

T−1
n T̃nQ̃n = QnT

−1
n T̃nQ̃n yields

Q̂1,n(Pn + T−1
n T̃nQ̃n) = Q̂1,n.

Thus, we obtain Eq. (2.5).

From now on, we put P1,n := I −Q1,n and P̂1,n := I − Q̂1,n.

Lemma 2.11. [7] Suppose that the LSDE (1.1) is of index-2 and Ĝ1,n := Gn +

BnPn−1T1,nQ̂1,n. Then the following relations hold:

Ĝ−1
1,nGn = P̂1,n, Ĝ−1

1,nAn = P̂1,nPn,(2.6)

Ĝ−1
1,nBn = Ĝ−1

1,nBnPn−1P̂1,n−1 + T−1
1,nQ̂1,n−1 + P̂1,nT

−1
n Qn−1.(2.7)
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Suppose that the LSDE (1.1) is of index-2. We also introduce an operator T̃1,n ∈

GL(Rm) whose restriction T̃1,n|kerG̃n

is an isomorphism between kerG̃n and kerG̃n−1.

Put
̂̃
G1,n := G̃n + BnP̃n−1T̃1,n

̂̃
Q1,n. A similar result of the relation (2.2) can be

established for index-2 LSDEs, namely, we obtain the following lemma.

Lemma 2.12. Let the LSDE (1.1) be of index-2. Then the identity

̂̃
G1,n = Ĝ1,n

(
Pn + T−1

n T̃nQ̃n + T−1
n Qn−1P̃n−1T̃1,n

̂̃
Q1,n(2.8)

+T−1
1,n

(
Pn−1 + T−1

n−1T̃n−1Q̃n−1

)
T̃1,n

̂̃
Q1,n − Q̂1,n

)

is valid for each n ≥ 0.

Proof. Since T−1
n Qn−1 = QnT

−1
n Qn−1 and Pn−1P̃n−1 = Pn−1, we have that

GnT
−1
n Qn−1P̃n−1T̃1,n

̂̃
Q1,n = BnP̃n−1T̃1,n

̂̃
Q1,n −BnPn−1T̃1,n

̂̃
Q1,n.(2.9)

Observing that Q̂1,nQn = 0, we come to the following identity

Q̂1,n(Pn + T−1
n T̃nQ̃n) = Q̂1,n.

This gives

Pn + T−1
n T̃nQ̃n − Q̂1,n = P̂1,n(Pn + T−1

n T̃nQ̃n).

Thus, we obtain

BnPn−1T1,nQ̂1,n(Pn + T−1
n T̃nQ̃n − Q̂1,n) = 0.(2.10)

Using the relation (2.2), we can easily see that

T−1
1,n

(
Pn−1 + T−1

n−1T̃n−1Q̃n−1

)
T̃1,n

̂̃
Q1,n = Q̂1,nT

−1
1,n

(
Pn−1 + T−1

n−1T̃n−1Q̃n−1

)
T̃1,n

̂̃
Q1,n.

Therefore, we have

GnT
−1
1,n

(
Pn−1 + T−1

n−1T̃n−1Q̃n−1

)
T̃1,n

̂̃
Q1,n = 0.(2.11)

Further, since T−1
n−1T̃n−1Q̃n−1 = Qn−1T

−1
n−1T̃n−1Q̃n−1, we get

BnPn−1T1,nQ̂1,nT
−1
1,n

(
Pn−1 + T−1

n−1T̃n−1Q̃n−1

)
T̃1,n

̂̃
Q1,n = BnPn−1T̃1,n

̂̃
Q1,n.(2.12)

Finally, combining the relation (2.2) with Eqs. (2.9)–(2.12), and observing that

GnQ̂1,n = 0 and Q̂1,nQn = 0 implies that

Ĝ1,n

(
Pn + T−1

n T̃nQ̃n + T−1
n Qn−1P̃n−1T̃1,n

̂̃
Q1,n
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+T−1
1,n

(
Pn−1 + T−1

n−1T̃n−1Q̃n−1

)
T̃1,n

̂̃
Q1,n − Q̂1,n

)

= (Gn +BnPn−1T1,nQ̂1,n)
(
Pn + T−1

n T̃nQ̃n + T−1
n Qn−1P̃n−1T̃1,n

̂̃
Q1,n

+T−1
1,n

(
Pn−1 + T−1

n−1T̃n−1Q̃n−1

)
T̃1,n

̂̃
Q1,n − Q̂1,n

)

= G̃n +BnP̃n−1T̃1,n
̂̃
Q1,n −BnPn−1T̃1,n

̂̃
Q1,n +BnPn−1T̃1,n

̂̃
Q1,n

=
̂̃
G1,n,

which is Eq. (2.8) as to be proved.

The following fact easily follows from Lemma 2.12.

Corollary 2.13. Suppose that the LSDE (1.1) is of index-2. Then the matrix

Pn+T−1
n T̃nQ̃n+T−1

n Qn−1P̃n−1T̃1,n
̂̃
Q1,n+T−1

1,n

(
Pn−1+T−1

n−1T̃n−1Q̃n−1

)
T̃1,n

̂̃
Q1,n−Q̂1,n

is nonsingular. Moreover,
(
Pn + T−1

n T̃nQ̃n + T−1
n Qn−1P̃n−1T̃1,n

̂̃
Q1,n(2.13)

+ T−1
1,n

(
Pn−1 + T−1

n−1T̃n−1Q̃n−1

)
T̃1,n

̂̃
Q1,n − Q̂1,n

)−1

= P̃n + T̃−1
n TnQn + T̃−1

n Q̃n−1Pn−1T1,nQ̂1,n

+ T̃−1
1,n

(
P̃n−1 + T̃−1

n−1Tn−1Qn−1

)
T1,nQ̂1,n −

̂̃
Q1,n.

3. Multipoint boundary value problems.

3.1. Constant coefficients case. We shall consider the LSDEs with constant

coefficients

Axi+1 = Bxi + qi, i = 0, N − 1,(3.1)

together with the boundary conditions

N∑

i=0

Cixi = γ,(3.2)

where A,B,Ci ∈ Rm×m, qi, γ ∈ Rm are given and suppose that ν :=ind(A,B) is

greater than one.

We suppose that λ ∈ C such that det(λA + B) 6= 0. Multiply Eq. (3.1) by

(λA+B)−1 from the left to obtain

Âλxi+1 = B̂λxi + q̂i, i = 0, N − 1,(3.3)
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where q̂i := (λA+B)−1qi for all i = 0, N − 1. According to Theorem 2.1, there exists

a nonsingular matrix T ∈ Rm×m such that

T−1ÂλT =

[
C 0

0 U

]
, T−1B̂λT =

[
I − λC 0

0 I − λU

]
,(3.4)

where C ∈ Rr×r is nonsingular with r := rankÂν
λ and U ∈ R(m−r)×(m−r) is nilpotent

of the order ν. Letting xi = Tyi and fi = T−1q̂i, then we can rewrite Eq. (3.3) as

[
C 0

0 U

] [
y
(1)
i+1

y
(2)
i+1

]
=

[
I − λC 0

0 I − λU

][
y
(1)
i

y
(2)
i

]
+

[
f
(1)
i

f
(2)
i

]
, i = 0, N − 1,

where y
(1)
i , f

(1)
i ∈ Rr, y

(2)
i , f

(2)
i ∈ Rm−r. Note that when ν = 1 then U = 0, and in

this case, we easily obtain solutions of the above difference equation. The problem of

solving (3.1), (3.2) is not difficult, hence, it is omitted here due to lack of space. In

this paper, we consider the case ν ≥ 2, i.e., U 6= 0. However, it is easy to see that

these results are still valid for the case ν = 1. Since U has only the eigenvalue 0, it

yields that I −λU is nonsingular. Besides, noting that C is a nonsingular matrix, we

find that all solutions of Eq. (3.1) are given by

xi =
(
ÂD

λ B̂λ

)i
ÂD

λ Âλx̄0 +
(
B̂D

λ Âλ

)N−i
(I − ÂD

λ Âλ)x̄N(3.5)

+
i−1∑

l=0

(
ÂD

λ B̂λ

)l
ÂD

λ q̂i−l−1 − (I − ÂD
λ Âλ)

N−i−1∑

l=0

(
B̂D

λ Âλ

)l
B̂D

λ q̂i+l, i = 0, N,

where x̄0, x̄N ∈ Rm are arbitrary vectors. Here it is assumed that
−1∑
l=0

= 0.

