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THE CHARACTERISTIC SET WITH RESPECT TO

K-MAXIMAL VECTORS OF A TREE∗

SHI-CAI GONG†

Abstract. Let T be a tree on n vertices and L(T ) be its Laplacian matrix. The eigenvalues

and eigenvectors of T are respectively referred to those of L(T ). With respect to a given eigenvector

Y of T , a vertex u of T is called a characteristic vertex if Y [u] = 0 and there is a vertex w adjacent

to u with Y [w] 6= 0; an edge e = (u, w) of T is called a characteristic edge if Y [u]Y [w] < 0. C(T, Y )

denotes the characteristic set of T with respect to the vector Y , which is defined as the collection of

all characteristic vertices and characteristic edges of T corresponding to Y .

Let λ1(T ) ≤ λ2(T ) ≤ · · · ≤ λn(T ) be the eigenvalues of a tree T on n vertices. An eigenvector

is called a k-vector (k ≥ 2) of T if the eigenvalue λk(T ) associated by this eigenvector satisfies

λk(T ) > λk−1(T ). The k-vector Y of T is called k-maximal if C(T, Y ) has maximum cardinality

among all k-vectors of T . In this paper, the characteristic set with respect to any k-maximal vector

of a tree is investigated by exploiting the relationship between the cardinality of the characteristic

set and the structure of this tree. With respect to any k-maximal vector Y of a tree T , the structure

of the trees T satisfying |C(T, Y )| = k − 1− t for any t (0 ≤ t ≤ k − 2) are characterized.

Key words. Laplacian matrix, Characteristic set, k-Vector, k-Maximal vector.

AMS subject classifications. 05C50, 15A15.

1. Introduction. Let G = (V,E) be a simple graph with vertex set V = V (G) =

{v1, v2, . . . , vn} and edge set E = E(G). The Laplacian matrix of G is defined as

L = L(G) = D(G) − A(G), where A(G) is the adjacency matrix of G and D(G) =

diag{d(v1), d(v2), . . . , d(vn)}, the diagonal degree matrix of G. Since L(G) is positive

semi-definite, its eigenvalues can be arranged as

0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G).

Henceforth λi(G) denotes the ith smallest eigenvalue of G. The kth smallest eigen-

value of G will be written as kλ(G) if λk(G) > λk−1(G), and the corresponding

eigenvectors will be called k-vectors of G.

For an eigenvector Y of a given graphG, a vertex v is called a characteristic vertex

with respect to Y if Y [v] = 0 and there is a vertex w adjacent to v, such that Y [w] 6= 0;
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an edge e = (u,w) is called a characteristic edge of G with respect to Y if Y [u]Y [w] <

0. We denote by C(G, Y ) the characteristic set of G with respect to the vector Y ,

which is defined as the collection of all characteristic vertices and characteristic edges

of G corresponding to Y . For convenience we relax the requirement that Y be an

eigenvector of G in the definition of C(G, Y ), and allow Y to be an arbitrary vector

defined on the vertex set of G.

For a graph G, an eigenvector corresponding to the second smallest eigenvalue is

called a Fiedler vector of G. It is known that λ2(G) > λ1(G) = 0 if and only if G is

connected [5]. Thus, each Fiedler vector of a connected graph is a 2-vector. Fiedler’s

remarkable result [5, Theorem 3.14] on the structure of Fiedler vectors (i.e., 2-vectors)

of a connected graph motivated a lot of work on the structure of eigenvectors; see,

e.g., [1, 2, 7, 8, 9, 10, 11, 12, 13, 14].

Merris introduced the notion of a characteristic set and showed that |C(T, Y )| = 1.

In [11], Merris also showed that C(T, Y ) is fixed regardless of the choice of Fiedler

vectors Y of a given tree T ; see [11, Theorem 2]. With respect to any Fiedler vectors Y

of a given graphG, Bapat and Pati [1] investigated the cardinality of the characteristic

set C(G, Y ). In [14], Pati extended the notation the characteristic set from Fiedler

vectors to 3-vectors of trees and gave a complete description of 3-vectors of a given

tree. Then Fan and Gong [2] further extended the concept of characteristic set to any

k-vector of a tree.

