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INCIDENCE MATRIX AND COVER MATRIX OF

NESTED INTERVAL ORDERS∗
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Abstract. For any poset P , its incidence matrix n and its cover matrix C are the P × P (0, 1)

matrices such that n(x, y) = 1 if any only if x is less than y in P and C(x, y) = 1 if any only if x is

covered by y in P . It is shown that n and C are conjugate to each other in the incidence algebra of

P over a field of characteristic 0 provided P is the nested interval order. In particular, when P is

the Bruhat order of a dihedral group, which consists of a special family of nested intervals, n and C

turn out to be conjugate in the incidence algebra over every field. Moreover, n and C are proved to

be conjugate in the incidence algebra over every field when P is the weak order of a dihedral group.

Many relevant problems and observations are also presented in this note.
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1. Poset and its incidence algebra. A (finite) partially ordered set, also

known as a (finite) poset [33, p. 97], is a finite set P together with a binary re-

lation ≤P , which is often denoted ≤ if there is no confusion, such that:

• for all x ∈ P, x ≤ x (reflexivity);

• if x ≤ y and y ≤ x, then x = y (antisymmetry);

• if x ≤ y and y ≤ z, then x ≤ z (transitivity).

We use the obvious notation x < y to mean x ≤ y and x 6= y. Similarly, x ≥ y and

x > y stand for y ≤ x and y < x, respectively. For any x, y ∈ P , the interval [x, y] =

[x, y]P is the set (subposet) {z ∈ P : x ≤ z ≤ y}. We say that y covers x provided

|[x, y]| = 2 and denote this by x ⋖ y. For any x ∈ P , let x↑P = {y ∈ P : y > x}. A

linear extension of a poset is a listing of its elements as x1, . . . , xr such that if xi ≤ xj
then i ≤ j. It is well-known that each poset admits a linear extension.

As the uniquely determined minimal transitive reduction of the poset P , its Hasse

diagram is the digraph Γ(P ) with P as the vertex set and there is an arc from y to
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x if and only if x ⋖ y. We say that a poset P has the unique path property, or is a

upp poset, if for any two elements x ≤ y from P there exists a unique (directed) path

in Γ(P ) from y to x; in other words, P is a upp poset if each interval [x, y] of P is a

chain containing |[x, y]| elements. We mention that the underlying graph of the Hasse

diagram of a upp poset might have cycles.

An ideal P ′ of a poset P is a subposet of P such that x ∈ P ′ implies x↑ ⊆ P ′.

The subposet induced by the complement of an ideal is a filter. A simplicial complex

K is a set of sets such that A ∈ K and B ⊆ A implies B ∈ K. Under the set inclusion

relationship, each simplicial complex is naturally a poset. A relative simplicial complex

is an ideal of a simplicial complex.

The incidence algebra IncF (P ) [6, 24] of a (locally finite) poset P over a field

F (in many contexts, we can assume F to be merely a commutative ring having

a multiplicative unit) is the algebra of functions (matrices) f : P × P → F such

that f(x, y) = 0 unless x ≤ y in P with pointwise addition and convolution (matrix

multiplication) (fg)(x, y) =
∑

x≤z≤y f(x, z)g(z, y). The reduced incidence algebra

is the subalgebra of the incidence algebra consisting of those elements of IncF (P )

which take constant values on isomorphic intervals. The strict incidence algebra of P

consists of those elements of IncF (P ) which are nilpotent, i.e., those elements which

take value 0 on the diagonal {(x, x) : x ∈ P}. Note that IncF (P ) naturally acts on

FP (viewed as space of column vectors) from the left as linear operators and IncF (P )

is a subalgebra of the corresponding full matrix algebra. The incidence algebras of

posets are important computational devices for many enumeration problem on posets

and their algebraic properties have been intensively studied [33]. In particular, Stanley

[31, 36] shows that the poset P can be uniquely recovered from IncF (P ). We adhere

to the convention that P represents a (finite) poset and F a field throughout the

paper.

Recall that the Kronecker delta, denoted δ, is a function of two variables, which

is 1 if they are equal, and 0 otherwise. If the two variables are restricted to be from

a poset P , we call it the Kronecker delta function (identity matrix) on P and use the

notation δP to signify this. It is noteworthy that the function δP is the multiplicative

unit of IncF (P ). For any two elements x < y from the poset P and any number h

from the given field F, the transvection Txy(h) is the matrix obtained from the identity

matrix δP by putting h in the (x, y)-position. Observe that Txy(h)
−1 = Txy(−h) and

Txy(h) ∈ IncF (P ).

2. Incidence matrix and cover matrix. We are interested in two special but

basic matrices lying in both the reduced incidence algebra and the strict incidence

algebra of P , the incidence function (matrix) nP and the cover function (matrix) CP ,

which encode full information about the poset P and are the indicator function of <
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and that of ⋖, respectively, and can be described more explicitly as follows:nP (x, y) = {
1, if x < y;

0, otherwise;
CP (x, y) =

{
1, if x⋖ y;

0, otherwise.

In some sense, nP is a global view of P and CP is a local view of P . Note that nP−CP

is a (0, 1)-matrix, and hence, CP is more sparse than np. We also remark that Γ(P )

has C⊤
P as an adjacency matrix.

Both nP and CP come into play in various important situations. The zeta function

(integral operator) of P is ζP = nP +δP , which is the indicator function of the partial

order ≤P . The key to the Möbius Inversion Theorem is the determination of the

Möbius function (differential operator) of P , µP = ζ−1
P , which is, considering thatnP is nilpotent, δP − nP + n2

P − n3
P + n4

P − · · · . Let dP be the dimension of the

kernel of nP . This parameter dP turns out to be a lower bound of the number of

incomparable adjacent pairs in any linear extension of P [14] and an upper bound of

the width of P [13, 26], and for almost all posets in the uniform random poset model

it is exactly the width of P [10]. The operator CP may be regarded as an instance

of the finite Radon transform in general [16, 32] and becomes the usual boundary

operator for relative simplicial homology when P is a relative simplicial complex. It

might be interesting to see if there is some connection between nP and CP to offer a

bridge between different research topics.

