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THE CHARACTERISTIC SET WITH RESPECT TO
K-MAXIMAL VECTORS OF A TREE*

SHI-CAI GONGT

Abstract. Let T be a tree on n vertices and L(T) be its Laplacian matrix. The eigenvalues
and eigenvectors of T' are respectively referred to those of L(T'). With respect to a given eigenvector
Y of T, a vertex u of T is called a characteristic vertez if Y[u] = 0 and there is a vertex w adjacent
to u with Y{w] # 0; an edge e = (u,w) of T is called a characteristic edge if Y [u]Y[w] < 0. C(T,Y)
denotes the characteristic set of T' with respect to the vector Y, which is defined as the collection of
all characteristic vertices and characteristic edges of T" corresponding to Y.

Let M\ (T) < X2(T) < --- < A (T) be the eigenvalues of a tree T on n vertices. An eigenvector
is called a k-vector (k > 2) of T if the eigenvalue A\ (T) associated by this eigenvector satisfies
Me(T) > Ap—1(T). The k-vector Y of T is called k-mazimal if C(T,Y) has maximum cardinality
among all k-vectors of T'. In this paper, the characteristic set with respect to any k-maximal vector
of a tree is investigated by exploiting the relationship between the cardinality of the characteristic
set and the structure of this tree. With respect to any k-maximal vector Y of a tree T', the structure
of the trees T satisfying |C(T,Y)| =k — 1 —t for any t (0 < ¢t < k — 2) are characterized.
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1. Introduction. Let G = (V, E) be a simple graph with vertex set V = V(G) =
{v1,v2,...,v,} and edge set E = E(G). The Laplacian matriz of G is defined as
L = L(G) = D(G) — A(G), where A(G) is the adjacency matriz of G and D(G) =
diag{d(v1),d(vz2),...,d(vy)}, the diagonal degree matrix of G. Since L(G) is positive
semi-definite, its eigenvalues can be arranged as

0=M(G) < X(G) < < M(G).

Henceforth A;(G) denotes the ith smallest eigenvalue of G. The kth smallest eigen-
value of G will be written as *A(G) if \y(G) > M\p_1(G), and the corresponding
eigenvectors will be called k-vectors of G.

For an eigenvector Y of a given graph G, a vertex v is called a characteristic vertex
with respect to Y if Y'[v] = 0 and there is a vertex w adjacent to v, such that Y [w] # 0;
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an edge e = (u, w) is called a characteristic edge of G with respect to Y if Yu]Y[w] <
0. We denote by C(G,Y) the characteristic set of G with respect to the vector Y,
which is defined as the collection of all characteristic vertices and characteristic edges
of G corresponding to Y. For convenience we relax the requirement that Y be an
eigenvector of G in the definition of C(G,Y’), and allow Y to be an arbitrary vector
defined on the vertex set of G.

For a graph G, an eigenvector corresponding to the second smallest eigenvalue is
called a Fiedler vector of G. It is known that A2(G) > A (G) = 0 if and only if G is
connected [5]. Thus, each Fiedler vector of a connected graph is a 2-vector. Fiedler’s
remarkable result [5, Theorem 3.14] on the structure of Fiedler vectors (i.e., 2-vectors)
of a connected graph motivated a lot of work on the structure of eigenvectors; see,
e.g., [1L 20 [7, 18, [9, 1O [T} 12} T3] [14].

Merris introduced the notion of a characteristic set and showed that |C(T,Y)| = 1.
In [I1], Merris also showed that C(T,Y) is fixed regardless of the choice of Fiedler
vectors Y of a given tree T'; see [IT], Theorem 2]. With respect to any Fiedler vectors Y
of a given graph G, Bapat and Pati [I] investigated the cardinality of the characteristic
set C(G,Y). In [14], Pati extended the notation the characteristic set from Fiedler
vectors to 3-vectors of trees and gave a complete description of 3-vectors of a given
tree. Then Fan and Gong [2] further extended the concept of characteristic set to any
k-vector of a tree.