Recall that, for any 2-vector Y of a tree T , |C(T, Y )| = 1 and C(T, Y ) is fixed

regardless of the choice of 2-vectors Y , even though the eigenspace for 2λ(T ) (well

known as the algebraic connectivity of T [3]) is large (see [11], Theorem 2).

However, for k ≥ 3, the characteristic set C(T, Y ) may depend upon the choice

of the k-vectors. For example, consider the tree T in Figure 1.1 (or see Figure 3.2 in

[14]). One can find that Y1, Y2 and Y3 are all 3-vectors of T , where

Y1 = [ 0 0 0 0 0 0 0 0 0 0 0 .2638 .4754 .5929 0 0 0 − .2638 − .4754 − .5929 ]T ,

Y2 = [ .5929 .4754 .2638 0 0 0 0 0 0 0 0 0 0 − .5929 − .4754 − .2638 0 0 0 0 ]T , and

Y3 = [ .9098 .7296 .4049 0 0 0 0 0 0 0 0 − .0490 − .0884 − .1102 − .4049 − .7296

−.9098 .0490 .0884 .1102 ]T .

But one can verify that C(T, Y1) = {11}, C(T, Y2) = {4}, and |C(T, Y3)| = {4, 11}.

For a given tree T and a k-vector Y of T , Y is called k-maximal if C(T, Y ) has

maximum cardinality over all k-vectors of T , i.e.,

|C(T, Y )| = max
Y

|C(T, Y )|,

where the maximum is taken over all k-vectors of T (see [6]).
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Fig. 1.1. A tree T on 20 vertices.

For any k-maximal vector of a tree, the following result is interesting.

Proposition 1.1. ([6], Theorem 3.2) Let T be a tree on n vertices. Suppose that

both Y1 and Y2 are the k(≥ 2)-maximal vectors of T . Then

C(T, Y1) = C(T, Y2).

Proposition 1.1 implies that for any k with 2 ≤ k ≤ n, the characteristic set

C(T, Y ) is fixed regardless the choice of the k-maximal vector Y , i.e., the characteristic

set is determined by the tree structure and independent of the k-maximal vectors,

which is consistent with Merris’ result (see [11], Theorem 2). Henceforth, to exploit

the relationship between the cardinality of the characteristic set and the tree structure,

we focus on studying the k-maximal vectors of trees.

With respect to any k-(maximal) vector Y of a given tree T , Fan et al. showed

that [2, Corollary 2.5]

1 ≤ |C(T, Y )| ≤ k − 1.(1.1)

In particular, they also gave a characterization for trees whose characteristic set

C(T, Y ) with respect to its any k-vector Y contains exactly one element, i.e., the

k-simple trees; see [2, Theorem 2.11]. Naturally, the following problem is posed:

For a general tree T on n vertices and an arbitrary integer k (≤ n), can

we exploit the relationship between the cardinality of the characteristic set

C(T, Y ) with respect to its any k-maximal vector Y and the structure of such

a tree T ?

In this paper, we investigate the characteristic set with respect to any k-maximal

vector of a given tree and consider the problem above. The rest paper is organized

as follows. In Section 2, we first list several preliminary results. Then, for any

k-(maximal) vector Y of a given tree T , we establish some lemmas that relate char-

acteristic vertex and the structure for the subvector of Y . In Section 3, we study the

cardinality of the characteristic set C(T, Y ) with respect to any k-maximal vector Y
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of a tree T , and determine the structure of the trees T satisfying |C(T, Y )| = k−1− t,

where 0 ≤ t ≤ k − 2. In addition, examples that illustrate the occurrence of each of

the case described in our theorems are given.