3. Stanley’s problem. In the following, we say that two elements A and B of

IncF (P ) are conjugate if there is α ∈ IncF (P ) such that A = αBα−1 and we say

that A and B are similar if when viewing them as matrices over the complex field

we can find a complex matrix α, which is not necessarily a member of IncC(P ), such

that A = αBα−1. Surely, the statement that A and B are similar just means that

they have the same Jordan canonical form over C or the same Jordan invariants (the

sizes of its Jordan blocks over C for the same eigenvalue). For a nilpotent matrix, say

a cover matrix or an incidence matrix, its Jordan invariant is necessarily the sizes of

its Jordan blocks for eigenvalue 0. We say that A and B are equivalent (in IncF (P ))

if there are nonsingular matrices α1 and α2 (in IncF (P )) such that A = α1Bα2.

Example 3.1. [35] Let

A =




0 1 0

0 1 1

0 0 0


 , B =




0 1 0

0 0 0

0 0 1


 , and C =




1 0 0

0 0 1

0 0 0


 .

It is easy to check that both B and C are the Jordan canonical forms of A in the

full complex matrix algebra but there is no upper triangular matrix α such that

αAα−1 ∈ {B,C}. Note that the set of n × n upper triangular matrices can be

identified with the incidence algebra of the linear order on n elements.
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The next example is basic to our studies. It not only suggests possible directions

of generalizations, but also acts as a key preliminary fact for Corollaries 6.2 and 6.4.

Example 3.2. Let P be a linear order, namely a poset of dimension 1, on n

elements, say 1 < 2 < · · · < n. Then,

CP =




0 1

0 1
. . .

. . .

0 1

0



n×n

and nP =




0 1 1 · · · 1

0 1 · · · 1
. . .

. . .
...

0 1

0



n×n

.

The matrix CP is clearly the Jordan canonical form of nP (also see Example 4.1).

Moreover, for 1 ≤ i < j ≤ n− 2, it holds

(
n− 1− i

n− 1− j

)
=

j+1∑

t=i+1

(
n− 1− t

n− 1− (j + 1)

)
,

and so we find that

T (2)−1 · · ·T (n− 2)−1T (n− 1)−1nPT (n− 1)T (n− 2) · · ·T (2) = CP

where

(3.1) T (j) =

j−1∏

i=1

Tij(

(
n− 1− i

n− 1− j

)
), j = 2, . . . , n− 1.

This means that nP and CP are even conjugate in IncF (P ) for any field F .

Prompted by the theory of Jordan canonical form in the full matrix algebra

over an algebraically closed field, Stanley asks if there is any reasonable criterion for

determining when two elements of the incidence algebra of a poset are conjugate [33,

p. 159, Exercise 29 (e)]. Marenich [17, 18] finds some interesting results in her effort

to tackling the problem of Stanley and she proposes to view λδP ′ + CP ′ , where P ′

is a subposet of P . as a “Jordan block” for IncF (P ). Once this problem of Stanley

has come up, it is natural to push on to a broader formulation and also ask if two

matrices from IncF (P ) are similar or equivalent or have the same Smith normal form,

etc. Weyr’s Theorem [30] says that the two nilpotent matrices nP and CP have the

same Jordan invariants if and only if rankC(nkP ) = rankC(C
k
P ) for every k. So, it is

interesting to test for which ℓ we have rank(nkP ) = rank(CkP ) for every k ≤ ℓ. We refer

to [2, 3, 4, 11, 13, 19, 23, 25, 26, 27, 29] for some work on Jordan canonical forms

determined by combinatorial patterns and refer to [12, 22] for some work on ranks of

matrix powers determined by combinatorial patterns.
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The remainder of the paper is devoted to Stanley’s problem and its variants

restricted on the two special matrices nP and CP . We first collect an assortment

of observations in Section 4 for the purpose of inviting readers develop them further

into potential theories. In Section 5, we report how the appearance of the hierarchy

structure helps to bridge the incidence matrix and the cover matrix. Especially, we

provide a sufficient condition for the incidence matrix and the cover matrix to have the

same row space (Theorem 5.6) and we take Example 3.2 one step further to nested

interval orders (Theorem 5.2). There is already a nice theory on determining the

Jordan canonical form of the tensor product of two matrices in the full matrix algebra;

see [21] and the references therein. In the spirit of this line of work, we establish in

Section 6 two simple lemmas (Lemmas 6.1 and 6.3) on some constructions similar to

tensor products and further use them to show that nP and CP are conjugate to each

other over any field when P is either the Bruhat order or the weak order of a dihedral

group.

4. Examples. For any nilpotent complex matrix A and any analytic function

f(x) such that f(0) = 0 and df(x)
dx

|x=0 6= 0, it is clear that A and f(A) have the same

Jordan canonical form. This suggests to investigate those posets P for which nP is a

function of CP and hence also those P for which nP and CP commute.

Example 4.1. [28] If P has the unique path property, then nP = CP +C
2
P+· · · =

CP (δP − CP )
−1. Since CP is nilpotent, it follows that nP and CP are similar in the

full complex matrix algebra.

Example 4.2. Let P be a poset whose intervals are always Boolean algebras

(it is called a simplicial poset if it also contains a smallest element [33, p. 135]), say

being a relative simplicial complex. Viewed as matrices over integers, it is easy to see

that nP = CP +
C
2
P

2 ↓
+

C
3
P

3 ↓
+ · · · = exp(CP )− δP .

This tells us that nP and CP have the same Jordan canonical form.

Example 4.3. Suppose that nP and CP are conjugate in IncF (P ). Let P
′ be an

ideal of P . Writing the matrix representation of elements of IncF (P ) in such a way

that the lines corresponding to elements of P \ P ′ appear before the other lines, we

can assume that T−1nPT = Cp where

T =

[
T11 T12
0 T22

]
, nP =

[ nP\P ′ n12

0 nP ′

]
, CP =

[
CP\P ′ C12

0 CP ′

]
.

It then follows that nP ′ and CP ′ are conjugate in IncF (P
′) and nP\P ′ and CP\P ′ are

conjugate in IncF (P \P ′). Similar reasoning shows that if CP and nP are equivalent
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in IncF (P ) then nP ′ and CP ′ are equivalent in IncF (P
′) and nP\P ′ and CP\P ′ are

equivalent in IncF (P \ P ′).

Example 4.4. [38] Let P be a poset whose Hasse diagram is weakly connected.

If fCP = nP f for some f ∈ IncF (P ), then f has a constant main diagonal. Indeed,

it is enough to prove f(x, x) = f(y, y) on the condition that x⋖y. But this is a result

of fCP (x, y) = nP f(x, y).
Example 4.5. Dress and Wu [8] show that nP and CP are conjugate in IncF (P )

when P is a relative simplicial complex and F is a field of characteristic 2. To see this,

by Example 4.3, we can now assume that P is a simplicial complex. Fix a linear order

≺ on ∪S∈PS. For any S = {x1 ≺ x2 ≺ · · · ≺ xt} ∈ P , set E(S) = {x2, x4, . . . , x2⌊ t
2 ⌋
}.