Recall that, for any 2-vector Y of a tree T, |C(T,Y)| = 1 and C(T,Y) is fixed
regardless of the choice of 2-vectors Y, even though the eigenspace for 2\(T) (well
known as the algebraic connectivity of T [3]) is large (see [11I], Theorem 2).

However, for k > 3, the characteristic set C(T,Y) may depend upon the choice
of the k-vectors. For example, consider the tree T in Figure 1.1 (or see Figure 3.2 in
[14]). One can find that Y7, Y2 and Y3 are all 3-vectors of T', where
Y1 =[00000000000.2638.4754 .5929 0 0 0 — .2638 — .4754 — .5929]7
Yo = [.5929 .4754 .2638 0000000000 —.5929 —.4754 —.2638 00 0 0]7, and
Y3 =[.9098 .7296 .4049 00000000 —.0490 — .0884 —.1102 — .4049 — .7296
—.9098 .0490 .0884 .1102]7".

But one can verify that C(T,Y7) = {11}, C(T,Y2) = {4}, and |C(T, Ys)| = {4, 11}.

For a given tree T and a k-vector Y of T, Y is called k-maximal if C(T,Y’) has
maximum cardinality over all k-vectors of T, i.e.,

C(T, ?)| = m}E}X IC(T,Y)],

where the maximum is taken over all k-vectors of T (see [6]).
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Fic. 1.1. A tree T on 20 vertices.

For any k-maximal vector of a tree, the following result is interesting.

PRrOPOSITION 1.1. ([6], Theorem 3.2) Let T be a tree on n vertices. Suppose that
both Y1 and Yy are the k(> 2)-mazimal vectors of T. Then

C(T, Y1) = C(T,Ya).

Proposition 1.1 implies that for any k& with 2 < k < n, the characteristic set
C(T,Y) is fixed regardless the choice of the k-maximal vector Y, i.e., the characteristic
set is determined by the tree structure and independent of the k-maximal vectors,
which is consistent with Merris’ result (see [11], Theorem 2). Henceforth, to exploit
the relationship between the cardinality of the characteristic set and the tree structure,
we focus on studying the k-maximal vectors of trees.

With respect to any k-(maximal) vector Y of a given tree T, Fan et al. showed
that [2| Corollary 2.5]

(1.1) 1< |C(T,Y)| <k — 1.

In particular, they also gave a characterization for trees whose characteristic set
C(T,Y) with respect to its any k-vector Y contains exactly one element, i.e., the
k-simple trees; see [2, Theorem 2.11]. Naturally, the following problem is posed:

For a general tree T on n vertices and an arbitrary integer k (< n), can
we exploit the relationship between the cardinality of the characteristic set
C(T,Y) with respect to its any k-maximal vector Y and the structure of such
a tree 17

In this paper, we investigate the characteristic set with respect to any k-maximal
vector of a given tree and consider the problem above. The rest paper is organized
as follows. In Section 2, we first list several preliminary results. Then, for any
k-(maximal) vector Y of a given tree T', we establish some lemmas that relate char-
acteristic vertex and the structure for the subvector of Y. In Section 3, we study the
cardinality of the characteristic set C(T,Y) with respect to any k-maximal vector Y’
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of a tree T', and determine the structure of the trees T satisfying |C(T,Y)| = k—1—t,
where 0 < ¢t < k — 2. In addition, examples that illustrate the occurrence of each of
the case described in our theorems are given.

2. Preliminary results. Let G be a connected graph on n vertices, L, its
Laplacian matrix, and Y, a vector defined on the vertex set of G. We will use following
notation. For U C V(G),W C V(G), denote by L[U, W] the submatrix of L with
rows corresponding to the vertices of U and columns corresponding to the vertices of
W, if U =W, L[U, W] is simply written as L[U]; and similarly, denote by Y [U] the
subvector of Y corresponding to the vertices of U. For convenience, we usually write
L[G1,G2] and Y[G4] instead of L[V (G1),V(G2)] and Y[V (G1)] for subgraphs G, G
of G, respectively.