2. Preliminary results. Let G be a connected graph on n vertices, L, its

Laplacian matrix, and Y , a vector defined on the vertex set of G. We will use following

notation. For U ⊆ V (G),W ⊆ V (G), denote by L[U,W ] the submatrix of L with

rows corresponding to the vertices of U and columns corresponding to the vertices of

W , if U = W , L[U,W ] is simply written as L[U ]; and similarly, denote by Y [U ] the

subvector of Y corresponding to the vertices of U . For convenience, we usually write

L[G1, G2] and Y [G1] instead of L[V (G1), V (G2)] and Y [V (G1)] for subgraphs G1, G2

of G, respectively.

With respect to a vector Y which gives a valuation of vertices of G, a vertex

v is called a zero (nonzero) vertex if Y [v] = 0 (Y [v] 6= 0), a component containing

a nonzero vertex is called a nonzero component. Denote by S(G) and mG(λ) the

spectrum and the multiplicity of the eigenvalue λ of the Laplacian matrix of a graph

G, respectively.

Let L be the Laplacian matrix of a graph G = (V,E) and Y , an eigenvector of

L corresponding to the eigenvalue λ. Then the eigencondition at the vertex v is the

equation
∑

(i,v)∈E

L[i, v]Y [i] = (λ− L[v, v])Y [v].

An n×n matrix A will be called acyclic if it is symmetric and if for any mutually

distinct indices k1, k2, . . . , ks (s ≥ 3) in {1, 2, . . . , n}, the equality

A[k1, k2]A[k2, k3] · · ·A[ks, k1] = 0

is fulfilled. Then the Laplacian matrix of a tree is acyclic. Denote by m+
A(λ) (respec-

tively, m−
A(λ)) the number of eigenvalues of the matrix A greater than (respectively,

less than) λ, and let mA(λ) the multiplicity of λ. The following results are known

from the work of Fiedler.

Lemma 2.1. ([4], Lemma 1.12) Let

A =

[

B C

CT d

]

be a partitioned symmetric real matrix, where C is a vector. If there exists a vector

U such that BU = 0 and CTU 6= 0. Then

m−
A(0) = m−

B(0) + 1 and m+
A(0) = m+

B(0) + 1.
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Lemma 2.2. ([4], Theorem 2.3) Let A be an n× n acyclic matrix. Let Y be an

eigenvector of A corresponding to an eigenvalue λ.

Let there first be no “isolated” zero coordinate of Y , that is coordinate Y [k] = 0

such that A[k, j]Y [j] = 0 for all j. Then

m+
A(λ) = a+ + r, m−

A(λ) = a− + r,

where r is the number of zero coordinates of Y , a+ is the number of those unordered

pairs (i, k) for which

A[i, k]Y [i]Y [k] < 0

and a− is the number of those unordered pairs (i, k) (i 6= k), for which

A[i, k]Y [i]Y [k] > 0.

If there are isolated zero coordinates of Y , M is the set of indices corresponding to

such coordinates and A′ the matrix obtained from A by deleting all rows and columns

with indices from M , then the numbers m+
A(λ), m

−
A(λ) and mA(λ) satisfy

m+
A(λ) = m+

A′(λ) + c1, m−
A(λ) = m−

A′(λ) + c2, mA(λ) = mA′(λ) + c0,

where c1, c2 and c0 are nonnegative integers such that

c1 + c2 + c0 = |M |,

the number of elements in M .

Lemma 2.3. ([4], Corollary 2.5) Let A be an n × n irreducible acyclic matrix

with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. If λr corresponding to an eigenvector Y

with all coordinates different from zero, then λr is simple and there are exactly r − 1

(unordered) pairs (i, k), i 6= k, for which

A[i, k]Y [i]Y [k] > 0.

Denote by CV(T, Y ) the collection of all characteristic vertices in C(T, Y ) (or

briefly CV). From Lemma 2.3, for any k-vector Y of a given tree T on n vertices,

either |C(T, Y )| = k − 1 or CV(T, Y ) contains characteristic vertices. Thus, as a

consequence of Lemma 2.3 and (1.1), we have:

Corollary 2.4. Let T be a tree on n vertices and Y , a k-vector of T with

2 ≤ k ≤ n. If |C(T, Y )| ≤ k − 2, then

|CV(T, Y )| ≥ 1.
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In addition, the following two lemmas are needed for our discussion.