Specify Ω ∈ IncF (P ) by letting Ω(R,S) = 1 if E(S) ⊆ R ⊆ S and Ω(R,S) = 0

otherwise. It is not difficult to check that

(4.1) ΩCPΩ
−1 = nP .

Note that for each ordering of ∪S∈PS the above construction gives a solution Ω to Eq.

(4.1). To investigate if there is any other solution to Eq. (4.1), we are led to another

problem of Stanley [33, p. 159, Exercise 29 (e)], namely determining the dimension

of the centralizer algebra of CP in IncF (P ).

Example 4.6. Let P be a simplicial complex of dimension at least 2. Then,

we can suppose that P contains a 2-dimensional face {1, 2, 3} and hence the three

1-dimensional faces {1, 2}, {2, 3}, and {3, 1}. Over F2 we havenP (·, {1, 2}) + nP (·, {2, 3}) + nP (·, {3, 1}) = nP (·, {1}),
while

CP (·, {1, 2}) + CP (·, {2, 3}) + CP (·, {3, 1}) 6= CP (·, {1}).

This means that nP and CP have different row spaces over F2.

Example 4.7. Let P be the poset with the Hasse diagram as shown in Fig. 4.1.

Note that P is a poset of dimension 2. Simple calculation leads to

rankZ(nP ) = rankF2(nP ) = 5 > 4 = rankZ(CP ) = rankF2(CP ).

A poset P is graded if there is a rank function ρ from P to integers such that if y

covers x then ρ(y) = ρ(x) + 1. This graded poset P is homogenous provided for any

n ≤ k ≤ ℓ, any x ∈ ρ−1(n) and y ∈ ρ−1(ℓ) satisfying x ≤ y, the set [x, y]∩ ρ−1(k) has

a size tn,k,ℓ, which is totally determined by n, k, ℓ and is independent of the choice
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Fig. 4.1. Hasse diagram of the poset P in Example 4.7.

of x and y. Homogenous posets include the lattices of linear (affine) subspaces of a

finite vector space and the posets of relative simplicial complexes.

Example 4.8. Let P be a homogenous poset as defined above for which tn,n+1,ℓ 6=

0 for all n < ℓ. Suppose that {ρ(x) : x ∈ P} = {0, 1, 2, . . . ,m}. Put Ta = {(i, j) :

0 ≤ i ≤ j ≤ m, j − i = a} and T = ∪ma=0Ta. Let g be a map from T to F satisfying

g−1(0) ⊇ T0 and g−1(0)∩ T1 = ∅. Let f ∈ IncF (P ) be a function such that f(x, y) =

g(ρ(x), ρ(y)) for any x ≤P y. Note that when g takes constant value 1, f is nothing

but nP . Marenich [18, Theorem 6] finds that f is always conjugate to CP in IncF (P ),

namely there exists an invertible element α ∈ IncF (P ) such that

(4.2) αf = CPα.

To solve Eq. (4.2), Marenich suggests to consider a function h from T to F satisfying

h−1(0) ∩ T0 = ∅ and

(4.3)
ℓ−1∑

k=n

h(n, k)g(k, ℓ)tn,k,l = tn,n+1,ℓh(n+ 1, ℓ), 0 ≤ n < ℓ ≤ m.

If such a function h exists, we choose α ∈ IncF (P ) by requiring α(x, y) = h(ρ(x), ρ(y))

for any x ≤P y and it is easy to see that α is invertible and satisfies Eq. (4.2). We

follow Marenich to indicate briefly why the required h exists. Setting ℓ = n + 1 in

Eq. (4.3), we see that by taking any nonzero initial value for h(0, 0), h(i, i) can be

determined recursively to be h(0, 0)
∏i−1
t=0 g(t, t+ 1) 6= 0. Suppose the values of h on

∪s−1
a=0Ta have been determined by Eq. (4.3) for ℓ − n ≤ a and by any valuation of

h(0, 0), . . . , h(0, s− 1). Appealing to (4.3) for ℓ−n = s+1 and noticing tn,n+1,ℓ 6= 0,

we see that h(n + 1, ℓ) is determined by h(n, ℓ − 1) and those known values of h on

∪s−1
a=0Ta. This says that Eq. (4.3) is solvable and the solution is determined uniquely

by the value of h(0, i), i = 0, . . . ,m, and as long as h(0, 0) is chosen to be nonzero, we

will have h−1(0) ∩ T0 = ∅.

Given an n × n matrix A, its digraph Γ(A) has vertex set {v1, v2, . . . , vn} and

there is an arc from vi to vj if and only if A(i, j) 6= 0. A k-path of a digraph D is

a subset of V (D) which can be partitioned into k (possibly empty) sets X1, . . . , Xk
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such that each Xi is the set of vertices of a path of D. The largest number of vertices

in a k-path of D is the k-path number of D and is denoted by pk(D).

Example 4.9. For any nonnegative matrix A belonging to the strict incidence

algebra of P , the Rothblum Index Theorem [11, 25] implies that the size of the largest

Jordan block of A is equal to p1(Γ(A)). For any poset P , it is clear that a longest

path in Γ(nP ) must also be a longest path in Γ(CP ), and hence, we know that the

largest Jordan blocks of nP and CP have equal size.

Example 4.10. For any generic nilpotent matrix A of order n, its Jordan in-

variants are p1(Γ(A)). p2(Γ(A)) − p1(Γ(A)), p3(Γ(A)) − p2(Γ(A)), . . ., ps(Γ(A)) −

ps−1(Γ(A)), where s = n − rank(A) [4, 13, 27]. This suggests to investigate those

posets P for which the equality pi(Γ(nP )) = pi(Γ(CP )) holds for every positive inte-

ger i.

For any f ∈ IncF (P ) and U, V ⊆ P , we adopt the notation f(U, V ) for the U ×V

matrix that is the restriction of f on U × V . We often write fU for f(U,U).

Example 4.11. Let P,Q and R be three posets such that both P and Q have R

as an ideal. Suppose thatnP =

[ nP\R n(P \R,R)

0 nR ]
, CP =

[
CP\R C(P \R,R)

0 CR

]
;nQ =

[ nQ\R n(Q \R,R)

0 nR ]
, CQ =

[
CQ\R C(Q \R,R)

0 CR

]
.