Notice that the formula (3.5) has also been established in [4]. Further, applying

Theorem 2.2 we see that the solution formula (3.5) is independent of the chosen value

λ.

Remark 3.1. An important special case is when A is nonsingular. To study

MPBVP (3.1), (3.2), instead of (3.5), we usually use the following solution formula

xi = (A−1B)ix̄0 +

i−1∑

l=0

(A−1B)lA−1qi−l−1, i = 0, N,

where x̄0 ∈ Rm is an arbitrary vector. In another important special case, when B is

invertible, the solution to (3.1) is given by

xi = (B−1A)N−ix̄N −

N−i−1∑

l=0

(B−1A)lB−1qi+l, i = 0, N,
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where x̄N ∈ Rm is an arbitrary vector. These results were discussed in the theory of

boundary value problems for ordinary difference equations, we refer the reader to [1]

for more details. The purpose of this paper is to study the MPBVP (3.1), (3.2) in

the case, where A and B are both singular.

Let Xi (i = 0, N) be the “fundamental solution” of Eq. (3.1), i.e.,

AXi+1 = BXi, i = 0, N − 1.

It is clear that

Xi =
(
ÂD

λ B̂λ

)i
ÂD

λ Âλ +
(
B̂D

λ Âλ

)N−i
(I − ÂD

λ Âλ), i = 0, N.

Put X
(1)
i :=

(
ÂD

λ B̂λ

)i
ÂD

λ Âλ, X
(2)
i :=

(
B̂D

λ Âλ

)N−i
(I − ÂD

λ Âλ) (i = 0, N), D1 :=
N∑
i=0

CiX
(1)
i , D2 :=

N∑
i=0

CiX
(2)
i and γ∗ := γ −

N∑
i=0

Cizi, where

zi :=
i−1∑

l=0

(
ÂD

λ B̂λ

)l
ÂD

λ q̂i−l−1 − (I − ÂD
λ Âλ)

N−i−1∑

l=0

(
B̂D

λ Âλ

)l
B̂D

λ q̂i+l, i = 0, N.

In what follows, we shall deal with the (m × 2m) matrix (D1, D2) with columns of

D1 and D2 and the (2m× 2m) matrix

R :=

[
ÂD

λ Âλ 0

0 I − ÂD
λ Âλ

]
.

From Theorem 2.2 it follows that the matrices (D1, D2) and R do not depend on the

chosen value λ.

Theorem 3.2. Suppose that the matrix pencil (A,B) is regular and ind(A,B) ≥

2. Then the MPBVP (3.1) and (3.2) has a unique solution for every qi ∈ Rm (i =

0, N − 1) and every γ ∈ Rm if and only if

ker(D1, D2) = kerR(3.6)

and it can be represented as

xi = X
(1)
i ξ +X

(2)
i ζ + zi, i = 0, N,(3.7)

where (ξT , ζT )T = (D1, D2)
+γ∗ with (D1, D2)

+ the generalized inverse in Moore-

Penrose’s sense of (D1, D2).

Proof. Due to our construction, the relation

kerR ⊆ ker(D1, D2)
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is valid.

Assume that the MPBVP (3.1), (3.2) is uniquely solvable, and let (x̄T
0 , x̄

T
N )T ∈

ker(D1, D2). Then

D1x̄0 +D2x̄N = 0.

Putting x∗

i := X
(1)
i x̄0 +X

(2)
i x̄N (i = 0, N), we find that {x∗

i }
N
i=0 is a solution of the

homogeneous MPBVP (3.1), (3.2) with qi = 0, (i = 0, N − 1) and γ = 0. Since the

homogeneous MPBVP (3.1) and (3.2) has only a trivial solution, it follows x∗

i = 0 for

all i = 0, N . In particular, we have x∗
0 = 0 and x∗

N = 0, hence,

ÂD
λ Âλx̄0 + (B̂D

λ Âλ)
N (I − ÂD

λ Âλ)x̄N = 0(3.8)

and

(ÂD
λ B̂λ)

N ÂD
λ Âλx̄0 + (I − ÂD

λ Âλ)x̄N = 0.(3.9)

From Eq. (3.4) and the facts that

ÂD
λ = T

[
C−1 0

0 0

]
T−1, B̂D

λ = T

[
(I − λC)D 0

0 (I − λU)−1

]
T−1,

it follows that

ÂD
λ Âλ = T

[
I 0

0 0

]
T−1, I − ÂD

λ Âλ = T

[
0 0

0 I

]
T−1,(3.10)

and

ÂD
λ B̂λ = T

[
C−1(I − λC) 0

0 0

]
T−1,(3.11)

B̂D
λ Âλ = T

[
(I − λC)DC 0

0 (I − λU)−1U

]
T−1.(3.12)

Next, applying formulae (3.10)–(3.12) and putting

(ȳ
(1)T

0 , ȳ
(2)T

0 )T := T−1x̄0, (ȳ
(1)T

N , ȳ
(2)T

N )T := T−1x̄N

with ȳ
(1)
0 , ȳ

(1)
N ∈ R

r, we can reduce the equalities (3.8), (3.9) to

{
ȳ
(1)
0 = 0,(
(I − λU)−1U

)N
ȳ
(2)
N = 0

and

{ (
C−1(I − λC)

)N
ȳ
(1)
0 = 0,

ȳ
(2)
N = 0,
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respectively. Thus, we obtain

x̄0 = T

[
0

ξ

]
, x̄N = T

[
η

0

]
,

where ξ ∈ Rm−r and η ∈ Rr are arbitrary vectors, or x̄0 ∈ ker(ÂD
λ Âλ) and x̄N ∈

ker(I − ÂD
λ Âλ), hence (x̄T

0 , x̄
T
N )T ∈ kerR. This means that the inclusion

ker(D1, D2) ⊆ kerR

must be true, and consequently, (3.6) holds.

Conversely, let (3.6) be valid. Then for each qi ∈ Rm (i = 0, N − 1) and γ ∈ Rm

a solution of the MPBVP (3.1), (3.2) is determined by (3.5) and

D1x̄0 +D2x̄N = γ∗.

Let qi = 0 for all i = 0, N − 1 and γ = 0. Then x̄0 and x̄N satisfy the following

equality

D1x̄0 +D2x̄N = 0.

Therefore, we have (x̄T
0 , x̄

T
N )T ∈ ker(D1, D2) = kerR. Now (3.5) ensures that the

homogeneous MPBVP (3.1), (3.2) has only a trivial solution.

