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THE QUATERNIONIC DETERMINANT*

NIR COHEN' AND STEFANO DE LEOf

Abstract. The determinant for complex matrices cannot be extended to quaternionic matrices.
Instead, the Study determinant and the closely related g-determinant are widely used. In this paper
it is shown that the Study determinant can be characterized as the unique functional extending the
absolute value of the complex determinant, and its spectral and linear algebraic aspects are discussed.
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1. Introduction. Quaternionic linear algebra is attracting growing interest in
theoretical physics [1]-[5], mainly in the context of quantum mechanics and field the-
ory [6]. Quaternionic mathematical structures have recently appeared in discussions
of eigenvalue equations [7], [8], group theory [9], [10], and the grand unification model
[11], [12] within a quaternionic formulation of quantum physics.

The question of extending the determinant from complex to quaternionic matrices
has been considered in the physical literature [4]-[6]. The possibility of such an
extension was contemplated by Cayley [13], without much success, as early as 1845.
A canonical determinant functional was introduced by Study [14] and its properties
axiomatized by Dieudonné [15]. The details can be found in the excellent survey paper
of Aslaksen [16]. Study’s determinant is denoted as Sdet, and, up to a trivial power
factor, is identical to the g-determinant, det,, found in most of the literature [17], and
to Dieudonné’s determinant, denoted as Ddet. Specifically, det, = Sdet? = Ddet®.

In these works, Sdet was considered as a generalization of the determinant, det,
in the sense that the two functionals share a common set of axioms. Specifically, Sdet
is the unique, up to a trivial power factor, functional F : H™*" that satisfies the
following three axioms [16]:

1. F(A) = 0 if and only if A is singular;
2. F(AB) = F(A)F(B) (multiplicativity);
3. FU+rE;;) =1fori# jand r € H.

However, Sdet does not truly extend det. Indeed, the two functionals do not
coincide on complex matrices, since the former is nonnegative while the latter is truly
complex. In this paper we show that Sdet does extend the nonnegative functional
|det|, namely, the two functionals coincide for complex matrices. More precisely, we
show the following:

1. There exists no multiplicative functional on quaternionic matrices that coin-
cides with det on complex matrices.
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2. Sdet is the only nonconstant multiplicative functional that coincides with
| det | on complex matrices. (We remark that just like det[M] # 0, the in-
equality | det[M]| # 0 characterizes nonsingular matrices over the complex
numbers. The same central role in group theory over the quaternions will be
played by Sdet[M] # 0.)

3. The identities |det(M)| = []|\i|, in terms of eigenvalues, and |det(M)| =
[1oi, in terms of singular values, extend to M quaternionic. Thus, although
Sdet is originally defined through complexification [18]-[21], it can be given
concrete spectral and numerical-analytic interpretations that do not require
complexification.

4. The Schur complements identity for complex matrices

A B
¢ D

det [ ] ‘ = | det[A]||det[D — CA™'B]|

extends to quaternionic matrices.

Also, we discuss formulas for det[H], Adj[H], and H~! based on the classical
permutation and minor calculation (some of this material can be found in [22]). It
is interesting that this approach, pursued by Cayley without success in the context
of general quaternionic matrices, is valid in the Hermitian case. The functional det,
defined this way for Hermitian quaternionic matrices, is not multiplicative. Note that
under the definition Sdet[M] := det[M ™ M], one can extend the Study determinant
to nonsquare matrices.

In the last section we also discuss some open problems concerning the behavior of
the determinant and the difficulties of extending the formula M ~! = Adj(M)/ det(M)
to quaternions.

2. Notation. Quaternions, introduced by Hamilton [23], [24] in 1843, can be
represented by four real quantities

g=a+ib+ jc+kd, a,b,c,d€R,
and three imaginary units ¢, j, k satisfying
==k =ijk=-1
We will denote by
Rel[g] :=a and Im[q] :==q¢q—a =1ib+ jc+ kd

the real and imaginary parts of ¢q. The quaternion skew-field H is an associative
but noncommutative algebra of rank 4 over R endowed with an involutory operation
called quaternionic conjugation

qd = a—1ib— jc— kd = Re[q] — Im][q]

satisfying pg = gp for all ¢,p € H. The quaternion norm |g| is defined by

g =qg=a* + 0"+ + &
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Among the properties of the norm, to be used in subsequent sections, we mention
here the following;:

lpg| = |gp| = |gllp| and |1 —pg| = |1 —gp|.