Lemma 2.5. ([6], Lemma 2.2) Let T be a tree on n vertices with Laplacian

matrix L. Suppose that λ ∈ S(T ) and v ∈ V (T ). Let also Y be an eigenvector of L

corresponding to λ. If v ∈ C(T, Y ), then mL[T−v](λ) = mL(λ) + 1.

Lemma 2.6. ([6], Lemma 2.3) Let T be a tree on n vertices with Laplacian matrix

L. Let also λ ∈ S(T ) and v ∈ V (T ). If mL[T−v](λ) = mL(λ) + 1, then Y [v] = 0 for

any eigenvector Y of L corresponding to λ.

Let T = (V,E) be a tree on n vertices with Laplacian matrix L and let λ be an

nonzero eigenvalue of L. Suppose W is a subset of V and T −W denotes the graph

obtained from T by deleting the vertices W together with all edges incident to them.

Suppose also that M = {Ti : i = 1, 2, . . . ,m} is the collection of all components of

T − W . According to whether or not the eigenvalue λ is contained in S(L[Ti]), we

partition M as follows:

(a) M1(W ;λ) = {Ti : λ < λ1(L[Ti]);Ti ∈ M},

(b) M2(W ;λ) = {Ti : λ = λ1(L[Ti]);Ti ∈ M},

(c) M3(W ;λ) = {Ti : λ > λ1(L[Ti]) and λ ∈ S(L[Ti]);Ti ∈ M}, and

(d) M4(W ;λ) = {Ti : λ > λ1(L[Ti]) and λ /∈ S(L[Ti]);Ti ∈ M}.

Let Y be a k-vector of a tree T , v ∈ C(T, Y ) and T ′ a component of T − v.

According to whether the component T ′ is of M1(v;
k λ), M2(v;

k λ), M3(v;
k λ), or

M4(v;
k λ), we establish the following structural property for Y [T ′].

Lemma 2.7. Let T be a tree with Laplacian matrix L and let Y be a k-vector of

T . Suppose v ∈ C(T, Y ) and T ′ is a component of T at v. Then

(a) Y [T ′] = 0 if T ′ ∈ M1(v;
k λ) or T ′ ∈ M4(v;

k λ),

(b) Y [T ′] is either zero, or positive, or negative if T ′ ∈ M2(v;
k λ), and

(c) Y [T ′] is either zero or non-zero containing both positive entries and negative en-

tries if T ′ ∈ M3(v;
k λ).

Proof. From Lemma 2.5, we have mL[T−v](
kλ) = mL(

kλ) + 1 as v ∈ C(T, Y ).

Thus, Y [v] = 0 by Lemma 2.6. Combining with the equation (L − kλI)Y = 0, we

have

(L[T ′]− kλI)Y [T ′] = 0.

Then part (a) holds, since in that case det(L[T ′] − kλI) 6= 0. Note that L[T ′] is an

M-matrix, then the eigenvector corresponding to its least eigenvalue is either positive

or negative (see, for instance, [1], Lemma 1). Consequently, part (b) follows. Part
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(c) follows from the Perron-Frobenius theorem and the fact that the eigenvectors

corresponding to the least eigenvalue are orthogonal to the eigenvectors corresponding

to each other eigenvalue.

Furthermore, if the k-vector Y is restricted to k-maximal, then Lemma 2.7(c) can

be strengthened as follows:

Lemma 2.8. Let T be a tree with Laplacian matrix L and let Y be a k-maximal

vector of T . Suppose that v ∈ C(T, Y ) and T ′ is a component of T at v. If T ′ ∈

M3(v;
k λ), then Y [T ′] has at least one positive and at least one negative entry.