According to the formula (3.5), any solution of (3.1) can be expressed as (3.7)

where ξ, ζ ∈ Rm are constant vectors. This solution satisfies the boundary condition

(3.2) if and only if

D1ξ +D2ζ = γ∗

which means that (ξT , ζT )T = (D1, D2)
+γ∗. Thus, the unique solution of (3.1), (3.2)

has the representation (3.7).

It is easy to see that dim(kerR) = m. Denote p := dim
(
ker(D1, D2)

)
. We now

consider a case, when (3.6) does not hold, i.e., p > m and the problem (3.1), (3.2)

has either no solution or an infinite number of solutions. We denote by {w0
i }

m
i=1

certain base of kerR. Using the fact that kerR ⊂ ker(D1, D2), we can extend {w0
i }

m
i=1

to a basis {w0
i }

p
i=1 of ker(D1, D2). Let u0

i , v0i ∈ Rm be the first and the second

groups of components of w0
i , i.e., w

0
i = (u0T

i , v0
T

i )T , (i = 1, p). We construct the

column matrices Φi := X
(1)
i U +X

(2)
i V (i = 0, N), where U := (u0

m+1, . . . , u
0
p), V :=

(v0m+1, . . . , v
0
p) ∈ Rm×(p−m). To represent solutions of the MPVBP (3.1), (3.2) we

introduce a linear operator L acting in Rm(N+1), defined by

L(xT
0 , . . . , x

T
N )T :=

(
(Ax1 −Bx0)

T , . . . , (AxN −BxN−1)
T ,

( N∑

i=0

Cixi

)T)T

.
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Lemma 3.3. kerL =
{(

(Φ0a)
T , . . . , (ΦNa)T

)T
: a ∈ Rp−m

}
.

Proof. Suppose that x = (xT
0 , . . . , x

T
N )T ∈

{(
(Φ0a)

T , . . . , (ΦNa)T
)T

: a ∈ Rp−m
}
,

i.e., there exists a vector a ∈ R
p−m such that xi = Φia, i = 0, N . This leads to

xi = X
(1)
i Ua+X

(2)
i Va. From Eqs. (3.10)–(3.12), by simple computations we find

AX
(1)
i+1 = BX

(1)
i and AX

(2)
i+1 = BX

(2)
i , i = 0, N − 1.

Using the above equations, we have

Lx :=
(
(Ax1 −Bx0)

T , . . . , (AxN −BxN−1)
T
)T

=
((

(AX
(1)
1 −BX

(1)
0 )Ua

)T
, . . . ,

(
(AX

(1)
N −BX

(1)
N−1)Ua

)T)T

+
((

(AX
(2)
1 −BX

(2)
0 )Va

)T
, . . . ,

(
(AX

(2)
N −BX

(2)
N−1)Va

)T)T

= 0.

Denote Γx :=
N∑
i=0

Cixi = D1Ua +D2Va. Since U and V are column matrices whose

columns are u0
i , v

0
i and (u0T

i , v0
T

i )T ∈ ker(D1, D2) (i = m+ 1, p), it gives that D1U +

D2V = 0, which immediately implies Γx = 0. Thus, we obtain Lx = 0, which means

that

{(
(Φ0a)

T , . . . , (ΦNa)T
)T

: a ∈ R
p−m

}
⊆ kerL.

Conversely, assume that x = (xT
0 , . . . , x

T
N )T ∈ kerL, i.e,





Axi+1 = Bxi, i = 0, N − 1,
N∑
i=0

Cixi = 0.

Due to the formula (3.5), xi = X
(1)
i ξ + X

(2)
i ζ (i = 0, N), where vectors ξ, ζ ∈ Rm

satisfy the relation D1ξ + D2ζ = 0, hence we have (ξT , ζT )T ∈ ker(D1, D2). Since

(u0T

k , v0
T

k )T (k = 1, p) is the basis of ker(D1, D2), there exists a sequence {αk}
p
k=1 such

that (ξT , ζT )T =
p∑

k=1

αk(u
0T

k , v0
T

k )T , hence ξ =
p∑

k=1

αku
0
k and ζ =

p∑
k=1

αkv
0
k. Thus,

xi =

m∑

k=1

αk

(
X

(1)
i u0

k +X
(2)
i v0k

)
+

p∑

k=m+1

αk

(
X

(1)
i u0

k +X
(2)
i v0k

)
, i = 0, N.

Observing that (u0T

k , v0
T

k )T ∈ kerR, i.e., ÂD
λ Âλu

0
k = 0 and (I − ÂD

λ Âλ)v
0
k = 0 for all

k = 1,m, we find X
(1)
i u0

k = 0 and X
(2)
i v0k = 0 for all k = 1,m, i = 0, N . Thus,

xi = X
(1)
i

p∑

k=m+1

αku
0
k +X

(2)
i

p∑

k=m+1

αkv
0
k, i = 0, N.
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Taking a := (αm+1, . . . , αp)
T ∈ Rp−m, we get xi = X

(1)
i Ua+X

(2)
i Va (i = 0, N), i.e.,

xi = Φia for all i = 0, N where a ∈ Rp−m. Thus, we obtain

x ∈
{(

(Φ0a)
T , . . . , (ΦNa)T

)T
: a ∈ R

p−m
}
,

or

kerL ⊆
{(

(Φ0a)
T , . . . , (ΦNa)T

)T
: a ∈ R

p−m
}
.

Next, we let q := dim
(
ker(D1, D2)

T
)
and denote by {wi}

q
i=1 certain base of

ker(D1, D2)
T . Letting W ∈ Rq×m be a row matrix whose rows are vectors wi (i =

1, q), we come to the following theorem.

Theorem 3.4. Let the matrix pencil (A,B) be regular and ind(A,B) ≥ 2. Then,

the problem (3.1), (3.2) is solvable if and only if

Wγ∗ = 0.(3.13)

Moreover, a general solution of (3.1), (3.2) has the following form

xi = X
(1)
i ξ +X

(2)
i ζ + zi +Φia, i = 0, N,(3.14)

where a ∈ Rp−m is an arbitrary vector and (ξT , ζT )T = (D1, D2)
+γ∗ with (D1, D2)

+

the generalized inverse in Moore-Penrose’s sense of (D1, D2).

Proof. The problem (3.1), (3.2) is solvable if and only if

(qT0 , . . . , q
T
N−1, γ

T )T ∈ imL,

i.e., there exists x = (xT
0 , . . . , x

T
N )T ∈ Rm(N+1) satisfying Lx = (qTo , . . . , q

T
N−1, γ

T )T .

Equivalently, there exist vectors ξ, ζ ∈ Rm such that xi = X
(1)
i ξ+X

(2)
i ζ+zi (i = 0, N)

and
N∑
i=0

Cixi = γ. Thus, the system (3.1), (3.2) possesses a solution if and only

if there exist vectors ξ, ζ ∈ Rm such that D1ξ + D2ζ = γ∗. Using the fact that

im(D1, D2) =
(
ker(D1, D2)

T )⊥ we come to the conclusion that the MPBVP (3.1),

(3.2) is solvable if and only if γ∗ ∈
(
ker(D1, D2)

T )⊥. Thus, the problem (3.1), (3.2)

possesses a solution if and only if (3.13) is valid.

Finally, thanks to Lemma 3.3 and the formula (3.5), to show that (3.14) is a

general solution formula of the problem (3.1), (3.2) we only need to prove that x̄i

is given by x̄i = X
(1)
i ξ + X

(2)
i ζ + zi (i = 0, N) with (ξT , ζT )T = (D1, D2)

+γ∗, is a

particular solution of the above mentioned problem.