With respect to a vector Y which gives a valuation of vertices of G, a vertex
v is called a zero (nonzero) vertex if Y[v] = 0 (Y[v] # 0), a component containing
a nonzero vertex is called a nonzero component. Denote by S(G) and mg(\) the
spectrum and the multiplicity of the eigenvalue A of the Laplacian matrix of a graph
G, respectively.

Let L be the Laplacian matrix of a graph G = (V, E) and Y, an eigenvector of
L corresponding to the eigenvalue A. Then the eigencondition at the vertex v is the
equation

> L[, YT[i] = (A = L, v])Y[v].

(i,v)EE
An n x n matrix A will be called acyclic if it is symmetric and if for any mutually
distinct indices kq, k2, ..., ks (s > 3) in {1,2,...,n}, the equality
Alky, ko] Alka, k3] -+ - Alks, k1] =0

is fulfilled. Then the Laplacian matrix of a tree is acyclic. Denote by m¥()) (respec-
tively, m,(A)) the number of eigenvalues of the matrix A greater than (respectively,
less than) A, and let m4(\) the multiplicity of A. The following results are known
from the work of Fiedler.

LEMMA 2.1. ([4], Lemma 1.12) Let
B C
1=l ]

be a partitioned symmetric real matriz, where C is a vector. If there exists a vector
U such that BU =0 and CTU # 0. Then

m4(0) =mpz(0)+1 and m¥}(0) =m};(0) + 1.
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LEMMA 2.2. ([4], Theorem 2.3) Let A be an n x n acyclic matriz. Let Y be an
eigenvector of A corresponding to an eigenvalue .

Let there first be no “isolated” zero coordinate of Y, that is coordinate Y[k] = 0
such that Alk,j]Y[j] = 0 for all j. Then

mi\) =at +r, my\)=a +r,

where r is the number of zero coordinates of Y, a™ is the number of those unordered
pairs (i, k) for which

Ali, kY [i]Y]k] <0
and a~ is the number of those unordered pairs (i,k) (i # k), for which
Ali, k)Y [i]Y [k] > 0.
If there are isolated zero coordinates of Y, M is the set of indices corresponding to

such coordinates and A’ the matriz obtained from A by deleting all rows and columns
with indices from M, then the numbers m(\), m;(\) and ma(\) satisfy

mA(A\) =mly(N) e, my(N) =my(A) + 2, ma(d) =ma(A) + co,
where ¢1, co and ¢y are nonnegative integers such that
c1+ ca+co = | M|,
the number of elements in M.

LEmMA 2.3. ([4], Corollary 2.5) Let A be an n X n irreducible acyclic matrix
with eigenvalues \y < Ao < --- < A,. If A\, corresponding to an eigenvector Y
with all coordinates different from zero, then A\, is simple and there are exactly r — 1
(unordered) pairs (i,k),i # k, for which

Ali, k)Y i)Y k] > 0.

Denote by Cy(T,Y) the collection of all characteristic vertices in C(T,Y) (or
briefly Cy). From Lemma 23] for any k-vector Y of a given tree T on n vertices,
either [C(T,Y)| = k — 1 or Cy(T,Y) contains characteristic vertices. Thus, as a
consequence of Lemma 23 and (1.1), we have:

COROLLARY 2.4. Let T be a tree on n wvertices and Y, a k-vector of T with
2<k<n If|C(T,Y)| <k —2, then

ICy(T,Y)| > 1.
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In addition, the following two lemmas are needed for our discussion.

LEMMA 2.5. ([6], Lemma 2.2) Let T be a tree on n vertices with Laplacian
matriz L. Suppose that X € S(T) and v € V(T). Let also Y be an eigenvector of L
corresponding to . If v € C(T,Y), then mpip_y(A) = mp(A) + 1.

LEMMA 2.6. ([6], Lemma 2.3) Let T' be a tree on n vertices with Laplacian matriz
L. Let also A € S(T') and v € V(T). If mpip—_)(A) = mp(A) + 1, then Y[v] = 0 for
any eigenvector Y of L corresponding to .