The wedge sum of P and Q based on R, denoted P ∨R Q, is the poset which is the

disjoint union of P \R,Q \R and R and has the partial order to be specified bynP∨RQ =



nP\R 0 n(P \R,R)

0 nQ\R n(Q \R,R)

0 0 nR 
 ,

CP∨RQ =




CP\R 0 C(P \R,R)

0 CQ\R C(Q \R,R)

0 0 CR


 .

Suppose that nR and CR are conjugate in IncF (R) and this conjugacy can be lifted to

both Q and R, that is to say, there exists α, α−1 ∈ IncF (R) such that αnRα−1 = CR

and two extensions

αP =

[
β γ

0 α

]
∈ IncF (P ), αQ =

[
ǫ ζ

0 α

]
∈ IncF (Q)
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such that αPnPα−1
P = CP , αQnQα−1

Q = CQ. Let

θ =



β 0 γ

0 ǫ ζ

0 0 α


 ∈ IncF (P ∨R Q).

It is straightforward to check that θnP∨RQθ
−1 = CP∨RQ and so nP∨RQ is conjugate

to CP∨RQ in IncF (P ∨R Q). Note that similar result holds when both P and Q have

R as a common filter.

When referring to a Coxeter group, we will have in mind the group and a specific

set of Coxeter generators tacitly understood. The Bruhat orders and the weak orders

of Coxeter groups, as well as some other posets associated with Coxeter groups, are of

much interest in algebraic combinatorics [1]. Coxeter groups are classified into several

types [1, Appendix A1]. For instance, the symmetry group of an n-simplex is of type

An, the symmetry group of an n-cube is of type Bn and the symmetry group of the

regular m-gon is of type I2(m). Accordingly, it is natural to talk about the type of a

Bruhat order or a weak order.

Example 4.12. We examine several Bruhat orders and weak orders P and find

that nP and CP have the same Jordan invariants in all these cases. In the following

two tables, we report the common Jordan invariant for each of these posets. The third

columns of the tables indicate the place where a Hasse diagram of the corresponding

poset can be located; if an empty cell is found, it means that the calculation of the

relevant Hasse diagram is based on our own programming work but the diagram

is too large to include in this note. When recording the Jordan invariant of the

incidence/cover matrix of a poset, we employ the standard notation smi

i to mean

that there are mi Jordan blocks of size si and the supscript mi will be omitted when

mi = 1. It is clear that
∑
imisi is just the size of the considered poset.

Type of Bruhat order Jordan invariant Hasse diagram

B2 5, 13 [1, Fig. 2.1]

B3 10, 82, 62, 42, 2 Fig. 4.2

A2 4, 12 [1, Fig. 2.3]

A3 7, 5, 42, 3, 1 [1, Fig. 2.4]

A4 11, 9, 84, 73, 55, 42, 32, 22, 14

A5 16, 142, 134, 125, 114, 1012, 92,

816, 76, 618, 52, 415, 34, 28, 16

S
(3)
6 10, 6, 4 [1, Fig. 2.7]

E6 modulo D5 17, 9, 1 [1, Fig. 2.8]
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Type of weak order Jordan invariant Hasse diagram

I2(4) 5, 3 [1, Fig. 3.1]

A3 7, 52, 32, 1 [1, Fig. 3.2]

H3 16, 142, 122, 102, 82, 62, 4 [1, Fig. 3.3]

Fig. 4.2. Hasse diagram of the Bruhat order for the symmetry group of the 3-cube.

Remark 4.13. The group of type An is the usual symmetry group Sn+1. The

group of type Bn, sometimes called a hyperoctahedral group with parameter n, can

be expressed as the wreath product S2 ≀ Sn of S2 with Sn and is thus identified with

the group of signed permutation matrices of degree n. One can notice the central

symmetry of Fig. 4.2, which comes from the sign flipping involution on the set of

signed permutation matrices. Note that a diagram depicted in [1, Fig. 2.2] is also

asserted to be the Hasse diagram of the Bruhat order of type B3. It seems that

one edge is missing in [1, Fig. 2.2] and this destroys the above-mentioned central

symmetry. Anyway, even for the poset P with [1, Fig. 2.2] as its Hasse diagram,nP and CP have the same Jordan invariant and this invariant coincides with the one

arising from Fig. 4.2.

5. Hierarchy. A hierarchy, also referred to as a laminar family, is a set sys-

tem (hypergraph) H such that A ∩B ∈ {∅, A,B} for any A,B ∈ H. This concept is

naturally related to tree-like structures and is hence important in phylogenetic com-

binatorics [7] and algorithmic graph theory [34]. This section aims to highlight some

role of hierarchy in connecting the incidence matrix and the cover matrix.

Let Q be a poset. A poset P is an interval poset for Q provided to each element
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v of P we can assign a nonempty interval Iv = [av, bv]Q of Q such that v <P w if

and only if av ≤Q bv <Q aw ≤Q bw. It is worth noting that IncF (P ) naturally acts

on FP = IncF (Q). Also notice that when talking about an interval poset P for Q

we often regard that an interval representation I of P has been given and so each

element of P is already identified with an interval of Q. From the next simple result

we can tell that neither the poset in Example 4.6 nor that in Example 4.7 can be an

interval poset for some upp poset.

Theorem 5.1. If P is the interval poset for a upp poset, then nP and CP have

the same row space and rankZ(nP ) = rankZ(CP ).

An interval order [9] is the interval poset for a linear order. If the interval order

can be realized as a set of intervals of unit length on the real line, it is called a unit

interval order or a semiorder.

A family of intervals of a poset is nested if it is a hierarchy. The interval poset P is

a nested interval poset if it has an interval representation I such that {Iv : v ∈ P} can

be chosen to be nested. Especially, a nested interval poset for a linear order is called

a nested interval order. It is known that nested interval graphs, i.e., incomparability

graphs of nested interval orders, have very interesting combinatorial properties [5, 20].

The next result, which generalizes Example 3.2, is the chief goal of this note.

Theorem 5.2. Let P be a nested interval order and let F be a field of character-

istic 0. Then nP and CP are conjugate in IncF (P ) and hence have the same Jordan

canonical form when F is even an algebraically closed field.

