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Abstract. The maximum positive semidefinite nullity of a multigraph G is the largest possible

nullity over all real positive semidefinite matrices whose (i, j)th entry (for i 6= j) is zero if i and j are

not adjacent in G, is nonzero if {i, j} is a single edge, and is any real number if {i, j} is a multiple

edge. The definition of the positive semidefinite zero forcing number for simple graphs is extended to

multigraphs; as for simple graphs, this parameter bounds the maximum positive semidefinite nullity

from above. The tree cover number T(G) is the minimum number of vertex disjoint induced simple

trees that cover all of the vertices of G. The result that M+(G) = T(G) for an outerplanar multigraph

G [F. Barioli et al. Minimum semidefinite rank of outerplanar graphs and the tree cover number.

Electron. J. Linear Algebra, 22:10–21, 2011.] is extended to show that Z+(G) = M+(G) = T(G) for

a multigraph G of tree-width at most 2.
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1. Introduction. The standard minimum rank (maximum nullity) problem for

a simple graph G is to determine the smallest possible rank (largest possible nullity)

over all real symmetric matrices described by the graph (A = [aij ] is described by

G if for i 6= j, aij is nonzero whenever {i, j} is an edge in G and is zero otherwise).

The minimum rank problem and maximum nullity problem are equivalent. One can

also consider the minimum rank or maximum nullity of matrices that are described

by a graph and that satisfy additional conditions, yielding variants on the standard

problem, such as the problem of determining the minimum positive semidefinite rank

(maximum positive semidefinite nullity) of a graph. The positive semidefinite zero

forcing number, introduced in [1], can be determined by software [5], and assists in

the computation of positive semidefinite maximum nullity, just as the zero forcing

number helps determine maximum nullity.
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Although our main interest is in simple graphs, van der Holst and others have

used multigraphs as a tool to describe the effect of matrix operations on the nonzero

structure that is described by a simple graph, and we follow that approach here. In

Section 2, we introduce the positive semidefinite zero forcing number for a multigraph

and show that it is an upper bound for maximum positive semidefinite nullity. We

also provide precise definitions of terms we will use, including graph terminology and

orthogonal representations. In Section 3, we prove that for a multigraph (or simple

graph) of tree-width at most two, the positive semidefinite zero forcing number is

equal to the maximum positive semidefinite nullity. We also observe that the proof of

Theorem 3.4 in [2] establishes that maximum positive semidefinite nullity is equal to

tree cover number for a graph of tree-width at most two, extending that result from

outerplanar graphs.

2. Multigraphs. Every graph discussed is undirected, finite (meaning both the

vertex set and edge set are finite), and has nonempty vertex set. In a simple graph

G = (V,E), the edge set E is a set of two-element subsets of vertices. In a general

graph G = (V,E), the edge set E is a multiset of two-element submultisets of vertices.

A multigraph G = (V,E) is a general graph in which E is a multiset of two-element

subsets of vertices. That is, in a multigraph multiple copies of an edge {v, w} are

permitted, but a loop {v, v} is not. In a multigraph, a multiple edge, denoted by

v ≈ w, is an edge that appears more than once in E; a single edge, denoted by v ∼ w,

is an edge that appears exactly once in E. The vertices v and w are adjacent if v ∼ w

or v ≈ w.

In a multigraph, w is a neighbor of v if v and w are adjacent; the set of neighbors

of v is denoted by N(v). The degree of vertex v in G is dG(v) = |N(v)| (note this

may be less than the number of edges incident with v). For a multigraph G = (V,E)

and W ⊆ V , the induced submultigraph G[W ] is the multigraph with vertex set W

and edge set consisting of those edges in E having both vertices in W . The subgraph

induced by V \W is usually denoted by G −W , or in the case W = {v}, by G− v.

The contraction of edge e between u and v, denoted by G/e, is obtained by identifying

the vertices u and v, deleting any loops that arise in the process.

Van der Holst [7, 8] and others, e.g., [2, 3], use a multiple edge in a multigraph to

indicate a completely free entry when describing symmetric matrices. More precisely,

if G is a multigraph of order n, then S+(G) is the set of all positive semidefinite n×n

real matrices A = [aij ] satisfying

1. aij = 0 if i 6= j and i and j are not adjacent,

2. aij 6= 0 if i 6= j and i ∼ j, and

3. aij ∈ R if i = j, or i 6= j and i ≈ j.
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The positive semidefinite maximum nullity of a multigraph G is

M+(G) = max{nullA |A ∈ S+(G)}.

Multigraphs are useful even when the focus is on simple graphs; see, for example, [3].