Let T = (V, E) be a tree on n vertices with Laplacian matrix L and let A be an
nonzero eigenvalue of L. Suppose W is a subset of V and T'— W denotes the graph
obtained from 7" by deleting the vertices W together with all edges incident to them.
Suppose also that M = {T; : i = 1,2,...,m} is the collection of all components of
T — W. According to whether or not the eigenvalue A is contained in S(L[T}]), we
partition M as follows:

(a) Mu(W;X) =A{T; : A< M (L[T3)); T; € M},
(b) Ma(W; A) ={T; : A = M(L[T3]); T; € M},
(¢) Ms(W3;A) ={T; : A > M (L[T3)]) and A € S(LIT3)); T; € M}, and

Let Y be a k-vector of a tree T, v € C(T,Y) and T’ a component of T — v.
According to whether the component T’ is of M;j(vi* )\), Ma(vi* ), Ms(v;* \), or
My (v;¥ \), we establish the following structural property for Y[T"].

LEMMA 2.7. Let T be a tree with Laplacian matriz L and let Y be a k-vector of
T. Suppose v € C(T,Y) and T' is a component of T at v. Then
(a) Y[T'] = 0 if T" € My(vi* \) or T" € My(vi* N),
(b) Y[T"] is either zero, or positive, or negative if T' € My(vik \), and
(¢c) Y[T"] is either zero or non-zero containing both positive entries and negative en-
tries if T' € Ms(v;F ).

Proof. From Lemma [ZF] we have mppr_,(*A) = mp(*A) + 1 as v € C(T,Y).
Thus, Y[v] = 0 by Lemma Combining with the equation (L — ¥AI)Y = 0, we
have

(L[T'] = "A)Y[T'] = 0.

Then part (a) holds, since in that case det(L[T’] — *AI) # 0. Note that L[T"] is an
M-matrix, then the eigenvector corresponding to its least eigenvalue is either positive
or negative (see, for instance, [I], Lemma 1). Consequently, part (b) follows. Part
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(c) follows from the Perron-Frobenius theorem and the fact that the eigenvectors
corresponding to the least eigenvalue are orthogonal to the eigenvectors corresponding
to each other eigenvalue. O

Furthermore, if the k-vector Y is restricted to k-maximal, then Lemma[Z7Tc) can
be strengthened as follows:

LEMMA 2.8. Let T be a tree with Laplacian matriz L and let Y be a k-mazximal
vector of T. Suppose that v € C(T,Y) and T’ is a component of T at v. If T’ €
M3 (v;* \), then Y[T'] has at least one positive and at least one negative entry.

Proof. Assume to the contrary that Y[T'] = 0 by Lemma 271 By the definition
of the k-maximal vector, it is sufficient to construct a k-vector W of L such that
C(T, W)| > 1C(T, Y)| + 1,

Firstly, we have
(21) C(T,Y)=C(T-T.,Y[T-T))+C(T,Y[T'))=C(T-T,Y[T -T'),

the last equation holds from C(T”,Y[T"]) = 0 as Y[T”] = 0 by assumption. Note that if
k) is an eigenvalue of the principle submatrix L[T"], then there exists a nonzero vector,
say Y, such that L[T']Y’" =F A\Y". Since T" € M3(v;¥ \), ¥\ is not the least eigenvalue
of L[T']. Applying the Perron-Frobenius theorem again, we see that the vector Y’
contains both positive entries and negative entries. Therefore, |C(T”,Y")| > 1.

Let v' € T adjacent to v. Since v € C(T,Y), there exists a vertex, say v1,
adjacent to v such that Y[v1] # 0. Without loss of generality, suppose Y [v1] # Y'[v'].
(otherwise, we can replace Y’ by aY” for some nonzero scalar a (# 1).) Let T1 be the
component of T at v containing vy and W be the vector obtained from Y by replacing
Y[T'] and Y[T1] by Y’ and tY[T1], respectively, in which ¢ = (Y[v1] — Y'[v'])/Y[v1].
We can readily verify that, corresponding to the vector W, the vertex v satisfies the
eigencondition. Then W is also a k-vector of T' and |C(T4,Y[Th])| = |C(Th,tY [T1])]
as t # 0. Henceforth, with respect to the k-vector W, we have