Example 5.3. Take m ≥ 3. It is known [1, p. 28] that the Bruhat order Q of

the dihedral group of order 2m (the Coxeter group of type I2(m)) is isomorphic to

the nested interval poset for the real line consisting of the following intervals:

[1, 1], [2, 2], [2, 2], [3, 3], [3, 3], . . . , [m,m], [m,m], [m+ 1,m+ 1].

Therefore, Theorem 5.2 applies to say that nQ and CQ are conjugate to each other in

IncF (Q) for any field F of characteristic 0. We remind the reader that I2(3) = A2,

I2(4) = B2, and I2(6) = G2 [1, Appendix A1].

In the remaining part of this section, we will propose some former definitions

so that we can establish Theorems 5.1 and 5.2. We will also give some pertinent

examples and discussions.

Define an equivalence relation ∼ on a poset P such that x ∼ y if and only if

x↑ = y↑. We use the notation 〈x〉 = 〈x〉P for the equivalence class {y ∈ P : x ∼ y}.

We define the quotient poset of P , denoted by P , as the one with the ∼-equivalence

classes of P as elements and 〈x〉 >P 〈y〉 if and only if 〈x〉∩y↑ 6= ∅. A poset P is green
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if the set system {y↑P : y ∈ P, x <P y} is a hierarchy for every x ∈ P .

Example 5.4. If P is a green poset, then its quotient poset P and any interval

poset for it are also green.

Example 5.5. A upp poset is clearly green and hence so is any interval poset

for a upp poset.

Theorem 5.6. Let P be a green poset. Then there is α ∈ IncF (P ) such that

αCP = nP and detα = 1.

Proof. Let x1, . . . , xr be a linear extension of P . For any t ∈ {0, 1, . . . , r}, let Ct
be the P × P matrix such that Ct(xi, ·) = CP (xi, ·) for i ≤ t and Ct(xi, ·) = nP (xi, ·)
for i > t. Note that Cr = CP and C0 = nP . So, it suffices to show that there exists

αt ∈ IncF (P ) satisfying αtCt = Ct−1 and detαt = 1 for any t ∈ {1, 2, . . . , r}.

By assumption, there are t1, . . . , tn > t such that xt1 , . . . , xtn are all elements of

P which cover xt. Since {y↑P : y ∈ P, x <P y} is a hierarchy, we can further assume

that there is m such that x↑t1 , . . . , x
↑
tm

are pairwise disjoint and for any i > m, there

exists j ≤ m such that x↑ti ⊆ x↑tj . It now follows that αt = Txtxt1
(1) · · ·Txtxtm

(1) is

what we wanted, completing the proof.

Proof of Theorem 5.1. Combining Example 5.5 with Theorem 5.6 yields the

result.

Let P be an interval order. From Theorem 5.1, we derive rank(nP ) = rank(CP )

and hence nP and CP have the same number of Jordan blocks. We do not know of

any example yet for which rank(n2
P ) 6= rank(C2

P ). But the following example says

that it is possible for rank(n3
P ) 6= rank(C3

P ) to occur.

Example 5.7. Consider the following family of intervals of the real line R: I1 =

[1, 2], I2 = [1, 4], I3 = [1, 4], I4 = [1, 6], I5 = [3, 8], I6 = [5, 10], I7 = [7, 12], I8 = [9, 14],

I9 = [11, 14], I10 = [11, 16], I11 = [13, 16], I12 = [15, 18], I13 = [17, 20], I14 = [17, 22],

I15 = [19, 24], I16 = [21, 26], I17 = [23, 28], I18 = [25, 30], I19 = [27, 30], I20 = [27, 32],

I21 = [29, 34], I22 = [31, 36], I23 = [33, 36], I24 = [35, 36]. We depict these intervals in

Fig. 5.1. Denote the corresponding interval poset by P , which can be shown to be a

semiorder. A calculation by computer tells us that

(5.1)

{
(rankZ(nP ), rankZ(n2

P ), . . . , rankZ(n7
P )) = (17, 13, 9, 6, 4, 2, 0),

(rankZ(CP ), rankZ(C
2
P ), . . . , rankZ(C

7
P )) = (17, 13, 10, 7, 4, 2, 0).

Hence, the Jordan invariants of nP and CP are (7, 7, 4, 3, 1, 1, 1) and (7, 7, 5, 2, 1, 1, 1),

respectively. Additionally, a computer enumeration shows that the cover matrix and

the incidence matrix of any proper subposet of P have the same Jordan canonical

form. Finally, let us point out that, a greedy search finds that I1 < I5 < I8 < I12 <

I15 < I18 < I22 is a longest chain in P and hence Example 4.9 anticipates the fact
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that 7 is the size of the largest Jordan block in both nP and CP .

Fig. 5.1. The relative distribution of the family of intervals in Example 5.7.

We read from Eq. (5.1) that rank(niP ) ≤ rank(CiP ) for all positive integers i. Let

us give another example to illustrate that this is not true in general.

Example 5.8. Consider the new poset P consisting of the following intervals in

the real line: I1 = [1, 2], I2 = [1, 4], I3 = [3, 6], I4 = [5, 8], I5 = [7, 10], I6 = [7, 12],

I7 = [9, 10], I8 = [9, 12], I9 = [11, 14], I10 = [13, 16], I11 = [15, 18], I12 = [17, 18]. See

Fig. 5.2. It is easily verified that

{
(rankZ(nP ), rankZ(n2

P ), . . . , rankZ(n5
P )) = (8, 5, 3, 1, 0),

(rankZ(CP ), rankZ(C
2
P ), . . . , rankZ(C

5
P )) = (8, 5, 2, 1, 0),

and the Jordan invariants of nP and CP are (5, 4, 2, 1) and (5, 3, 3, 1), respectively.

By a computer enumeration we find that for any proper subposet of P its incidence

matrix and cover matrix are similar to each other. It may be worth noting that P

cannot be any semiorder, as can be certified by the intersection pattern of the intervals

I6, I4, I7, and I9 – they correspond to a so-called 1+3 in the poset.

Fig. 5.2. The relative distribution of the family of intervals in Example 5.8.

Example 5.9. Let P be any semiorder with at most 11 elements. A computer

enumeration shows that rankZ(nkP ) = rankZ(C
k
P ) for all positive integer k and hencenP and CP have the same Jordan canonical form over C. It seems interesting to
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understand which kind of obstruction appeared in an interval order P can cause

different Jordan invariants of CP and nP .
Let P be a poset and let L : x1, x2, . . . , xr , be a linear extension of P . We

observe that any ordering of P such that the elements of xi come earlier than those

of xj whenever i < j is necessarily a linear extension of P. We say that the linear

extension L of P is blue if for any u,w ∈ P satisfying |[u,w]P | > 2, u ∈ xi and w ∈ xj ,

we can find a k such that

(5.2) v <P w for all v ∈ xk

and

(5.3) i = max{t : xt <P xk}.