Maximum positive semidefinite nullity over complex (Hermitian) positive semidef-

inite matrices described by G, denoted MC

+(G), has also been defined and studied,

e.g., [7, 3, 6, 9]. Although in general maximum complex positive semidefinite nullity

can be strictly greater than maximum real positive semidefinite nullity [1], it is a con-

sequence of Theorem 3.3 below that maximum complex positive semidefinite nullity

is equal to maximum real positive semidefinite nullity for multigraphs of tree-width

at most 2 (see also [2] for more discussion of this issue). Following the approach taken

in [2], we focus on real matrices, but note in some cases where the results apply to

complex matrices.

2.1. The positive semidefinite zero forcing number. In a simple graph

G = (V,E) where the vertices in a set S ⊆ V are colored black and the remaining

vertices are colored white, the positive semidefinite color change rule is: IfW1, . . . ,Wk

are the sets of vertices of the k components of G − S (note that it is possible that

k = 1), w ∈ Wi, u ∈ S, and w is the only white neighbor of u in G[Wi ∪ S], then

change the color of w to black; in this case, we say u forces w and write u → w. A

positive semidefinite zero forcing set is a set of black vertices B such that repeated

application of the positive semidefinite color change rule changes all the vertices of G

to black. The positive semidefinite zero forcing number of a graph G, denoted Z+(G),

is the minimum of |B| over all positive semidefinite zero forcing sets B ⊆ V . It is

shown in [1] that for every simple graph G, M+(G) ≤ Z+(G).

The definition of S+(G) for a multigraph G suggests the following definition of

the positive semidefinite zero forcing number of a multigraph.

Definition 2.1. The positive semidefinite zero forcing number of a multigraph

G = (V,E), denoted by Z+(G), is the minimum of |B| over all positive semidefinite

zero forcing sets B ⊆ V using the positive semidefinite color change rule for multi-

graphs: Let S be the set consisting of all the black vertices. Let W1, . . . ,Wk be the

sets of vertices of the k components of G−S (note that it is possible that k = 1). Let

w ∈ Wi. If u ∈ S, w is the only white neighbor of u in G[Wi ∪ S], and w is joined to

u by a single edge, then change the color of w to black.

The proof of the following theorem is very similar to the proof of Theorem 3.5 in

[1].

Theorem 2.2. If G is a multigraph, then M+(G) ≤ Z+(G).

As in [1], Theorem 2.2 remains true if M+(G) is replaced by MC

+(G), where
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MC

+(G) is the maximum nullity over complex Hermitian positive semidefinite matrices

described by G.

2.2. Orthogonal representations. Let G = (V,E) be a multigraph of order n.

We say that ~V = {~v1, . . . , ~vn} ⊂ R
d is an orthogonal representation of G if 〈~vi, ~vj〉 = 0

whenever i and j are not adjacent and 〈~vi, ~vj〉 6= 0 whenever i ∼ j. Note that there

is no restriction on 〈~vi, ~vj〉 when i ≈ j. Then letting C = [~v1 · · ·~vn], the Gram matrix

of ~V is CTC = [aij ] where aij = ~vi
T~vj = 〈~vj , ~vi〉. It is easy to see that CTC ∈ S+(G)

with rankCTC = rankC ≤ d. Furthermore, for each A ∈ S+(G), A = CTC for some

matrix C ∈ R
d×n where d = rankC = rankA. The columns of C form an orthogonal

representation of G since if A = [aij ], aij = ~ci
T~cj = 〈~cj ,~ci〉 where ~ci represents the ith

column of C. Orthogonal representations can also be used for complex (Hermitian)

positive semidefinite matrices, replacing the transpose by the Hermitian adjoint.

Let ~V be an orthogonal representation of G = (V,E) with 0 6= ~v ∈ ~V representing

v ∈ V . Define the orthogonal removal of ~v from ~V by ~V ⊖ ~v = {~u′}~u6=~v, where

~u′ = ~u−
〈~u,~v〉

〈~v,~v〉
~v.

By considering ~V expressed in an orthogonal basis for Fd with ~v as one of the basis

vectors, it is easy to see that rank(~V ⊖ ~v) = rank ~V − 1.

Define the orthogonal removal of v from G by starting with G− v and, for every

distinct u,w ∈ N(v), letting u and w be connected by |E(G[{u, v, w}])| − 1 edges in

the new graph (where E(H) represents the edges of a multigraph H .) We denote this

new graph by G⊖v. To justify this double use of the symbol ⊖, we have the following

observation, noted in [6]:

Observation 2.3. Let G = (V,E) be a multigraph of order at least 2. If ~V is

an orthogonal representation of G with ~v ∈ ~V representing v ∈ V , then ~V ⊖ ~v is an

orthogonal representation for G⊖ v.

2.3. Tree-width. For a positive integer k, a simple k-tree is constructed induc-

tively by starting with a complete simple graph on k+1 vertices and singly connecting

each new vertex to the vertices of an existing clique on k vertices. A partial simple

k-tree is a subgraph of a simple k-tree. The tree-width tw(G) of a simple graph G is

the least positive integer k such that G is a partial simple k-tree.