Every nonzero quaternion ¢ has a unique inverse
¢ ' =q/la.
Two quaternions p and ¢ are called similar if
g =s ps for some s € H.

By replacing s with u = s/|s|, we may always assume s to be unitary. The usual
complex conjugation in C may be obtained by choosing s = j or s = k. A necessary
and sufficient condition for the similarity of p and ¢ is given by

Re[g] = Re[p] and [Im[q]| = [Im[p]].

An equivalent condition is Re[q] = Re[p] and |g| = |p|. Every similarity class contains
a complex number, unique up to conjugation. Namely, every quaternion ¢ is similar
to Re[g] £ i|Im[g]|- In particular, ¢ and g are similar. It can be seen that s € H
conjugates q and ¢ (i.e., § = s~'¢s) if and only if Im[g] = 0 or Re[gs] = Re[s] = 0.
However, there exists no fixed s € H that conjugates ¢ and ¢ for all ¢ € H.

3. Spectral theory. Spectral theory for complex matrices admits several possi-
ble quaternionic extensions that do not necessarily respect the fundamental theorem
of algebra [7], [8], [25]-[28]. We shall be interested in the extension usually described
as “right eigenvalues” [7], [8], [29].

Every n x n quaternion matrix M is similar to an upper-triangular matrix. This
can be shown just as in the complex case. Using elementary Gaussian operations, the
general case can be reduced to the case of 2 x 2 matrices, where one wishes to find

a € H so that
* x| _[ 10 a b 1 0
0 x| | a1 c d —-a 1

given a,b, c,d € H. By permutation similarity we may assume that b # 0. Solvability
for « is expressed by the noncommuting quadratic equation

a?b+a(d—a) —c=0,

which always has a solution [25], [26].

Note that in the complex case the similarity matrix obtained in this procedure is
not in general unitary; however, a different procedure, Schur’s lemma, triangularizes
the matrix using unitary similarity. Schur’s lemma has been extended to quaternionic
matrices [30].

A modified version of the Jordan canonical form is valid for quaternionic matrices.
Namely, every matrix M € H™*" is similar, over the quaternions, to a complez Jordan
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matrix J, defining a set of n complex eigenvalues. However, the eigenvalues A; € C
are determined only up to complex conjugation [18].

The Schur and Jordan canonical forms are associated with right eigenvalues
My = 1q, v € H"™!, ¢ € H, which are determined only up to quaternionic sim-
ilarity. This is further discussed in [7], [8], [19], [29].

Let us denote by Z[M] the complexification [18], [20], [21], [31] of the quaternionic
matrix M, i.e.,

M, —M;

(1) Z[M] = [ M, M;

:| , M = M+ jM>, M172 e Ccnxm,

It has been shown in [18] that if J is the complex Jordan form of M, then J@ J* is the
Jordan form of Z[M]. Consequently, the spectrum of Z[M]is {1, A],..., An, AL}

4. On extending the determinant. The difficulty in extending the determi-
nant to quaternions results from the lack of commutativity. Starting with Cayley’s
itself, expressions for the determinant have failed. Let us consider the case of 2 x 2
matrices. Here, one may consider four different generalizations:

(2) ad —c¢b, ad—be, da—cb, da— be.

It is easy to see that none of these expressions, alone or jointly, has relevance to the
invertibility of the matrix. Consider, for example, the two matrices

o aslilesli]

In the case of A, exactly two expressions in (2) vanish; in the case of B, all four
expressions are zero. However, both A and B are unitary.