Note that in this case it surely holds

(5.4) xi ⋖P xk.

A blue poset is a poset whose quotient poset admits a blue linear extension.

The following lemma contains the main thrust of this note. Like Example 4.8,

it recognizes certain condition under which a set of elements will fall into the same

conjugacy class of IncF (P ). The proof of the lemma makes repeated use of the so-

called elementary combination similarity [2, Fig. 7] which sends an element A ∈

IncF (P ) to TAT
−1 for some transvection T ∈ IncF (P ).

Lemma 5.10. Let P be a blue poset. Let B be the set of functions τ in the strict

incidence algebra of P such that the following hold: (i) τ(u, v) = τ(u′, v) whenever

u ∼ u′ and v /∈ 〈u〉; (ii)
∑
v′∈〈v〉 τ(u, v

′) 6= 0 for every u, v ∈ P satisfying 〈u〉⋖P 〈v〉.

Take f ∈ B and let g be the element in IncF (P ) that agrees with f on {(x, y) ∈

P × P : |[x, y]P | ≤ 2} and vanishes on {(x, y) ∈ P × P : |[x, y]P | ≥ 3}. Then there

is α ∈ IncF (P ) such that g = αfα−1.

Proof. Let Bf be the set of elements of B which are conjugate to f in IncF (P )

and are equal to f when restricted on {(x, y) ∈ P × P : |[x, y]| ≤ 2}. Take a blue

linear extension of P , say x1, . . . , xr.

Suppose the lemma was false. Then for any τ ∈ Bf , we have two well-defined

parameters,

Cτ = min{j : ∃w ∈ xj , ∃u ∈ P, τ(u,w) 6= 0, |[u,w]P | > 2}

and then

Rτ = max{i : ∃u ∈ xi, ∃w ∈ xCτ
, τ(u,w) 6= 0, |[u,w]P | > 2}.
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We now choose η ∈ Bf with (Rη, Cη) = (i, j), where j = maxτ∈Bf
Cτ and

i = minτ∈Bf ,Cτ=j Rτ . To derive a contradiction, it suffices to show that η is conjugate

in IncF (P ) to an element h ∈ Bf with either Ch > j or Ch = j but Rh < i.

Fix any u ∈ xi. Note that |[xi, xj ]P | > 2 and L is blue. Consequently, for each

w ∈ xj with |[u,w]P | > 2, there is an integer k = k(w) for which Eqs. (5.2), (5.3),

and (5.4) are satisfied. In view of η ∈ B and Eq. (5.4), condition (ii) for τ = η says

that the number
∑

v∈xk(w)
η(u, v) takes a nonzero value, which we denote by aw. Let

β =
∏

w∈xj

|[u,w]P |>2

∏

v∈xk(w)

Tvw(
η(u,w)

aw
) ∈ IncF (P )

and let h = βηβ−1. It is not hard to see that h ∈ Bf . Moreover, in view of Eq. (5.3)

for k = k(w), where w ∈ xj and |[u,w]P | > 2, we can check that either Ch > j or

Ch = j but Rh < i, arriving at the desired contradiction.

Remark 5.11. We follow the notation of Lemma 5.10. Let P ′ be a filter of the

given blue poset P and assume that P ′ is a union of some ∼-equivalence classes of

P . A moment’s thought on the proof of Lemma 5.10 says that we can determine the

required α to transform f to g step by step and αP ′ can be constructed totally by

fP ′ and gP ′ .

Like Theorem 5.6, the next lemma furnishes further example of the combinatorial

regularity implied by the nested property.

Lemma 5.12. The nested interval order is a blue poset.

Proof. Let P be a nested interval poset for a linear order Q. Let r = |P | and

take an ordering

L : x1 = 〈y1〉, . . . , xr = 〈yr〉

of P , where yt = [at, bt], t = 1, . . . , r, such that

(5.5) y↑P

ℓ ( y↑P
m implies ℓ > m.

It is clear that L gives rise to a linear extension of P . Our task is to prove that L is

blue. Suppose u ∈ xi and w ∈ xj satisfy |[u,w]P | > 2. Accordingly, we take

(5.6) k = min{t : ∃v ∈ xt, u <P v <P w}

and want to verify Eqs. (5.2) and (5.3). Eq. (5.2) is trivially true. To finish the

proof, we want to derive a contradiction under the assumption that Eq. (5.3) fails,

namely

(5.7) i < h = max{t : xt <P xk}.
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On account of Eq. (5.7), we can assume without loss of generality that

(5.8) yh <P yk,

from which it follows that

(5.9) ah ≤Q bh <Q ak.

By Eqs. (5.5) and (5.7) we can find a number n and with no loss of generality assume

that

(5.10) bi <Q an ≤Q bh.

We obtain from Eq. (5.6) that

(5.11) yi ⋖P yk.

Henceforth, from Eq. (5.8) we see that it is impossible to happen yi <P yh and so,

considering that [ai, bi] and [ah, bh] are nested, Eq. (5.10) implies

(5.12) ah ≤Q ai.

In addition, Eqs. (5.9), (5.10) and (5.12) tell us that ah ≤Q ai ≤Q bi <Q an ≤Q bh <Q
ak. As [an, bn] and [ah, bh] are nested, we get bi <Q an ≤Q bn ≤Q bh <Q ak and hence

yi <P yn <P yk. This leads to a contradiction with Eq. (5.11), as desired.

Proof of Theorem 5.2. This follows from Lemmas 5.10 and 5.12.

Note that Examples 5.7 and 5.8 assert that the nested condition in Theorem

5.2 cannot be dropped. However, we do not find any example yet for which the

characteristic 0 condition cannot be relaxed. Another direction to pursue if to see if

the work reported by Theorem 5.2 can be generalized to nested interval posets of upp

posets. It would be desirable to combine Example 4.11 with Remark 5.11 to shed

some light on the next question.

Question 5.13. Let P be a nested interval poset for a upp poset and F a

characteristic 0 field. Are nP and CP always in the same conjugacy class of IncF (P )?

Do they at least have the same Jordan invariants when viewed as integer matrices?