Proof. Assume to the contrary that Y [T ′] = 0 by Lemma 2.7. By the definition

of the k-maximal vector, it is sufficient to construct a k-vector W of L such that

|C(T,W )| ≥ |C(T, Y )|+ 1.

Firstly, we have

C(T, Y ) = C(T − T ′, Y [T − T ′]) + C(T ′, Y [T ′]) = C(T − T ′, Y [T − T ′]),(2.1)

the last equation holds from C(T ′, Y [T ′]) = 0 as Y [T ′] = 0 by assumption. Note that if
kλ is an eigenvalue of the principle submatrix L[T ′], then there exists a nonzero vector,

say Y ′, such that L[T ′]Y ′ =k λY ′. Since T ′ ∈ M3(v;
k λ), kλ is not the least eigenvalue

of L[T ′]. Applying the Perron-Frobenius theorem again, we see that the vector Y ′

contains both positive entries and negative entries. Therefore, |C(T ′, Y ′)| ≥ 1.

Let v′ ∈ T ′ adjacent to v. Since v ∈ C(T, Y ), there exists a vertex, say v1,

adjacent to v such that Y [v1] 6= 0. Without loss of generality, suppose Y [v1] 6= Y ′[v′].

(otherwise, we can replace Y ′ by αY ′ for some nonzero scalar α (6= 1).) Let T1 be the

component of T at v containing v1 and W be the vector obtained from Y by replacing

Y [T ′] and Y [T1] by Y ′ and tY [T1], respectively, in which t = (Y [v1]− Y ′[v′])/Y [v1].

We can readily verify that, corresponding to the vector W , the vertex v satisfies the

eigencondition. Then W is also a k-vector of T and |C(T1, Y [T1])| = |C(T1, tY [T1])|

as t 6= 0. Henceforth, with respect to the k-vector W , we have

|C(T,W )| = |C(T − T ′,W [T − T ′])|+ |C(T ′, Y [T ′])|

≥ |C(T − T ′,W [T − T ′])|+ 1

= |C(T − T ′, Y [T − T ′])|+ 1

= |C(T, Y )|+ 1.

The third equality follows from (2.1).

3. The cardinality of the characteristic set with respect to k-maximal

vectors of a tree. In this section, we investigate |C(T, Y )| for a k-maximal vector

Y and characterize the structure of trees T with |C(T, Y )| = k− 1− t for some t with

0 ≤ t ≤ k − 2.
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Denote byA⊕B the direct sum of matricesA andB. We begin our discussion with

the result which reveals the secret why the upper bound in (1.1) for the cardinality

of the characteristic set |C(T, Y )| with respect to k-maximal vector Y of a given tree

T is sometimes not sharp.

Lemma 3.1. Let T be a tree with Laplacian matrix L and let Y be a k-maximal

vector of T . Suppose that v ∈ C(T, Y ) and M4(v;
k λ) = {Ti : i = 1, 2, . . . , p; p ≥ 1}.

Let t =
⊕p

i=1 m
−
L[Ti]

(kλ). Then

|C(T, Y )| ≤ k − 1− t.

Proof. For convenience, let T ′ = ∪p
i=1Ti. Firstly, we have

C(T, Y ) = C(T − T ′, Y [T − T ′]) + C(T ′, Y [T ′])

= C(T − T ′, Y [T − T ′]),
(3.1)

as Y [v] = 0 by Lemma 2.6 and Y [T ′] = 0 by Lemma 2.7. From Lemma 2.5, we have

mL[T−v](
kλ) = mL(

kλ) + 1. Therefore,

m−
L[T−v](

kλ) = m−
L (

kλ)− 1,

which implies that

λk−2(L[T − v]) < λk−1(L[T − v]) =k λ.

Note that S(L[T − v]) = S(L[T − T ′ − v]) ∪ S(L[T ′]). Combining this with t =
⊕p

i=1 m
−
L[Ti]

(kλ), we have

λk−2−t(L[T − T ′ − v]) < λk−1−t(L[T − T ′ − v])

= kλ

= λk−t(L[T − T ′ − v]).