In a different line of attack, one may look for multiplicative functionals F from
H"™*" to H that coincide with the determinant on complex matrices. Again, the result
is negative:

There is no multiplicative functional

F:HY™" 5 H

that coincides with det on complex diagonal matrices.
Proof. Tt is enough to obtain one counterexample for n = 2. Consider the 2 x 2
matrices

_[1+4i 0 C[14i 0 J1 0
Kl AR EE S I R E
Since S is invertible, F[S] # 0; see Lemma 5.2. Since SM = NS, we conclude
that F[S]F[M] = F[N]F[S], hence F[M] and F[N] should be similar. This is a
contradiction because obviously Re {F[M]} # Re {F[N]}. O
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5. On extending the absolute value of the determinant. A more positive
result is obtained with respect to the functional |det |.
THEOREM 5.1. Sdet is the unique functional

(4) D:HY™" - R,

that is multiplicative, i.e.,

(5) D[M N]| = D[NM] = D[M]D[N],
and satisfies the scaling condition

(6) DlqI] = |q|" Vg€ H.

Before proving this theorem, we make some observations concerning nonnegative
multiplicative functionals. The only nontrivial part here is the last property, which
has been proved elsewhere.

LEMMA 5.2. If F : H™™ — R, is a nonconstant multiplicative functional, then

1. F[S| =1 S*=1;

2. FIS)F[S~' =1 and F[S™'MS) = F[M] if S is invertible;
3. F[P] =1 for all permutation matrices P;

4. F[M] =0 if and only if M is singular.

Proof. Multiplicativity and nontriviality imply that F[I] = 1. Now items 1-2
become trivial consequences of multiplicativity. Item 3 follows from the fact that
every permutation matrix is a product of elementary permutation matrices P; with
P2 = 1. As for item 4, if M is not singular, then applying F to MM ~! = I implies
that F[M] # 0. If M is singular, F # 0 by a result of [32]; see [16, p. 58]. O

Proof of Theorem 5.1. Let D be a functional satisfying (4), (5), (6). Let {Ei;}7;_,
be the usual canonical basis over H in H"*". Let ¢ € H be nonzero. Consider the n
diagonal elementary matrices

Mi(q) =T+ (g—1)E;
and the n(n — 1)/2 upper-triangular elementary matrices
Mij(q) =1+ qE;j, i<j.
First we show that
(7) F[Mi(q)] = lql-

Indeed, by permutation similarity we see that F[M;(q)] is independent of 1 < i < n.
So set f(g) := F[M;(g)]. We have qI =[]}, M;(g), hence

lg|™ = FlgI] = H]:[Mi(Q)] = f"(q)-
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Hence f(q) = |g|, as claimed. Next we show that
®) FIMy(@) = 1.
Indeed, it is easy to see that
M;;'(q) = Mij(—q) = Mi(=1)M;;(q) Ms(-1),
hence F| [M;l(q)] = F[M;;(g)]. Now (8) follows by multiplicativity.

We have therefore established that F : H"*"™ — H satisfies the three Dieudonné
conditions (5), (8), and item 4 in Lemma 5.2. Therefore, according to Dieudonné’s
result [16], F = Ddet”” = Sdet” for some r € R. Due to (6), it is readily seen that
r=1.10

Note that, in general, if F is multiplicative and r € R, then F7 is also multi-
plicative. Therefore, we have a one-parameter group of nonnegative multiplicative
functionals {Sdet” : r € R}. (The case r = 0 is interesting: it leads to the functional
whose value is 1 on all the invertible matrices and 0 otherwise.) In view of Theo-
rem 5.1 we conclude that this one-parameter family and the two constant functionals

Fo[M] = 0 and F1[M] = 1 are the only nonnegative multiplicative functionals on
quaternionic matrices.

6. Concrete description of the Study determinant. Theorem 5.1 has the
following main corollaries.

COROLLARY 6.1. If M is upper triangular, then Sdet(M) =[], | M| .

Proof. This follows easily by writing M explicitly as a product of elementary
matrices using (7), (8). O

COROLLARY 6.2. For all matrices M, Sdet(M) = [];_, |Xi|, where X; are the
eigenvalues of M.

Proof. By Lemma 5.2, item 2, it is enough to consider the Jordan form, or the
Schur form, of M, which is of the type considered by Corollary 6.1. O

Since the eigenvalue identity just exhibited, restricted to complex matrices, is also
valid for | det |, we get immediately the following corollary.

COROLLARY 6.3. For complex matrices we have Sdet(M) = | det(M)].