6. Tensor product constructions. For four matrices A1, A2, B1, and B2, if

A1 and A2 are similar and B1 and B2 are similar, then we surely know that the

tensor product A1 ⊗B1 is similar to A2 ⊗B2. We try to address more simple cases of

Stanley’s problem in this section and the underlying idea can be said to be this fairly

easy observation on tensor product.

Let P be a poset. We write T (P ) and B(P ) for the set of sources and the set of

sinks in Γ(P ), respectively. We call the elements of T (P ) top elements of P and those
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of B(P ) the bottom elements of P . Let M(P ) = P \ (T (P )∪B(P )). For any positive

integer n, the set {1, 2, . . . , n} is denoted by [n]. For any three positive integers n1, n2

and n3, the poset Pn1,n2,n3 has (T (P )× [n1]) ∪ (M(P )× [n2]) ∪ (B(P ) × [n3]) as its

ground set and (u, i) <Pn1,n2,n3 (v, j) if and only if u <P v. Notice that any element

from B(P ) ∩ T (P ) has n1 + n3 copies in Pn1,n2,n3 . Given any f ∈ IncF (P ), the

function fn1,n2,n3 ∈ IncF (P
n1,n2,n3) is specified by fn1,n2,n3((x, i), (y, j)) = f(x, y).

Lemma 6.1. Let f and g be two elements in the strict incidence algebra of a

poset P over a field F . If there is an α ∈ IncF (P ) such that

α(M(P ), T (P )) = 0 and α−1fα = g,

then fn1,n2,n3 and gn1,n2,n3 are conjugate in IncF (P
n1,n2,n3).

Proof. For ease of notation, put Q = Pn1,n2,n3 , fQ = fn1,n2,n3 , gQ = gn1,n2,n3 ,

α−1 = α̂, T = T (P ), B = B(P ), M = M(P ), Ti = T × i, Bi = B × i, Mi = M × i.

Fix any mappings ψ ∈ [n2]
[n1] and define β, β̂ ∈ IncF (Q) by setting





β̂(Bi, Bj) = δ(i, j)α̂B ;

β̂(Bi,Mj) = δ(j, ψ(i))α̂(B,M);

β̂(Bi, Tj) = α̂(B, T );

β̂(Mi,Mj) = δ(i, j)α̂M ;

β̂(Mi, Tj) = 0;

β̂(Ti, Tj) = δ(i, j)α̂T ;





β(Bi, Bj) = δ(i, j)αB;

β(Bi,Mj) = δ(j, ψ(i))α(B,M);

β(Bi, Tj) = α(B, T );

β(Mi,Mj) = δ(i, j)αM ;

β(Mi, Tj) = 0;

β(Ti, Tj) = δ(i, j)αT .

Here are some easily-checked properties of the two functions β and β̂:

> β̂β(Bi, Bj) = δ(i, j)β̂Bi
βBj

= δ(i, j)α̂BαB
= δ(i, j)δBi

;

> β̂β(Bi,Mj) = δ(j, ψ(i))(α̂Bα(B,M) + α̂(B,M)αM )

= δ(j, ψ(i))α̂α(B,M)

= 0;

> β̂β(Bi, Tj) = α̂Bα(B, T ) + α̂(B, T )αT
= α̂α(B, T ) (by α(M,T ) = 0)

= 0;

> β̂β(Mi,Mj) = δ(i, j)α̂MαM
= δ(i, j)α̂α(M,M)

= δ(i, j)δMi
;

> β̂β(Mi, Tj) = β̂Mi
β(Mi, Tj) + β̂(Mi, Tj)βTj

= 0;
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> β̂β(Ti, Tj) = δ(i, j)α̂TαT
= δ(i, j)δTi

.

Combining the above six items enables us to get β̂β = δQ. Thus, to infer that

fQ and gQ are conjugate in IncF (Q), it remains to verify β̂fQβ = gQ. Taking into

consideration that f lies in the strict incidence algebra of P , we have

(6.1) fB = 0, fT = 0, fQ
B×[n3]

= 0, fQ
T×[n1]

= 0.

Now, the final proof is accomplished as follows:

• β̂fQβ(Bi, Bj) = β̂Bi
fQ(Bi, Bj)βBj

= α̂BfBαB
= gB
= gQ(Bi, Bj);

• β̂fQβ(Bi,Mj) = β̂Bi
fQ(Bi,Mj)βMj

+

β̂(Bi,Mψ(i))f
Q(Mψ(i),Mj)βMj

(by Eq. (6.1))

= α̂Bf(B,M)αM + α̂(B,M)fMαM
= α̂fα(B,M) (by Eq. (6.1))

= g(B,M)

= gQ(Bi,Mj);

• β̂fQβ(Bi, Tj) = β̂Bi
fQ(Bi, Tj)βTj

+

β̂(Bi,Mψ(i))f
Q(Mψ(i), Tj)βTj

(by Eq. (6.1))

= α̂Bf(B, T )αT + α̂(B,M)f(M,T )αT
= α̂fα(B, T ) (by Eq. (6.1) and α(M,T ) = 0)

= g(B, T )

= gQ(Bi, Tj);

• β̂fQβ(Mi,Mj) = β̂Mi
fQ(Mi,Mj)βMj

= α̂MfMαM
= gM
= gQ(Mi,Mj);

• β̂fQβ(Mi, Tj) = β̂Mi
fQ(Mi, Tj)βTj

(by Eq. (6.1))

= α̂Mf(M,T )αT
= α̂fα(M,T ) (by Eq. (6.1) and α(M,T ) = 0)

= g(M,T )

= gQ(Mi, Tj);
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• β̂fQβ(Ti, Tj) = β̂Ti
fQ(Ti, Tj)βTj

= α̂T fTαT
= gT
= gQ(Ti, Tj).

We are now ready to show that the characteristic 0 requirement for Example 5.3

is indeed unnecessary.

Corollary 6.2. Let Q be the Bruhat order of the dihedral group of order 2m

for m ≥ 3. Then nQ and CQ are conjugate to each other in IncF (Q) over any field

F .

Proof. Let P be the total order of m+ 1 elements. In view of the nested interval

representation of Q given in Example 5.3, it is clear that Q is just P 1,2,1. Conse-

quently, by taking f = nP and g = CP , the result follows from Example 3.2 and

Lemma 6.1.

Corollary 6.2 is concerned with the Bruhat orders of dihedral groups. Let us

pursue the ideas of its proof and establish a similar result for weak orders instead of

Bruhat orders.