Theorem 3.2 and Theorem 3.4 imply the following corollary.

Corollary 3.5. (Fredholm alternative) Suppose that the matrix pencil (A,B)

is regular, ind(A,B) ≥ 2 and let p := dim
(
ker(D1, D2)

)
. Then
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(i) either p = m and the MPBVP (3.1), (3.2) is uniquely solvable for any data

qi (i = 0, N − 1) and γ;

(ii) or p > m and the MPBVP (3.1, (3.2) is solvable if and only if the condition

(3.13) is valid.

Moreover, the solution formula (3.14) holds.

3.2. Varying coefficients case. In this subsection, we shall deal with the MP-

BVPs for the non-autonomous LSDEs as follows

Aixi+1 = Bixi + qi, i = 0, N − 1,(3.15)
N∑

i=0

Cixi = γ,(3.16)

where Ai, Bi, Ci ∈ Rm×m, qi, γ ∈ Rm are given and suppose that the LSDE (3.15) is

of index-2 in the sense that the following relations hold:

(i) rankAi ≡ r, 1 ≤ r ≤ m− 1,

(ii) dim(kerAi−1 ∩ Si) ≡ m− s, 1 ≤ s ≤ m− 1,

(iii) kerGi−1 ∩ S1,i = {0}

for all i = 0, N − 1. Further, here it is assumed that A−1 := A0, G−1 := G0 and

Q̂1,N−1 is projection onto kerGN−1 such that Q̂1,N−1QN−1 = 0.

Now, we describe shortly the decomposition technique for index-2 LSDEs (see [7]

for details). We decompose the index-2 LSDE solution xi into

xi = Qi−1xi + Pi−1P̂1,i−1xi + Pi−1Q̂1,i−1xi =: wi + ui + Pi−1vi.

Multiplying Eq. (3.15) by PiP̂1,iĜ
−1
1,i , QiP̂1,iĜ

−1
1,i , and Q̂1,iĜ

−1
1,i , respectively, using

the relations (2.6), (2.7) and the fact that Q̂1,iQi = 0, and carrying out some technical

computations, we decouple the index-2 LSDE (3.15) into the system




ui+1 = PiP̂1,iĜ
−1
1,iBiui + PiP̂1,iĜ

−1
1,i qi,

−Qivi+1 = QiP̂1,iĜ
−1
1,iBiui + T−1

i wi +QiP̂1,iĜ
−1
1,i qi,

0 = T−1
1,i vi + Q̂1,iĜ

−1
1,i qi,

i = 0, N − 1.

Thus, we obtain

vi = −T1,iQ̂1,iĜ
−1
1,i qi, i = 0, N − 1,

wi = −TiQiP̂1,iĜ
−1
1,iBiui − TiQivi+1 − TiQiP̂1,iĜ

−1
1,i qi, i = 0, N − 1,

ui+1 = PiP̂1,iĜ
−1
1,iBiui + PiP̂1,iĜ

−1
1,i qi, i = 0, N − 1.

We denote

Πi :=
(
I − TiQiP̂1,iĜ

−1
1,iBi

)
Pi−1P̂1,i−1, i = 0, N − 1
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and

M
(i)
k :=

k∏

l=0

Pi−l−1P̂1,i−l−1Ĝ
−1
1,i−l−1Bi−l−1, i = 1, N, k = −1, i− 1,

where it is assumed that
−1∏
l=0

= I. Observing that (Pi−1P̂1,i−1)
2 = Pi−1P̂1,i−1, we get

the solution of the LSDE (3.15) as follows

xi = Πi

(
M

(i)
i−1x̄0 +

i−1∑

k=0

M
(i)
i−k−2PkP̂1,kĜ

−1
1,kqk

)
(3.17)

+TiQiT1,i+1Q̂1,i+1Ĝ
−1
1,i+1qi+1

−
(
TiQiP̂1,iĜ

−1
1,i + Pi−1T1,iQ̂1,iĜ

−1
1,i

)
qi, i = 0, N − 2,

xN−1 = ΠN−1

(
M

(N−1)
N−2 x̄0 +

N−2∑

k=0

M
(N−1)
N−k−3PkP̂1,kĜ

−1
1,kqk

)
(3.18)

−TN−1QN−1Q̂1,N−1x̄N

−
(
TN−1QN−1P̂1,N−1Ĝ

−1
1,N−1 + PN−2T1,N−1Q̂1,N−1Ĝ

−1
1,N−1

)
qN−1

and

xN = M
(N)
N−1x̄0 +

N−1∑

k=0

M
(N)
N−k−2PkP̂1,kĜ

−1
1,kqk +QN−1x̄N + PN−1Q̂1,N−1x̄N ,(3.19)

where x̄0, x̄N ∈ Rm are arbitrary vectors and it is assumed that
−1∑
k=0

= 0.

Remark 3.6. Similar to Remark 3.1, if Ai (resp., Bi) is nonsingular for each

i = 0, N − 1 then we will use the corresponding solution formulae for (3.15), (3.16)

xi =
( i−1∏

l=0

A−1
i−l−1Bi−l−1

)
x̄0 +

i−1∑

k=0

( i−k−2∏

l=0

A−1
i−l−1Bi−l−1

)
A−1

k qk, i = 0, N,

or

xi =
(N−1∏

l=i

B−1
l Al

)
x̄N −

N−1∑

k=i

( k−1∏

l=i

B−1
l Al

)
B−1

k qk, i = 0, N,

where x̄0, x̄N ∈ Rm are arbitrary vectors instead of the formulae (3.17)–(3.19). See

[1] for details. The formulae (3.17)–(3.19) are useful in the case, where Ai and Bi are
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both singular, and Eq. (3.15) is of index-2. Further, it is clear that these formulae

are an extension of the above mentioned formulae.

Lemma 3.7. Let the LSDE (3.15) be of index-2. Then the matrices

Πi, ΠiM
(i)
i−1, ΠiM

(i)
i−k−2PkP̂1,kĜ

−1
1,k, TiQiT1,i+1Q̂1,i+1Ĝ

−1
1,i+1,

(TiQiP̂1,i + Pi−1T1,iQ̂1,i)Ĝ
−1
1,i

are independent of the choice of the Ti, Qi and T1,i.

Proof. Let T̃i be another transformation, whose restriction T̃i

∣∣
kerAi

is an isomor-

phism from kerAi onto kerAi−1 and Q̃i be another projection onto kerAi, P̃i := I−Q̃i.

We denote G̃i := Ai + BiT̃iQ̃i. Let
̂̃
Q1,i be a projection onto kerG̃i along S1,i+1,

̂̃
P 1,i := I −

̂̃
Q1,i, T̃1,i

∣∣
kerG̃i

denote an isomorphism from kerG̃i onto kerG̃i−1 and put

̂̃
G1,i := G̃i +BiP̃i−1T̃1,i

̂̃
Q1,i, Π̃i :=

(
I − T̃iQ̃i

̂̃
P 1,i

̂̃
G

−1

1,iBi

)
P̃i−1

̂̃
P 1,i−1.

First, we put

Zi := P̃i+T̃−1
i TiQi+T̃−1

i Q̃i−1Pi−1T1,iQ̂1,i+T̃−1
1,i

(
P̃i−1+T̃−1

i−1Ti−1Qi−1

)
T1,iQ̂1,i−

̂̃
Q1,i.