Applying Lemma 2.1 to the matrix L[T − T ′], its principal submatrix L[T − T ′ − v]

and the vector L[T − T ′, v], we have

λk−1−t(L[T − T ′]) <k λ = λk−t(L[T − T ′]),

i.e.,

m−
L[T−T ′]

kλ = k − 1− t.

Furthermore, applying Lemma 2.2 to L[T − T ′] and Y [T − T ′], we have m−
L (

kλ) =

a− + r. One can find that a− and r are exactly the number of characteristic edges

and the characteristic vertices in C(T − T ′, Y [T − T ′]), respectively. Then

|C(T − T ′, Y [T − T ′])| = m−
L (

kλ) = a− + r ≤ k − 1− t,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 66-78, January 2012



ELA

74 Shi-Cai Gong

where the last inequality follows from the fact that L[T − T ′] has exactly

k − 1− t = k − 1−

p
⊕

i=1

m−
L[Ti]

(kλ)

eigenvalues less than kλ. Thus, |C(T, Y )| ≤ k−1− t by (3.1), and the result follows.

Applying the method above repeatedly to every element of CV(T, Y ), the following

result can be obtained immediately.

Theorem 3.2. Let T be a tree with its Laplacian matrix L and let Y be a k-

maximal vector of T . Suppose that M4(CV ;k λ) = {Ti : i = 1, 2, . . . , p; p ≥ 1}. Let

t =
⊕p

i=1 m
−
L[Ti]

(kλ). Then

|C(T, Y )| ≤ k − 1− t.

Let T be a tree on n vertices with Laplacian matrix L, and let Y be a k-vector of

T . Suppose that v ∈ C(T, Y ) and T ′ ∈ M3(v;
k λ). From Lemma 2.8, the maximum of

the vector Y ensures that the subvector Y [T ′] is nonzero. In fact, as we will see in the

lemma below that such a maximum even preserves the cardinality of the characteristic

set C(T ′, Y [T ′]) with respect to any k-maximal vector Y [T ′] of T ′; this gives the sharp

upper bound in (1.1).

Lemma 3.3. Let T be a tree with Laplacian matrix L and let Y be a k-maximal

vector of T . Suppose that CV(T, Y ) 6= ∅ and T ′ ∈ M3(CV ;k λ). Then

|C(T ′, Y [T ′])| = m−
L[T ′](

kλ).

Proof. From Lemma 2.3, it is sufficient to show that all coordinates of the subvec-

tor Y [T ′] are nonzero. Otherwise, assume that Y [T ′] contains zero entries, then there

exists a zero vertex, say v, adjacent to some nonzero vertex. Then, with respect to the

k-vector Y , such zero vertex v forms a characteristic vertex, which is a contradiction

to the hypothesis that v lies in the component T ′ belonging to T − CV(T, Y ).

Next we show that the upper bound in Theorem 3.2 is indeed the cardinality of

the characteristic set with respect to any k-maximal vector described as above.

Theorem 3.4. Let T be a tree with Laplacian matrix L and let Y be an arbitrary

k-maximal vector of T . Suppose that CV(T, Y ) 6= ∅ and M4(CV ;k λ) = {Ti : i =

1, 2, . . . , p; p ≥ 0}. Let t =
⊕p

i=1 m
−
L[Ti]

(kλ). Then

|C(T, Y )| = k − 1− t.
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Proof. Let CV(T, Y ) = {v1, v2, . . . , vm} and {Ti : i = 1, 2, . . . , p, p+1, p+2, . . . , p+

l} be all components of T−CV . Obviously 1 ≤ m ≤ |C(T, Y )|. Note that T contains no

cycles. Thus each vertex vi ∈ CV(T, Y ) is adjacent to at least two nonzero components,

and each pair of characteristic vertices is adjacent to at most one common nonzero

component. Thus, l ≥ m + 1. Hence, we can take m mutually distinct nonzero

components, say T ′
1, T

′
2, . . . , T

′
m, such that each component contains a vertex, labeling

as v′1, v
′
2, . . . , v

′
m, respectively, such that, for each i, Y [v′i] 6= 0 and v′i ∈ T ′

i adjacent to

vi.