IC(T, W) C(T =T", WI[T =T'))| + |C(T", Y [T"])|
C(T —T",W[T —T")| + 1
C(T —T",Y[T - T")| + 1

IC(T,Y)| + 1.

vl

The third equality follows from (2.1). O

3. The cardinality of the characteristic set with respect to k-maximal
vectors of a tree. In this section, we investigate |C(T,Y)| for a k-maximal vector
Y and characterize the structure of trees T' with |C(T,Y)| = k — 1 — ¢ for some t with
0<t<k-—2.
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Denote by A® B the direct sum of matrices A and B. We begin our discussion with
the result which reveals the secret why the upper bound in (1.1) for the cardinality
of the characteristic set |C(T,Y")| with respect to k-maximal vector Y of a given tree
T is sometimes not sharp.

LEMMA 3.1. Let T be a tree with Laplacian matriz L and let Y be a k-mazimal
vector of T. Suppose that v € C(T,Y) and My(vi* \) = {T; :i =1,2,...,p;p > 1}.
Lett =@, mZ[T_](k)\). Then

C(T, V)| <k—1-—t.

Proof. For convenience, let 7" = UY_, T;. Firstly, we have

C(T,Y) = C(T-T.Y[T-T)) +C(T,Y[T])

(3.1) C(T—-T,Y[T-T),

as Y[v] = 0 by Lemma 2.6 and Y[T"] = 0 by Lemma 277 From Lemma 2] we have
Mpr—y] (*X) = mp(¥X) + 1. Therefore,

mZ[Tiy](kA) =my (")) -1,
which implies that
Me—o(L[T —v]) < A1 (L[T —v]) =F X,
Note that S(L[T — v]) = S(L[T —T" —v]) U S(L[T']). Combining this with ¢t =
D1 My (FA), we have
Moot (L[T =T —v]) < Xp—1—¢(L[T =T —v])

= k)
= Nee(L[T =T — ).

Applying Lemma 2] to the matrix L[T — T"], its principal submatrix L[T — T’ — ]
and the vector L[T — T”,v], we have

Meo1-¢(L[T =T']) < X = Moo (L[T = T7)),
ie.,
— k _
ML ip_ A=k—1—-t.

Furthermore, applying Lemma 22 to L[T — T"] and Y[T — T"], we have m  (*)) =
a~ + r. One can find that ¢~ and r are exactly the number of characteristic edges
and the characteristic vertices in C(T' — T",Y [T — T']), respectively. Then

(T —T" YT -TN|=m;(*N) =a” +r<k—-1-1t,



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 23, pp. 66-78, January 2012

74 Shi-Cai Gong

where the last inequality follows from the fact that L[T — T”] has exactly
P
- (K
k—l—t:kz—l—@mL[Ti]( A)
i=1

eigenvalues less than *A. Thus, |C(T,Y)| < k—1—t by (3.1), and the result follows. O

Applying the method above repeatedly to every element of Cy,(T,Y'), the following
result can be obtained immediately.

THEOREM 3.2. Let T be a tree with its Laplacian matriz L and let Y be a k-
mazimal vector of T. Suppose that My(Cy;* \) = {T; : i = 1,2,...,p;p > 1}. Let
t=@ar mZ[T_](k)\). Then

i=1

C(T,Y)| <k—1—t

Let T be a tree on n vertices with Laplacian matrix L, and let Y be a k-vector of
T. Suppose that v € C(T,Y) and T” € M3(v;¥ \). From Lemma [Z8 the maximum of
the vector Y ensures that the subvector Y[T”] is nonzero. In fact, as we will see in the
lemma below that such a maximum even preserves the cardinality of the characteristic
set C(T",Y[T"]) with respect to any k-maximal vector Y[T"] of T”; this gives the sharp
upper bound in (1.1).

LEMMA 3.3. Let T be a tree with Laplacian matriz L and let Y be a k-mazimal
vector of T. Suppose that Cy,(T,Y) # (0 and T' € M3(Cy;* ). Then

CT YITD] = mipy ().