From the identities (2.8) and (2.13), we have

T̃iQ̃i
̂̃
P 1,i

˜̃
G

−1

1,i = T̃iQ̃i
̂̃
P 1,iZiĜ

−1
1,i .(3.20)

Using the facts that
̂̃
Q1,iQ̃i = 0, T̃−1

i TiQi = Q̃iT̃
−1
i TiQi and

T̃−1
1,i

(
P̃i−1 + T̃−1

i−1Ti−1Qi−1

)
T1,iQ̂1,i =

̂̃
Q1,iT̃

−1
1,i

(
P̃i−1 + T̃−1

i−1Ti−1Qi−1

)
T1,iQ̂1,i,

we see that

T̃iQ̃i
̂̃
P 1,iP̃i = −T̃iQ̃i

̂̃
Q1,iP̃i = −T̃iQ̃i

̂̃
Q1,i,

T̃iQ̃i
̂̃
P 1,iT̃

−1
i TiQi = T̃iQ̃i(I −

̂̃
Q1,i)Q̃iT̃

−1
i TiQi = TiQi,

T̃iQ̃i
̂̃
P 1,iT̃

−1
i Q̃i−1Pi−1T1,iQ̂1,i = T̃iQ̃i(I −

̂̃
Q1,i)Q̃iT̃

−1
i Q̃i−1Pi−1T1,iQ̂1,i

= Q̃i−1Pi−1T1,iQ̂1,i

and

T̃iQ̃i
̂̃
P 1,iT̃

−1
1,i

(
P̃i−1 + T̃−1

i−1Ti−1Qi−1

)
T1,iQ̂1,i = 0.
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Combining the above relations with Eq. (2.5), it follows that

T̃iQ̃i
̂̃
P 1,iZi = − T̃iQ̃i

̂̃
Q1,i + TiQi + Q̃i−1Pi−1T1,iQ̂1,i(3.21)

= − T̃iQ̃i(P̃i + T̃−1
i TiQi)Q̂1,i + TiQi + Q̃i−1Pi−1T1,iQ̂1,i

= TiQiP̂1,i + Q̃i−1Pi−1T1,iQ̂1,i.

Thus,

Π̃i =
(
I − TiQiP̂1,iĜ

−1
1,iBi − Q̃i−1Pi−1T1,iQ̂1,iĜ

−1
1,iBi

)
P̃i−1

̂̃
P 1,i−1.

Observe that

P̃i−1
̂̃
P 1,i−1 = P̃i−1 − P̃i−1(P̃i−1 + T̃−1

i−1Ti−1Qi−1)Q̂1,i−1 = P̃i−1P̂1,i−1

and

Q̂1,i−1P̃i−1P̂1,i−1 = Q̂1,i−1(I − Q̃i−1)P̂1,i−1 = 0.

Further, we note that

Ĝ−1
1,iBiQi−1 = Ĝ−1

1,i (Ai +BiTiQi)QiT
−1
i Qi−1 = P̂1,iT

−1
i Qi−1,

implying that

Q̂1,i−1 := T1,iQ̂1,iĜ
−1
1,iBiPi−1

= T1,iQ̂1,iĜ
−1
1,iBi − T1,iQ̂1,iĜ

−1
1,iBiQi−1

= T1,iQ̂1,iĜ
−1
1,iBi.

This leads to

Π̃i =
(
I−TiQiP̂1,iĜ

−1
1,iBi

)
P̃i−1Pi−1P̂1,i−1 = Πi−

(
I−TiQiP̂1,iĜ

−1
1,iBi

)
Q̃i−1Pi−1P̂1,i−1.

Since

(
I − TiQiP̂1,iĜ

−1
1,iBi

)
Q̃i−1 = Q̃i−1 − TiQiP̂1,iĜ

−1
1,iBiQi−1Q̃i−1

= Q̃i−1 − TiQiP̂1,iP̂1,iT
−1
i Qi−1Q̃i−1

= Q̃i−1 − TiQi(I − Q̂1,i)QiT
−1
i Q̃i−1

= 0,

we have Π̃i = Πi.

Applying the identities (2.8), (2.13) we get

P̃i−1
̂̃
P 1,i−1

̂̃
G

−1

1,i−1 = P̃i−1
̂̃
P 1,i−1Zi−1Ĝ

−1
1,i−1.
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On the other hand, since

P̃i−1
̂̃
P 1,i−1P̃i−1 = P̃i−1 − P̃i−1

̂̃
Q1,i−1(I − Q̃i−1) = P̃i−1

̂̃
P 1,i−1 = P̃i−1P̂1,i−1,

P̃i−1
̂̃
P 1,i−1T̃

−1
i−1Ti−1Qi−1 = P̃i−1(I −

̂̃
Q1,i−1)Q̃i−1T̃

−1
i−1Ti−1Qi−1 = 0,

P̃i−1
̂̃
P 1,i−1T̃

−1
i−1Q̃i−2Pi−2T1,i−1Q̂1,i−1

= P̃i−1(I −
̂̃
Q1,i−1)Q̃i−1T̃

−1
i−1Q̃i−2Pi−2T1,i−1Q̂1,i−1 = 0

and

P̃i−1
̂̃
P 1,i−1T̃

−1
1,i−1(P̃i−2 + T̃−1

i−2Ti−2Qi−2)T1,i−1Q̂1,i−1

= P̃i−1
̂̃
P 1,i−1

̂̃
Q1,i−1T̃

−1
1,i−1(P̃i−2 + T̃−1

i−2Ti−2Qi−2)T1,i−1Q̂1,i−1 = 0,

we have that

P̃i−1
̂̃
P 1,i−1

̂̃
G

−1

1,i−1 = P̃i−1P̂1,i−1Ĝ
−1
1,i−1 = Pi−1P̂1,i−1Ĝ

−1
1,i−1 − Q̃i−1Pi−1P̂1,i−1Ĝ

−1
1,i−1.

Observing that ΠiQ̃i−1 =
(
I − TiQiP̂1,iĜ

−1
1,iBi

)
Pi−1P̂1,i−1Qi−1Q̃i−1 = 0, we obtain

Π̃iP̃i−1
̂̃
P 1,i−1

̂̃
G

−1

1,i−1 = ΠiPi−1P̂1,i−1Ĝ
−1
1,i−1 −ΠiQ̃i−1Pi−1P̂1,i−1Ĝ

−1
1,i−1

= ΠiPi−1P̂1,i−1Ĝ
−1
1,i−1,

hence

Π̃iP̃i−1
̂̃
P 1,i−1

̂̃
G

−1

1,i−1 = ΠiPi−1P̂1,i−1Ĝ
−1
1,i−1.

Since Ĝ−1
1,i−1Bi−1Qi−2 = P̂1,i−1T

−1
i−1Qi−2 and Pi−1P̂1,i−1Qi−1 = 0, we have

ΠiPi−1P̂1,i−1Ĝ
−1
1,i−1Bi−1Q̃i−2Pi−2P̂1,i−2Ĝ

−1
1,i−2

= ΠiPi−1P̂1,i−1Ĝ
−1
1,i−1Bi−1Qi−2Q̃i−2Pi−2P̂1,i−2Ĝ

−1
1,i−2

= ΠiPi−1P̂1,i−1P̂1,i−1T
−1
i−1Qi−2Q̃i−2Pi−2P̂1,i−2Ĝ

−1
1,i−2

= ΠiPi−1P̂1,i−1Qi−1T
−1
i−1Q̃i−2Pi−2P̂1,i−2Ĝ

−1
1,i−2

= 0.