Let us define the adjoint of M by (M™);; = Mj;. A matrix U € H"*" is called
unitary if UTU = I. According to the quaternionic Schur lemma [30], every n X n
quaternionic matrix M can be written as M = UTTU, where U is unitary and T
is triangular. Since, in addition, (8) is obviously valid for lower- as well as upper-
triangular matrices, we get the following result.

COROLLARY 6.4. Sdet(M™) = Sdet(M). In particular, Sdet(U) = 1 if U is
unitary.

The identity Sdet(M) = 1 may be taken as a basis to define the group of uni-
modular matrices.

Next, we calculate F in terms of singular values. The singular value decomposi-
tion (SVD) for complex matrices extends to quaternionic matrices in a straightforward
way. Every n X n quaternionic matrix M has the SVD M = UXV, where U and V
are unitary, ¥ =¥, 0, X1 = 01 @® --- ® 0}, where oy > g9 > --- > 0 > 0 are the
singular values of M [18], [30], [33], [34]. In these terms the following holds.
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COROLLARY 6.5. F[M] =[], o;.

7. Hermitian matrices. A quaternionic matrix H is called Hermitian if HT =
H. As we saw in Section 4, the common determinant cannot be extended to quater-
nionic matrices. However, it can be extended to Hermitian quaternionic matrices.
The usual definition of the determinant in terms of permutations was generalized in
the Chinese literature; see for example [22]. Another possible definition is analogous
to Corollaries 6.2 and 6.5:

n
1=, =[]
=1

Note that, for Hermitian matrices, the eigenvalues are uniquely determined and real.
This follows from the fact that Z[M] is also Hermitian. Note that the set of Hermitian
matrices is not closed under products, and the functional det : H — |H|, is not
multiplicative. However, it is invariant under congruence.
It is easy to show that, for Hermitian matrices, the following are equivalent:
1. H is positive definite, i.e., zt Hz > 0 for all nonzero z € H"*!.
2. All the eigenvalues A; are positive.
3. All the (signed) real determinants of the principal minors are positive.
We conclude this section by comparing the functional Sdet[M], the functional
|H|, just defined, and the g-determinant [17]

|M|, = det {Z [M]},

when Z[M] is defined in (1). From previous considerations, we have

|M|, = T I\il? = Sdet[MT]Sdet[M] = Sdet*[M] = |[M*T M| .

i=1

Using this equation, one can extend the definition of Sdet from square to nonsquare
matrices. This approach is found in [22], where the resulting functional is called the
double determinant.

8. Schur complements. Let R be an associative ring. A matrix M € R™*" is
called invertible if MN = NM = I, for some N € R™*™, which is necessarily unique.
It is shown in [17] that in the case R = H, M N = I,, implies NM = I,,.

The Schur complements procedure [35] is a powerful tool in calculating inverses
of matrices over rings. Let us write a generic n-dimensional matrix M in block form:

M:[AB].

C D

Assuming that A € R¥*¥ is invertible, one has

[ L 0 ][A 0][L A'B
©) M_[CA—l InkHo ASHO Ink]’
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with
Ag:=D-CA'B.

We shall call Ag the Schur complement of A in M.
The invertibility of A ensures that the matrix M is invertible if and only if Ag is
invertible, and the inverse is given by

1 _ I, —A'B AL 0 I 0

(1) M= [ 0 Iy ] [ 0 A ] [ ~CA™ Iy

The inversion of an n-dimensional matrix is thus reduced to the inversion of two
smaller matrices, A € R¥** and Ag € R"=#*(=k) (plus some multiplications);
repeated use of this size reduction can be used to invert the matrix efficiently. It is
not as efficient as Gaussian elimination, but the latter may not be available in general
rings.

COROLLARY 8.1.

Sdet [ ] = Sdet[A]Sdet[D — CA™'B]

B
D

Qe

as long as A~ exists.

Proof. Indeed, from the construction of Sdet in the last section, we see that its
value on each of the two block-triangular matrices in (9) is 1; since the eigenvalues of
a direct sum are the union of the eigenvalues of the summands, we get that Sdet[A &
As] = Sdet[A]Sdet[As]. This plus multiplicativity implies the result. O

As a result of the Schur complements determinant formula just exhibited, we get
the following commutation formula for Sdet, which generalizes a well-known property
of det (actually, of | det|).