Proof. From Lemma 2.3 it is sufficient to show that all coordinates of the subvec-
tor Y[T"] are nonzero. Otherwise, assume that Y[T"] contains zero entries, then there
exists a zero vertex, say v, adjacent to some nonzero vertex. Then, with respect to the
k-vector Y, such zero vertex v forms a characteristic vertex, which is a contradiction
to the hypothesis that v lies in the component T” belonging to T'— Cy(T,Y). O

Next we show that the upper bound in Theorem is indeed the cardinality of
the characteristic set with respect to any k-maximal vector described as above.

THEOREM 3.4. Let T be a tree with Laplacian matriz L and let' Y be an arbitrary
k-mazimal vector of T. Suppose that Cy(T,Y) # 0 and My(Cyi* ) = {T; : i =
1,2,...,p;p>0}. Lett =P, mZ[Ti](k)\). Then

C(T,Y)| =k —1—t.
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Proof. Let Cy/(T,Y) = {v1,ve,...,vm}and {T;: i =1,2,...,p,p+1,p+2,...,p+
1} be all components of T'—Cy. Obviously 1 < m < |C(T,Y)|. Note that T contains no
cycles. Thus each vertex v; € Cy(T,Y) is adjacent to at least two nonzero components,
and each pair of characteristic vertices is adjacent to at most one common nonzero
component. Thus, [ > m + 1. Hence, we can take m mutually distinct nonzero

components, say 17, T4, ..., T, , such that each component contains a vertex, labeling
as vi,vh, ..., v,,, respectively, such that, for each i, Y[vj] # 0 and v} € T} adjacent to
(/B

For each i (1 < i < m), from Lemmas and we have Y[v;] = 0. Thus,

L[T-’]Y[T{] —k )\Y[Ti’]7 for each 1.

7

Write T'—Cy(T,Y) as T" for simplicity. Let Y1 = [Y[T{]7 00 --- 0]7, where the zeros
are appended so that (L[T'] =¥ A\I)Y; = 0. One can readily verify that Lvy, T’]Y; =
L{v1, T{]Y[T]] = Lv1,v}]Y1[v]] # 0, since the vector L[vy, T}] has exactly one nonzero
coordinate L[v,v{] and Y7[v]] # 0. Thus, applying Lemma [2T]

- k -k
mL[T,U{vl}]( A) = mL[T,]( A)+ 1.

Further, let Yo = [Y[T5]T 0 0 --- 0], where the zeros are appended so that
(L[T' U {v1}] =% AI)Y2 = 0. Thus, by a similar discussion, L[va, T’ U {v1}]Ys =
Livy, T3)Y [T4] = L{va, v4]Ya[vh] # 0. Applying Lemma 2] again, we have

mZ[T/U{yly,L&}] (k>\) = mZ[T’U{’Ul}] (k>\) —+ 1= m;/(k>\) -+ 2.

Using the above operation repeatedly, we have

my (*X) = mZ[T,UCV](k)\)
= ML, om 1 }] () +1
MLIT0 {0 )] (")) +m -1
= mpg (kX)) + m.
Thus,
M (*A) = mp(*3) —m.
Consequently,

Me—1-m(L[T']) <F X and \p_pn (L[T']) =" N,
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since ¥\ is an eigenvalue of L[T’] by Lemma
Without loss of generality, suppose M3(Cy;* \) = {T}, T3, ..., T;}. Foreachi(i =

1,2,...,q), let t; = mZ[T*](k)\). From Lemma B3] |C(T},Y[T]])| = mZ[T*](k)\) =t
holds for each i. Then )

q
Sler, YT =Yt =t
=1 i=1
Hence,

(T, Y)] = |C(lT—cV,Y[T—Cv])|+ICv|
Yiet [C(TL YT +m

i C(TH YT +m

= t*+m.

On the other hand, note that S(7") = Uf:ll S(T;) and each eigenvalue corre-
sponding to the component being of M;j(Cy;¥ \) or Ma(Cy;* ) is no less than %),
then t +t* = k — 1 — m. Hence,

C(T,Y) =t +m=k—-1—t 0O

Putting Theorem 4] together with Lemma 23] we can give the characterization
for the structure of the trees with any possible cardinality of the characteristic set
with respect to its k-maximal vector.