For each i (1 ≤ i ≤ m), from Lemmas 2.5 and 2.6 we have Y [vi] = 0. Thus,

L[T ′
i ]Y [T ′

i ] =
k λY [T ′

i ], for each i.

Write T −CV(T, Y ) as T ′ for simplicity. Let Y1 = [Y [T ′
1]

T 0 0 · · · 0]T , where the zeros

are appended so that (L[T ′]−k λI)Y1 = 0. One can readily verify that L[v1, T
′]Y1 =

L[v1, T
′
1]Y [T ′

1] = L[v1, v
′
1]Y1[v

′
1] 6= 0, since the vector L[v1, T

′
1] has exactly one nonzero

coordinate L[v1, v
′
1] and Y1[v

′
1] 6= 0. Thus, applying Lemma 2.1,

m−
L[T ′∪{v1}]

(kλ) = m−
L[T ′](

kλ) + 1.

Further, let Y2 = [Y [T ′
2]

T 0 0 · · · 0]T , where the zeros are appended so that

(L[T ′ ∪ {v1}] −k λI)Y2 = 0. Thus, by a similar discussion, L[v2, T
′ ∪ {v1}]Y2 =

L[v1, T
′
2]Y [T ′

2] = L[v2, v
′
2]Y2[v

′
2] 6= 0. Applying Lemma 2.1 again, we have

m−
L[T ′∪{v1,v2}]

(kλ) = m−
L[T ′∪{v1}]

(kλ) + 1 = m−
T ′(kλ) + 2.

Using the above operation repeatedly, we have

m−
L (

kλ) = m−
L[T ′∪CV ](

kλ)

= m−
L[T ′∪{v1,...,vm−1}]

(kλ) + 1
...

= m−
L[T ′∪{v1}]

(kλ) +m− 1

= m−
L[T ′](

kλ) +m.

Thus,

m−
L[T ′](

kλ) = m−
L (

kλ)−m.

Consequently,

λk−1−m(L[T ′]) <k λ and λk−m(L[T ′]) =k λ,
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since kλ is an eigenvalue of L[T ′] by Lemma 2.5.

Without loss of generality, supposeM3(CV ;k λ) = {T ∗
1 , T

∗
2 , . . . , T

∗
q }. For each i(i =

1, 2, . . . , q), let ti = m−
L[T∗

i
](
kλ). From Lemma 3.3, |C(T ∗

i , Y [T ∗
i ])| = m−

L[T∗

i
](
kλ) = ti

holds for each i. Then

q
∑

i=1

|C(T ∗
i , Y [T ∗

i ])| =

q
∑

i=1

ti =: t∗.

Hence,

|C(T, Y )| = |C(T − CV , Y [T − CV ])|+ |CV |

=
∑l

i=1 |C(Ti, Y [Ti])|+m

=
∑q

i=1 |C(T
∗
i , Y [T ∗

i ])|+m

= t∗ +m.

On the other hand, note that S(T ′) =
⋃p+l

i=1 S(Ti) and each eigenvalue corre-

sponding to the component being of M1(CV ;k λ) or M2(CV ;k λ) is no less than kλ,

then t+ t∗ = k − 1−m. Hence,

|C(T, Y )| = t∗ +m = k − 1− t.

Putting Theorem 3.4 together with Lemma 2.3, we can give the characterization

for the structure of the trees with any possible cardinality of the characteristic set

with respect to its k-maximal vector.

Theorem 3.5. Let T be a tree with Laplacian matrix L, and let Y be an arbitrary

k-maximal vector of T . Then |C(T, Y )| = k − 1 if and only if either every coordinate

of Y different from zero, or M4(v;
kλ) = ∅ holds for each v ∈ C(T, Y ).