The underlying simple graph of a multigraph is obtained by replacing each multi-

ple edge by a single edge. We apply terms for simple graphs to multigraphs by means

of the underlying simple graph. For example, a multigraph is a (partial) k-tree if its

underlying simple graph is a simple (partial) k-tree.
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The proof of Theorem 3.4 in [2] uses certain properties of outerplanar graphs.

These properties remain true for partial 2-trees and are stated in the following four

lemmas that will be used in the proof of Theorem 3.3 below. Lemmas 2.4, 2.5, and

2.6 are well known for simple graphs and their extension to multigraphs is clear.

Lemma 2.4. If the multigraph G = (V,E) is a partial k-tree, then there exists a

vertex v ∈ V such that dG(v) ≤ k.

Lemma 2.5. If the multigraph G = (V,E) is a partial k-tree and v ∈ V , then

G− v is a partial k-tree.

Lemma 2.6. If the multigraph G = (V,E) is a partial k-tree and e ∈ E, then

G/e is a partial k-tree.

Lemma 2.7. Suppose the multigraph G = (V,E) is a partial 2-tree, v ∈ V and

dG(v) ≤ 2. Then G⊖ v is a partial 2-tree.

Proof. If dG(v) = 1, G ⊖ v = G − v. So assume dG(v) = 2 and N(v) = {u,w}.

If u is adjacent to w in G, then G ⊖ v is obtained from the partial 2-tree G − v by

adding extra edges to edge(s) {u,w}, so G⊖ v is a partial 2-tree. If u and w are not

adjacent, then G ⊖ v can be obtained from G by an edge contraction and possibly

adding extra multiple edges, so G⊖ v is a partial 2-tree.

2.4. Tree cover number. First introduced in [2], the tree cover number of

a multigraph G, denoted T(G), is the minimum number of vertex disjoint induced

simple trees that cover the vertices of G. If T is a simple tree, then M+(T ) = 1 [7],

so for simple trees M+ and T are equal. Recently, Barioli et al. [2] established the

equality of T and M+ for outerplanar multigraphs, and the proof remains valid for

multigraphs of tree-width at most 2 (see Theorem 3.3 below).

Fig. 2.1. The Möbius ladder ML8, also known as V8.

For the Möbius ladder ML8 = V8 shown in Figure 2.1, we have

Z+(ML8) = 4 > M+(ML8) = 3 > T(ML8) = 2.
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The parameter values have been previously established: T(ML8) = 2 in [2] and

M+(ML8) = 3 in [9]. Using the simple graph parameter ordered set number OS(G),

defined in [9], and the result that for a simple graph G, OS(G) + Z+(G) = |G| [1],

results in [9] imply Z+(ML8) = 4 (this can also be established through the use of

software [5]).

3. Graphs of tree-width at most 2. It is well known that if T is a (simple)

tree, M+(T ) = Z+(T ) = T(T ) = 1. Since all three parameters sum over connected

components, M+(T ) = Z+(T ) = T(T ) for any (simple) forest (i.e., partial 1-tree). It

is also easy to see that these parameters are equal for a multigraph tree or forest. We

show that M+(G) = Z+(G) = T(G) for any multigraph G that is a partial 2-tree.

Note that the proof of Theorem 3.4 in [2], although stated for outerplanar graphs,

actually shows that M+(G) = T(G) for any partial 2-tree.

A vertex v of a multigraph G is singly-isolated if v ≈ w for all w ∈ N(v). If v is

singly-isolated in G then

T(G− v) = T(G)− 1; (3.1)

M+(G− v) = M+(G) − 1; (3.2)

Z+(G− v) = Z+(G)− 1. (3.3)

Equations (3.1) and (3.2) appear in [2], and (3.3) is equally straightforward, because

v must appear in any positive semidefinite zero forcing set for G and cannot perform

a force.

It is shown in [2] that if G is a multigraph, v is not singly-isolated in G, and

dG(v) ≤ 2, then

T(G⊖ v) = T(G); (3.4)

M+(G⊖ v) = M+(G). (3.5)

These results play a crucial role in the proof of the equality of tree cover number and

maximum positive semidefinite nullity for outerplanar graphs [2, Theorem 3.4], and

we prove a comparable result for positive semidefinite zero forcing number (equation

(3.6) in Proposition 3.2 below). In [2], the inequality M+(G ⊖ v) ≥ M+(G) for any

vertex v of G that is not singly-isolated is established before proving equation (3.5),

and we follow that approach here.

Proposition 3.1. Let G = (V,E) be a multigraph and v ∈ V (G) such that v is

not singly-isolated. Then Z+(G⊖ v) ≥ Z+(G).