Thus,

Π̃iP̃i−1
̂̃
P 1,i−1

̂̃
G

−1

1,i−1Bi−1P̃i−2
̂̃
P 1,i−2

̂̃
G

−1

1,i−2

= ΠiPi−1P̂1,i−1Ĝ
−1
1,i−1Bi−1Pi−2P̂1,i−2Ĝ

−1
1,i−2.
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Thus, the matrices ΠiM
(i)
i−1, ΠiM

(i)
i−k−2PkP̂1,kĜ

−1
1,k do not depend on the choice of the

Ti, Qi and T1,i, as it was to be proved.

From Eqs. (2.8), (2.13) it follows that

T̃iQ̃iT̃1,i+1
̂̃
Q1,i+1

̂̃
G

−1

1,i+1 = T̃iQ̃iT̂1,i+1
̂̃
Q1,i+1Zi+1Ĝ

−1
1,i+1.

Besides,
̂̃
Q1,i+1 =

̂̃
Q1,i+1(P̃i+1 + T̃−1

i+1Ti+1Qi+1), therefore, we get

T̃iQ̃iT̃1,i+1
̂̃
Q1,i+1Zi+1Ĝ

−1
1,i+1 = T̃iQ̃iT̃1,i+1

̂̃
Q1,i+1

(̂̃
P 1,i+1(P̃i+1 + T̃−1

i+1Ti+1Qi+1)

+T̃−1
i+1Q̃iPiT1,i+1Q̂1,i+1 + T̃−1

1,i+1(P̃i + T̃−1
i TiQi)T1,i+1Q̂1,i+1

)
Ĝ−1

1,i+1

= TiQiT1,i+1Q̂1,i+1Ĝ
−1
1,i+1,

or equivalently,

T̃iQ̃iT̃1,i+1
̂̃
Q1,i+1

̂̃
G

−1

1,i+1 = TiQiT1,i+1Q̂1,i+1Ĝ
−1
1,i+1.

From Eqs. (3.20)–(3.21), it follows that

T̃iQ̃i
̂̃
P 1,i

̂̃
G

−1

1,i = TiQiP̂1,iĜ
−1
1,i + Q̃i−1Pi−1T1,iQ̂1,iĜ

−1
1,i ,

further,

P̃i−1T̃1,i
̂̃
Q1,i

̂̃
G

−1

1,i = P̃i−1T̃1,i
̂̃
Q1,i

(̂̃
P 1,i(P̃i + T̃−1

i TiQi) + Q̃iT̃
−1
i Q̃i−1Pi−1T1,iQ̂1,i

+T̃−1
1,i (P̃i−1 + T̃−1

i−1Ti−1Qi−1)T1,iQ̂1,i

)
Ĝ−1

1,i = P̃i−1T1,iQ̂1,iĜ
−1
1,i ,

giving

T̃iQ̃i
̂̃
P 1,i

̂̃
G

−1

1,i + P̃i−1T̃1,i
̂̃
Q1,i

̂̃
G

−1

1,i = TiQiP̂1,iĜ
−1
1,i + Q̃i−1Pi−1T1,iQ̂1,iĜ

−1
1,i

+P̃i−1T1,iQ̂1,iĜ
−1
1,i

= TiQiP̂1,iĜ
−1
1,i

+
(
(I − P̃i−1)Pi−1 + P̃i−1

)
T1,iQ̂1,iĜ

−1
1,i

= TiQiP̂1,iĜ
−1
1,i + Pi−1T1,iQ̂1,iĜ

−1
1,i .

Thus, we obtain

(
T̃iQ̃i

̂̃
P 1,i + P̃i−1T̃1,i

̂̃
Q1,i

)̂̃
G

−1

1,i =
(
TiQiP̂1,i + Pi−1T1,iQ̂1,i

)
Ĝ−1

1,i .

From the formulae (3.17)–(3.19), it follows that the “fundamental solution” of

equations

AiXi+1 = BiXi, i = 0, N − 1
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can be determined as Xi := ΠiM
(i)
i−1, i = 0, N − 1 and XN := M

(N)
N−1. We define

R := diag(P−1P̂1,−1, I − PN−1P̂1,N−1) and the matrix (D1, D2), whose columns are

the columns of the matrices D1 :=
N∑
i=0

CiXi and

D2 := −CN−1TN−1QN−1Q̂1,N−1 + CNQN−1 + CNPN−1Q̂1,N−1.

Lemma 3.8. Suppose that the LSDE (3.15) is of index-2. Then the following

condition

ker(D1, D2) = kerR(3.22)

does not depend on the chosen Ti, Qi and T1,i.

Proof. Assume that Q̃i is another projection onto kerAi and T̃i (resp., T̃1,i) is

another transformation with T̃i|kerAi

(resp., T̃1,i|kerG̃i

) being an isomorphism from

kerAi onto kerAi−1 (resp., kerG̃i onto kerG̃i−1). Here, the matrices P̃i, G̃i,
̂̃
Q1,i,

̂̃
P 1,i,

̂̃
G1,i and Π̃i are defined in the proof of Lemma 3.7. We put

D̃1 :=

N∑

i=0

CiX̃i, X̃i := Π̃iM̃
(i)
i−1, i = 0, N − 1, X̃N := M̃

(N)
N−1,

D̃2 := −CN−1T̃N−1Q̃N−1
̂̃
Q1,N−1 + CN Q̃N−1 + CN P̃N−1

̂̃
Q1,N−1

and

R̃ := diag(P̃−1
̂̃
P 1,−1, I − P̃N−1

̂̃
P 1,N−1),

where M̃
(i)
i−1 :=

i−1∏
l=0

P̃i−l−1
̂̃
P 1,i−l−1

̂̃
G

−1

1,i−l−1Bi−l−1 (i = 0, N).

Lemma 3.7 ensures that Xi = X̃i for all i = 0, N − 1. Besides, using Eq. (2.7)

and the facts that P̃N−1
̂̃
P 1,N−1T̃

−1
N−1Q̃N−2 = 0, P̃N−2

̂̃
P 1,N−2Π̃N−1 = P̃N−2

̂̃
P 1,N−2

we have

M̃
(N)
N−1 = P̃N−1

̂̃
P 1,N−1

̂̃
G

−1

1,N−1BN−1Π̃N−1M̃
(N−1)
N−2 .

Applying Lemma 3.7 again and noting that

P̃N−1
̂̃
P 1,N−1

̂̃
G

−1

1,N−1 = PN−1P̂1,N−1Ĝ
−1
1,N−1 − Q̃N−1PN−1P̂1,N−1Ĝ

−1
1,N−1,

we obtain

M̃
(N)
N−1 = M

(N)
N−1 − Q̃N−1PN−1P̂1,N−1Ĝ

−1
1,N−1BN−1ΠN−1M

(N−1)
N−2 ,
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or

X̃N = XN − Q̃N−1PN−1P̂1,N−1Ĝ
−1
1,N−1BN−1XN−1.

This implies that

D̃1 = D1 − CN Q̃N−1PN−1P̂1,N−1Ĝ
−1
1,N−1BN−1XN−1.(3.23)

According to Eq. (2.5), we get

T̃N−1Q̃N−1
̂̃
Q1,N−1 = TN−1QN−1Q̂1,N−1 and P̃N−1

̂̃
Q1,N−1 = P̃N−1Q̂1,N−1.