THEOREM 3.5. Let T be a tree with Laplacian matriz L, and let Y be an arbitrary
k-mazimal vector of T. Then |C(T,Y)| =k — 1 if and only if either every coordinate
of Y different from zero, or My(v;*\) = () holds for each v € C(T,Y).

THEOREM 3.6. Let T be a tree with Laplacian matriz L, and let Y be an arbitrary
k-mazimal vector of T. Suppose t is an arbitrary integer with 1 <t < k — 2. Then
IC(T,Y)| = k —1—t if and only if Cy(T,Y) # O and My(Cy;F\) = {T; : i =
1,2,...,p(p>1)}, where t = @L_, M r,) (k).

Below we give an example to show the occurrence of each of the case described
in the above theorems.

EXAMPLE 3.7. Let T be a tree onn =2m+4dp+q+ 1 (p + g > 2) vertices
obtained from a star on m + p + g + 1 vertices by appending m pendent edges to m
pendent vertices and p paths with length 3 to other p pendent vertices, respectively,
see Figure 3.1.

By a little calculation, we have ¥ A\(T) = 1 with multiplicity p+q—1, My (u; 1) = 0,
Mg(u; 1) = {T[’U4p+2m+i] 1= 1, 2, .. .,q}, Mg(’u,; 1) = {T[Ui,’l)p+i,’l)2p+i,1}3p+i] T =
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Vdp+m+1  Vdp+1 U1 Up+1 V2p+1  U3p+1

Vdp+m+2 Vip+2 Upt+2  V2p+2  Uspi2
® ® ®

’ng 1)3p 1)4p
@ @ @

v4p+2m v4p+m

Vdp+2m+1  Vdp+2m+q

Fic. 3.1. A tree on 2m + 4p 4+ q + 1 vertices with p+ q > 2.

1,2,...,p}, and My(u;1) = {T[vap+i, Vaptm—+i] ¢ = 1,2,...,m}, where k = m+p+2
and T'[S] is the subgraph of T induced by its vertex subset S. Then the k-vector Y
has the following partitioned form:

Y = [0 X7 X7 6, X0 W W s, 0],

where X; = [-1 —101T fori=1,2,...,p, W; =[00]T for I =1,2,...,m, and each
t; (or s;) is real such that the vertex u satisfies eigencondition.

One can see that, for each k-vector Y, ¢;X; is either zero or non-zero containing
both positive entries and negative entries for each ¢, s; is either zero, or positive, or
negative for each j, and W; = 0 for each I, which is consistent with Lemma 27 On
the other hand, from the partitioned form of Y, v € C(T,Y) if some ¢; (or s;) is
nonzero. Moreover, we have |C(T'[vi, Vp+ti, Vop+i, Usptil, Y [Vi, Uptis Vaptis  VUsptil)| =
|C(T'[vs, Vpti, Vop+i, Usp+il, tiX5)| is either 1 or 0 according to the real ¢; is nonzero or
not. Thus,

(T, Y) = 1+ Zf:l IC(L[T [vi, Vptis vap+is Vaptills Y[V, Vptis Vaptis Uspal )|
< l+4p,

from which we have that Y is k-maximal if ¢; # 0 for each 4, which is consistent
with Lemma 28 One can also find that, with respect to any k-maximal vector Y,
|C(T,Y)| = 1+ p regardless of the choice of the integer m. Hence, |C(T,Y)| =1+p =
k—1ifm =0 (in such a case My(u;1) =0), and |C(T,Y)| = 1+p < k— 2 otherwise,
which is consistent with Lemma [31

Moreover, if Y is k-maximal, then Cy(T.,Y) = {u} U {vepy; 1 i =1,2,...,p}, and
Ml(CV; 1) = Mg(CV; 1) = (Z), MQ(CV; 1) = {T[U4p+2m+i] 1= 1,2, .. .,q} U {T[’U3p+j] :
i=12,..,pt U{Tv,vptt] : 1 =1,2,...,p}, Ma(Cy;1) = {T[vap+i, Vaptm+i] 1 & =
1,2,...,m}, which is consistent with Theorems B.4] and
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