Proof. Let B be a positive semidefinite zero forcing set for G⊖ v. We show that

B is a positive semidefinite zero forcing set for G. Observe that in G⊖v the subgraph
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induced by the set N(v) of neighbors of v in G is a clique. Thus, at most one force

between vertices in N(v) can take place in G ⊖ v. Furthermore, if u ∈ N(v) and

x 6∈ N(v), then in G⊖ v any force u → x may take place after all vertices in N(v) are

black.

Suppose first that u,w ∈ N(v) and u → w in G⊖ v. Then u ∼ w in G⊖ v, so in

G, u and w are not adjacent, u ∼ v and w ∼ v. Thus, we can replace the force u → w

in G ⊖ v by the forces u → v → w in G, so B is a positive semidefinite zero forcing

set for G.

Now suppose that no forces take place within N(v) in G ⊖ v, i.e., u,w ∈ N(v)

implies u 6→ w. InG, choose z ∼ v (such z ∈ N(v) exists since v is not singly-isolated).

Then B is a positive semidefinite zero forcing set for G with the same sequence of

forces and the additional force z → v after all the vertices in N(v) are black (note

that v is the only vertex in its component of G−N(v)).

Proposition 3.2. Let G be a multigraph. Let v be a vertex of G such that v is

not singly-isolated and dG(v) ≤ 2. Then

Z+(G⊖ v) = Z+(G). (3.6)

Proof. By Proposition 3.1, Z+(G⊖v) ≥ Z+(G). We show that Z+(G⊖v) ≤ Z+(G).

Since v is not singly-isolated, dG(v) ≥ 1.

First assume dG(v) = 1, and let N(v) = {u}. Since v is not singly-isolated, v ∼ u.

Then G⊖v = G−v. A minimum positive semidefinite zero forcing set B for G cannot

include both v and u. If v /∈ B, then B is a positive semidefinite zero forcing set for

G−v. If v ∈ B, then B \{v}∪{u} is a positive semidefinite zero forcing set for G−v.

Thus, Z+(G⊖ v) ≤ Z+(G).

Now assume dG(v) = 2, and let N(v) = {u,w}. Since v is not singly-isolated,

without loss of generality we assume that v ∼ u. Let B be a minimum positive

semidefinite zero forcing set for G. If v 6∈ B, then B is a positive semidefinite zero

forcing set for G ⊖ v (in the case u and w are not adjacent and v ∼ w in G, if the

forces u → v → w occur, replace by the force u → w). Now assume v ∈ B. Then u

and w cannot both be in B. If one of u, w is in B, let x denote that vertex. If neither

u nor w is in B, let x denote the one of u, w that is forced first. Let y denote the one

of u, w that is not x. Then B \ {v} ∪ {y} is a positive semidefinite zero forcing set

for G⊖ v.

Theorem 3.3. Let multigraph G be a partial 2-tree. Then M+(G) = Z+(G) =

T(G).
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Proof. We prove by induction on the order of G that M+(G) = Z+(G) = T(G).

When |G| = 1, the result is clear. Assume that M+(H) = Z+(H) = T(H) for every

partial 2-tree H of order less than n, and let |G| = n. Then G has a vertex v with

dG(v) ≤ 2 by Lemma 2.4.

Suppose first that v is singly-isolated. Then G − v is a partial 2-tree by Lemma

2.5 and

T(G) = T(G− v) + 1, M+(G) = M+(G− v) + 1, Z+(G) = Z+(G− v) + 1

by equations (3.1), (3.2), and (3.3). By the induction hypothesis, M+(G − v) =

Z+(G− v) = T(G− v) so

M+(G) = Z+(G) = T(G).

Now suppose that v is not singly-isolated. Then by applying equations (3.4),

(3.5), and (3.6),

T(G) = T(G⊖ v), M+(G) = M+(G⊖ v), Z+(G) = Z+(G⊖ v).

By Lemma 2.7, G⊖ v is a partial 2-tree, and thus by the induction hypothesis,

M+(G⊖ v) = Z+(G⊖ v) = T(G⊖ v).

Thus,

M+(G) = Z+(G) = T(G).

Since any simple graph is a multigraph, and since for each of the parameters in

Theorem 3.3 the value of the multigraph parameter on a simple graph is equal to the

value of the analogous parameter defined for simple graphs, we have the same result

for simple graphs.

Corollary 3.4. If the simple graph G is a partial 2-tree, then M+(G) =

Z+(G) = T(G).

Every outerplanar simple graph is a partial 2-tree, because G is a partial 2-tree

if and only if G does not have a K4 minor [4, Fact 31, p. 112] and G is outerplanar

if and only if G has neither a K4 minor nor a K2,3 minor [4, Fact 32, p. 112]. Thus,

Corollary 3.4 shows that if G is outerplanar, then M+(G) = Z+(G) (M+(G) = T(G)

was established in [2]).
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