Therefore,

D̃2 = D2 + CN (Q̃N−1 −QN−1) + CN (P̃N−1 − PN−1)Q̂1,N−1,

or equivalently,

D̃2 = D2 + CN (Q̃N−1 −QN−1)P̂1,N−1.(3.24)

Now suppose that Eq. (3.22) is valid. Let (x̄T
0 , x̄

T
N )T ∈ ker(D̃1, D̃2) then

D̃1x̄0 + D̃2x̄N = 0.

From Eqs. (3.23)–(3.24), the above equation can be rewritten as follows

D1x̄0 +D2x̄N − CN Q̃N−1PN−1P̂1,N−1Ĝ
−1
1,N−1BN−1XN−1x̄0

+CN (Q̃N−1 −QN−1)P̂1,N−1x̄N = 0.

Put

ξ := −Q̃N−1PN−1P̂1,N−1Ĝ
−1
1,N−1BN−1XN−1x̄0

and

ζ := (Q̃N−1 −QN−1)P̂1,N−1x̄N .

Using the facts that Q̃N−1 = QN−1Q̃N−1 and Q̂1,N−1QN−1 = 0, we have

D2(ξ + ζ) = −CN Q̃N−1PN−1P̂1,N−1Ĝ
−1
1,N−1BN−1XN−1x̄0

+CN(Q̃N−1 −QN−1)P̂1,N−1x̄N .

This gives

D1x̄0 +D2(x̄N + ξ + ζ) = 0.
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This means that
(
x̄T
0 , (x̄N + ξ + ζ)T

)T
∈ ker(D1, D2) = kerR. It ensures that

P−1P̂1,−1x̄0 = 0 and (I − PN−1P̂1,N−1)(x̄N + ξ + ζ) = 0. Now applying Eq. (2.5) we

come to the conclusion that P̃−1
̂̃
P 1,−1 = P̃−1P̂1,−1. Further, P̃−1 = P̃−1P−1, hence

P̃−1
̂̃
P 1,−1 = P̃−1P−1P̂1,−1. This implies that

P̃−1
̂̃
P 1,−1x̄0 = 0.(3.25)

On the other hand, since P−1P̂1,−1x̄0 = 0 and XN−1 = XN−1P−1P̂1,−1, it follows that

XN−1x̄0 = 0. Thus, ξ = 0 and we obtain (I − PN−1P̂1,N−1)(x̄N + ζ) = 0. Observing

that ζ = QN−1ζ and PN−1P̂1,N−1QN−1 = 0, we get

x̄N +QN−1ζ = PN−1P̂1,N−1x̄N .

This relation leads to that Q̂1,N−1x̄N = 0, hence ζ = (Q̃N−1−QN−1)x̄N . This implies

that

QN−1x̄N +QN−1(Q̃N−1 −QN−1)x̄N = 0

or we have Q̃N−1x̄N = 0. Thus,

Q̃N−1x̄N + P̃N−1Q̂1,N−1x̄N = 0.

This means that

Q̃N−1x̄N + P̃N−1
̂̃
Q1,N−1x̄N = 0.

The last equation is equivalent to

(I − P̃N−1
̂̃
P 1,N−1)x̄N = 0.(3.26)

Combining Eqs. (3.25)–(3.26), we come to the conclusion that (x̄T
0 , x̄

T
N )T ∈ kerR̃.

Thus, the inclusion ker(D̃1, D̃2) ⊆ kerR̃ is proved. To show the converse inclu-

sion, we observe that for arbitrary (x̄T
0 , x̄

T
N )T ∈ kerR̃, i.e, P̃−1

̂̃
P 1,−1x̄0 = 0 and

(I − P̃N−1
̂̃
P 1,N−1)x̄N = 0. Due to X̃i = X̃iP̃−1

̂̃
P 1,−1 (i = 0, N), it implies that

D̃1x̄0 = 0. Notice that the equality (I − P̃N−1
̂̃
P 1,N−1)x̄N = 0 is equivalent to the

following relation

Q̃N−1x̄N + P̃N−1
̂̃
Q1,N−1x̄N = 0.

Moreover, since
̂̃
Q1,N−1P̃N−1

̂̃
P 1,N−1 = 0 it follows

̂̃
Q1,N−1x̄N = 0. Therefore, we

obtain D̃2x̄N = 0. It implies that D̃1x̄0 + D̃2x̄N = 0 or (x̄T
0 , x̄

T
N )T ∈ ker(D̃1, D̃2).
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We denote by

zi := Πi

i−1∑

k=0

M
(i)
i−k−2PkP̂1,kĜ

−1
1,kqk + TiQiT1,i+1Q̂1,i+1Ĝ

−1
1,i+1qi+1 − TiQiP̂1,iĜ

−1
1,i qi

−Pi−1T1,iQ̂1,iĜ
−1
1,i qi, i = 0, N − 2,

zN−1 := ΠN−1

N−2∑

k=0

M
(N−1)
N−k−3PkP̂1,kĜ

−1
1,kqk − TN−1QN−1P̂1,N−1Ĝ

−1
1,N−1qN−1

−PN−2T1,N−1Q̂1,N−1Ĝ
−1
1,N−1qN−1,

zN :=

N−1∑

k=0

M
(N)
N−k−2PkP̂1,kĜ

−1
1,kqk and γ∗ := γ −

N∑

i=0

Cizi.

Note that Lemma 3.8 guarantees that the following theorem does not depend on the

chosen Ti, Qi and T1,i.

Theorem 3.9. Let the LSDE (3.15) be of index-2. Then the MPBVP (3.15),

(3.16) is uniquely solvable for every qi ∈ Rm (i = 0, N − 1) and every γ ∈ Rm if and

only if the condition (3.22) holds. Moreover, the unique solution can be represented

as




xi = Xiξ + zi, i = 0, N − 2,

xN−1 = XN−1ξ + zN−1 − TN−1QN−1Q̂1,N−1ζ,

xN = XNξ + zN +QN−1ζ + PN−1Q̂1,N−1ζ,

(3.27)

where (ξT , ζT )T = (D1, D2)
+γ∗ with (D1, D2)

+ the generalized inverse in Moore-

Penrose’s sense of (D1, D2).

Proof. The proof of Theorem 3.9 is quite similar to that of Theorem 3.2, hence

it will be outlined only.

First, observe that the equations corresponding to (3.8) and (3.9) are

(I − T0Q0P̂1,0Ĝ1,0B0)P−1P̂1,−1x̄0 = 0(3.28)

and

XN x̄0 +QN−1x̄N + PN−1Q̂1,N−1x̄N = 0.(3.29)

Using the facts that P−1P̂1,−1 = P0P̂1,0, T0 = I and P0Q0 = 0, we obtain that Eq.

(3.28) yields

P0P̂1,0x̄0 = 0.
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Moreover, XN x̄0 = XNP0P̂1,0x̄0 = 0, hence, Eq. (3.29) implies that

QN−1x̄N + PN−1Q̂1,N−1x̄N = 0,

or equivalently,

(I − PN−1P̂1,N−1)x̄N = 0.

In the proof of the converse part, we note that the solution formula (3.5) is

replaced with the formulae (3.17)–(3.19). Since Xi = XiP−1P̂1,−1, ∀i = 0, N and

P−1P̂1,−1x̄0 = 0, it gives Xix̄0 = 0 (i = 0, N). Using the fact that PN−1QN−1 =

0, we can conclude that the equality QN−1x̄N + PN−1Q̂1,N−1x̄N = 0 implies that

QN−1x̄N = 0 and PN−1Q̂1,N−1x̄N = 0. Besides, since

x̄N = QN−1x̄N + PN−1Q̂1,N−1x̄N + PN−1P̂1,N−1x̄N ,

we get x̄N = PN−1P̂1,N−1x̄N . This leads to

Q̂1,N−1x̄N = Q̂1,N−1PN−1P̂1,N−1x̄N = Q̂1,N−1(I −QN−1)P̂1,N−1x̄N = 0.