Theorem 3.6. Let T be a tree with Laplacian matrix L, and let Y be an arbitrary

k-maximal vector of T . Suppose t is an arbitrary integer with 1 ≤ t ≤ k − 2. Then

|C(T, Y )| = k − 1 − t if and only if CV(T, Y ) 6= ∅ and M4(CV ;k λ) = {Ti : i =

1, 2, . . . , p(p ≥ 1)}, where t =
⊕p

i=1 m
−
L[Ti]

(kλ).

Below we give an example to show the occurrence of each of the case described

in the above theorems.

Example 3.7. Let T be a tree on n = 2m + 4p + q + 1 (p + q ≥ 2) vertices

obtained from a star on m + p+ q + 1 vertices by appending m pendent edges to m

pendent vertices and p paths with length 3 to other p pendent vertices, respectively,

see Figure 3.1.

By a little calculation, we have kλ(T ) = 1 with multiplicity p+q−1,M1(u; 1) = ∅,

M2(u; 1) = {T [v4p+2m+i] : i = 1, 2, . . . , q}, M3(u; 1) = {T [vi, vp+i, v2p+i, v3p+i] : i =
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Fig. 3.1. A tree on 2m+ 4p+ q + 1 vertices with p+ q ≥ 2.

1, 2, . . . , p}, and M4(u; 1) = {T [v4p+i, v4p+m+i] : i = 1, 2, . . . ,m}, where k = m+p+2

and T [S] is the subgraph of T induced by its vertex subset S. Then the k-vector Y

has the following partitioned form:

Y = [t1X
T
1 t2X

T
2 · · · tpX

T
p WT

1 · · ·WT
m s1 · · · sq 0],

where Xi = [−1 − 1 0 1]T for i = 1, 2, . . . , p, Wl = [0 0]T for l = 1, 2, . . . ,m, and each

ti (or sj) is real such that the vertex u satisfies eigencondition.

One can see that, for each k-vector Y , tiXi is either zero or non-zero containing

both positive entries and negative entries for each i, sj is either zero, or positive, or

negative for each j, and Wl = 0 for each l, which is consistent with Lemma 2.7. On

the other hand, from the partitioned form of Y , u ∈ C(T, Y ) if some ti (or sj) is

nonzero. Moreover, we have |C(T [vi, vp+i, v2p+i, v3p+i], Y [vi, vp+i, v2p+i, v3p+i])| =

|C(T [vi, vp+i, v2p+i, v3p+i], tiXi)| is either 1 or 0 according to the real ti is nonzero or

not. Thus,

|C(T, Y )| = 1 +
∑p

i=1 |C(L[T [vi, vp+i, v2p+i, v3p+i]], Y [vi, vp+i, v2p+i, v3p+i])|

≤ 1 + p,

from which we have that Y is k-maximal if ti 6= 0 for each i, which is consistent

with Lemma 2.8. One can also find that, with respect to any k-maximal vector Y ,

|C(T, Y )| = 1+p regardless of the choice of the integer m. Hence, |C(T, Y )| = 1+p =

k− 1 if m = 0 (in such a case M4(u; 1) = ∅), and |C(T, Y )| = 1+p ≤ k− 2 otherwise,

which is consistent with Lemma 3.1.

Moreover, if Y is k-maximal, then CV(T, Y ) = {u} ∪ {v2p+i : i = 1, 2, . . . , p}, and

M1(CV ; 1) = M3(CV ; 1) = ∅, M2(CV ; 1) = {T [v4p+2m+i] : i = 1, 2, . . . , q} ∪ {T [v3p+j] :

j = 1, 2, . . . , p} ∪ {T [vl, vp+l] : l = 1, 2, . . . , p}, M4(CV ; 1) = {T [v4p+i, v4p+m+i] : i =

1, 2, . . . ,m}, which is consistent with Theorems 3.4, 3.5 and 3.6.
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