COROLLARY 8.2. Sdet[I + M N] = Sdet[I + NM] for all M € H"*™ and N €
men_

Proof. Indeed, consider the matrix

Ii N
M I

and apply to it Schur complements with respect to both I; and I, respectively. We
get

L N _
Sdet [ A} I, ] = Sdet[I;]Sdet[Is — MI; ' N]
and
L N _
Sdet [ o L ] = Sdet[L,]Sdet[I, — NI; ' M],

implying the identity. O
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9. The case of 2 X 2 matrices. In this last section, we discuss inversion,
adjoint, and determinant for 2 x 2 quaternionic matrices.

9.1. Inversion. Let

be an invertible 2 x 2 matrix with quaternionic entries. When a, b, ¢, d are all nonzero,
four parallel applications of the Schur complements formula (10) lead to a concrete
description of the inverse:

a=(a—bd'e)7", b=(c—db~'a)7!,
é=(b-ac'd)™", d=(d—ca b))

o
ISR

(11) M= [
where
(12)

see Giirsey and Tze [36, p. 115]. The invertibility of M guarantees that these four
values are well-defined nonzero quaternions. What happens if some of the entries
of M vanish? Assume for example that a = 0. The invertibility of M implies that
b,c # 0. Consequently, the element d — ca—'b has infinite modulus. In this case, we
define

d = lim(d — ca™'b) L.
a—0

A simple calculation,

- 1

d| = li = li

ldli= b e = B et = o)
|al I [

lim ————— = lim =
a=0 |cllac™td —b| a0 clb]

shows that d = 0. Thus,

1 ~
0 b _|la b - 1p1 §_ 1 a1
[cd] —[50],a—cdb,b—c,c—b .

We conclude that (12) remains valid under appropriate conventions, when some entries
in M are zero. We do not have a clear generalization of this phenomenon for n > 2.

9.2. Adjoint. Equations (11), (12) are valid in every associative ring R. In the
case that R is also commutative, (11), (12) reduce to the well-known formula
L Adj[y]
det[M]"

(13)
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In calculating the inverse of real and complex matrices, (13) is of great theoretical
importance. So far, we have failed to generalize this formula to quaternion matrices.
At first sight, it might make sense to conjecture a noncommuting expression of the
general form

(14) M~' = PAdj[M]Q

with quaternionic diagonal matrices P = diag {p1,p2} and @) = diag{q1,¢2}. Never-
theless, the resulting constraints
p= aQ}d_l, D2 = j&hc_l,
pL=—bpb !, pr=dgat,
which, for commutative fields, are satisfied if P = det '[M]I and Q = I, are not
always solvable. For example, the first matrix in (3) cannot be written in the form
(14). Whether a further weakening, beyond (14), of (13) is valid for quaternionic
matrices remains an open problem. The mere definition of Adj{M], M € H"*",
n > 2, preserving (13), is not clear.
A different generalization of (13) for 2 x 2 quaternionic matrices may be obtained
using a Hadamard product between a nonnegative matrix and a termwise-unitary
quaternionic matrix:

- 1 | ||
1 _
M _Sdet[M][|C| jal | °

|m §|m
|Q_,Ex|e-n

Y
&

Another description of the inverse matrix is offered in Equation (37) of Chen [22].

9.3. Determinant. For n = 2, it is noteworthy that the following four quater-
nion expressions are equal:

la||d — ca™'b| = |b||c — dbta| = |c||b — ac™'d| = |d||a — bd " ¢].

From the Schur complements formula, Corollary 8.1, it follows that each of these
expressions, properly extended in each case a, b, ¢, or d is zero, expresses the value of
a b

Sdet [ c d ] .

Applying this formula on the two unitary matrices in (3), one obtains the expected

result (these matrices are unitary, hence unimodular). For Hermitian quaternionic
matrices, the real determinant is given by

H Z g ] =M =ad—|¢f?, a,6€R, g€ H.

r
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