Next, we have the following useful lemma.

Lemma 3.10. The dimensions of kerR and ker(D1, D2) are independent of the

choice of Ti, Qi and T1,i, moreover, dim(kerR) = m and dim
(
ker(D1, D2)

)
=: p ≥

m.

Proof. Firstly, we observe that

ker(PiP̂1,i) = kerAi ⊕ kerGi, i = −1, N − 1.(3.30)

Indeed, let ξ ∈ ker(PiP̂1,i) means that PiP̂1,iξ = 0. We write ξ as ξ = P̂1,iξ + Q̂1,iξ.

Clearly, Q̂1,iξ ∈ kerGi. Furthermore, since PiP̂1,iξ = 0, it implies that P̂1,iξ =

(Pi +Qi)P̂1,iξ = QiP̂1,iξ ∈ kerAi. Thus, we get

ker(PiP̂1,i) ⊆ kerAi + kerGi, i = −1, N − 1.

Conversely, for arbitrary ξ = y+z ∈ kerAi+ kerGi, we see that PiP̂1,iξ = PiP̂1,iQiy+

PiP̂1,iQ̂1,iz = 0. Therefore,

kerAi + kerGi ⊆ ker(PiP̂1,i), i = −1, N − 1,

which yields

ker(PiP̂1,i) = kerAi + kerGi, i = −1, N − 1.
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On the other hand, since Q̂1,iQi = 0, it is easy to verify that kerAi ∩ kerGi = {0}.

This leads to the identity (3.30), as it was to be proved.

Noting that rankAi = r and rankGi = s for all i = −1, N − 1 and applying Eq.

(3.30), we obtain that

rank(PiP̂1,i) = r + s−m, i = −1, N − 1.

In particular, we have rank(P−1P̂1,−1) = r+s−m and rank(PN−1P̂1,N−1) = r+s−m.

It follows that dim(kerR) = m.

Now using notations and the arguments in the proof of Lemma 3.8, we consider

a linear operator F from ker(D̃1, D̃2) to ker(D1, D2), defined by

F(ξT , ζT )T :=
(
ξT ,

(
ζ + (Q̃N−1 −QN−1)P̂1,N−1ζ

−Q̃N−1PN−1P̂1,N−1Ĝ
−1
1,N−1BN−1XN−1ξ

)T)T

.

Let (yT , zT )T ∈ ker(D1, D2) be arbitrary, i.e., D1y + D2z = 0. Then we determine

two vectors ξ and ζ by ξ = y and

ζ = z + (QN−1 − Q̃N−1)
̂̃
P 1,N−1z + Q̃N−1PN−1P̂1,N−1Ĝ

−1
1,N−1BN−1XN−1y.

From Eq. (2.5) and the facts that Q̃N−1QN−1 = QN−1 and Q̂1,N−1QN−1 = 0, we

obtain

F(ξT , ζT )T = (yT , zT )T .

Moreover, it is easy to see that

D̃1ξ + D̃2ζ = 0, i.e., (ξT , ζT )T ∈ ker(D̃1, D̃2).

This implies that F is sujective, hence F
(
ker(D̃1, D̃2)

)
= ker(D1, D2). According to

the property of the linear operator, we get dimF
(
ker(D̃1, D̃2)

)
≤ dim

(
ker(D̃1, D̃2)

)
,

hence

dim
(
ker(D1, D2)

)
≤ dim

(
ker(D̃1, D̃2)

)
.

Similarly, we also have the following inequality

dim
(
ker(D̃1, D̃2)

)
≤ dim

(
ker(D1, D2)

)
,

which implies that

dim
(
ker(D̃1, D̃2)

)
= dim

(
ker(D1, D2)

)
.
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Thus, dim
(
ker(D1, D2)

)
does not depend on the choice of Ti, Qi and T1,i. On the

other hand, the following inclusion

kerR ⊆ ker(D1, D2)

is always valid. Therefore, dim
(
ker(D1, D2)

)
:= p ≥ m.

As a direct consequence of Theorem 3.9 and Lemma 3.10 we come to the following

corollary.

Corollary 3.11. Suppose that the LSDE (3.15) is of index-2. Then the MPBVP

(3.15), (3.16) is uniquely solvable if and only if dim
(
ker(D1, D2)

)
= m.

Now we turn to the case when (3.22) is not valid, i.e., p > m and the MPVBP

(3.15), (3.16) has either no solution or an infinite number of solutions. Using the same

notations as in the constant coefficients case, we define column matrices Φi := XiU

(i = 0, N − 2), ΦN−1 := XN−1U −TN−1QN−1Q̂1,N−1V and ΦN := XNU +QN−1V +

PN−1Q̂1,N−1V and a linear operator L acting in Rm(N+1),

L(xT
0 , . . . , x

T
N )T :=

(
(A0x1 −B0x0)

T , . . . , (AN−1xN −BN−1xN−1)
T ,

( N∑

i=0

Cixi

)T)T

.

The counterpart of Lemma 3.3 is now as follows.

Lemma 3.12. kerL =
{(

(Φ0a)
T , . . . , (ΦNa)T

)T
: a ∈ Rp−m

}
.

Proof. The proof is similar to that for Lemma 3.3 except that now we note that

TN−1QN−1 = QN−2TN−1QN−1, AiQi = 0 (i = N − 2, N − 1), GN−1Q̂1,N−1 = 0,

Xi = XiP−1P̂1,−1 (i = 0, N), and the equality (I − PN−1P̂1,N−1)v
0
k = 0 is equivalent

to the relation QN−1v
0
k +PN−1Q̂1,N−1v

0
k = 0 and implies that Q̂1,N−1v

0
k = 0 for each

k = 1,m.

Theorem 3.13. Suppose that the LSDE (3.15) is of index-2 and p > m. Then,

the problem (3.15), (3.16) possesses a solution if and only if

Wγ∗ = 0.(3.31)

Moreover, a general solution of (3.15), (3.16) can be given by





xi = Xiξ + zi +Φia, i = 0, N − 2,

xN−1 = XN−1ξ + zN−1 − TN−1QN−1Q̂N−1ζ +ΦN−1a,

xN = XNξ + zN +QN−1ζ + PN−1Q̂N−1ζ +ΦNa,

(3.32)

where a ∈ Rp−m is an arbitrary vector and (ξT , ζT )T = (D1, D2)
+γ∗ with (D1, D2)

+

the generalized inverse in Moore-Penrose’s sense of (D1, D2).
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Proof. The proof of Theorem 3.13 is similar to that of Theorem 3.4 and will be

omitted.

Combining Theorem 3.9 and Theorem 3.13 we come to the following statement.

Corollary 3.14. (Fredholm alternative) Assume that the LSDE (3.15) is of

index-2 and let p := dim
(
ker(D1, D2)

)
. Then

(i) either p = m and the problem (3.15), (3.16) is uniquely solvable for any data

qi (i = 0, N − 1) and γ;

(ii) or p > m and the problem (3.15), (3.16) is solvable if and only if the condition

(3.31) is valid.

Moreover, the solution formula (3.32) holds.
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