For any three positive integers n1, n2, n3, and any f ∈ IncF (P ), let Q = (T (P )×

[n1])∪(M(P )×[n2])∪(B(T )×[n3]) and let f(n1, n2, n3) be the function on Q×Q that

takes value 0 on {((x, i), (y, j)) : x, y ∈ M(P ), i 6= j} and coincides with fn1,n2,n3

elsewhere. The poset P (n1, n2, n3) is the one satisfying nP (n1,n2,n3) = nP (n1, n2, n3).

The next lemma is a slight modification of Lemma 6.1.

Lemma 6.3. Let f and g be two elements in the strict incidence algebra of a

poset P over a field F . Suppose

f(B(P ), T (P )) = g(B(P ), T (P )) = 0,

and there exists an α′ ∈ IncF (P ) such that

α′−1(B(P ),M(P ))f(M(P ), T (P )) = 0, α′(M(P ), T (P )) = 0 and α′−1fα′ = g.

Then f(n1, n2, n3) and g(n1, n2, n3) are conjugate in IncF (P (n1, n2, n3)).

Proof. Before embarking on the proof, we explain some short-hand notations to be

used for simplicity’s sake: Q = P (n1, n2, n3), f
Q = f(n1, n2, n3), g

Q = g(n1, n2, n3),

α′−1 = α̂′, T = T (P ), B = B(P ), M = M(P ), Ti = T × i, Bi = B × i, Mi = M × i.

In addition, we should note that Eq. (6.1) is still valid in the current situation.

Now, let us start the proof by introducing two functions β, β̂ ∈ IncF (Q) given
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by:





β̂(Bi, Bj) = δ(i, j)α̂′
B ;

β̂(Bi,Mj) = α̂′(B,M);

β̂(Bi, Tj) = α̂′(B, T );

β̂(Mi,Mj) = δ(i, j)α̂′
M ;

β̂(Mi, Tj) = 0;

β̂(Ti, Tj) = δ(i, j)α̂′
T ;





β(Bi, Bj) = δ(i, j)α′
B;

β(Bi,Mj) = α′(B,M);

β(Bi, Tj) = α′(B, T );

β(Mi,Mj) = δ(i, j)α′
M ;

β(Mi, Tj) = 0;

β(Ti, Tj) = δ(i, j)α′
T .

We can check that β̂β = δQ :

> β̂β(Bi, Bj) = δ(i, j)α̂′(Bi, Bi)α
′(Bj , Bj)

= δ(i, j)α̂′
Bα

′
B

= δ(i, j)δBi
;

> β̂β(Bi,Mj) = α̂′
Bα

′(B,M) + α̂′(B,M)α′
M

= α̂′α′(B,M)

= 0;

> β̂β(Bi, Tj) = β̂Bi
β(Bi, Tj) + β̂(Bi, Tj)βTj

= α̂′
Bα

′(B, T ) + α̂′(B, T )α′
T

= α̂′α′(B, T ) (by α′(M,T ) = 0)

= 0;

> β̂β(Mi,Mj) = δ(i, j)β̂Mi
βMj

= δ(i, j)α̂′
Mα

′
M

= δ(i, j)α̂′α′(M,M)

= δ(i, j)δMi
;

> β̂β(Mi, Tj) = β̂Mi
β(Mi, Tj) + β̂(Mi, Tj)βTj

= 0;

> β̂β(Ti, Tj) = δ(i, j)β̂Ti
βTj

= δ(i, j)α̂′
Tα

′
T

= δ(i, j)δTi
.

To complete the proof, it then suffices to verify β̂fQβ = gQ in the following six

steps:

• β̂fQβ(Bi, Bj) = β̂Bi
fQ(Bi, Bj)βBj

= α̂′
BfBα

′
B

= gB
= gQ(Bi, Bj);
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• β̂fQβ(Bi,Mj) = β̂Bi
fQ(Bi,Mj)βMj

+

β̂(Bi,Mj)f
Q(Mj ,Mj)βMj

(by Eq. (6.1))

= α̂′
Bf(B,M)α′

M + α̂′(B,M)fMα
′
M

= g(B,M) (by Eq. (6.1))

= gQ(Bi,Mj);

• β̂fQβ(Bi, Tj) = β̂Bi
fQ(Bi, Tj)βTj

+∑
k β̂(Bi,Mk)f

Q(Mk, Tj)βTj
(by Eq. (6.1))

=
∑

k α̂
′(B,M)f(M,T )α′

T (by f(B, T ) = 0)

= 0 (by α̂′(B,M)f(M,T ) = 0)

= g(B, T )

= gQ(Bi, Tj);

• β̂fQβ(Mi,Mj) = β̂Mi
fQ(Mi,Mj)βMj

= δ(i, j)α̂′
MfMα

′
M

= δ(i, j)gM
= gQ(Mi,Mj);

• β̂fQβ(Mi, Tj) = β̂Mi
fQ(Mi, Tj)βTj

(by Eq. (6.1))

= α̂′
Mf(M,T )α′

T

= g(M,T ) (by Eq. (6.1) and α′(M,T ) = 0)

= gQ(Mi, Tj);

• β̂fQβ(Ti, Tj) = β̂Ti
fQ(Ti, Tj)βTj

= α̂′
T fTα

′
T

= gT
= gQ(Ti, Tj).

Corollary 6.4. Let Q be the weak order of the dihedral group of order 2m,

m ≥ 3. Then nQ and CQ are conjugate to each other in IncF (Q) over any field F .

Proof. Let P be the total order of m+ 1 elements, say 1 < 2 < · · · < m+1. It is

not difficult to find that Q is just P (1, 2, 1). Let x be the unique bottom element of Q

and y be one of the two elements which are covered by the unique top element of Q.

Let n = m+1 and put α′ = T1,n−1(−1)T (n−1) · · ·T (2), where T (j), j = 2, . . . , n−1,

are defined in Eq. (3.1). A closer look on Example 3.2 says that we can apply Lemma

6.3 for f = T1,n−1(−1)nPT1,n−1(1), g = CP , and the above-mentioned α′, to conclude

that g(1, 2, 1) = CQ is conjugate to f(1, 2, 1) = Txy(−1)nQTxy(1), and therefore the

claim follows.

Corollaries 6.2 and 6.4 are about the Bruhat orders and the weak orders, re-

spectively, of types I2(m),m ≥ 3. These, together with the sporadic observations in

Example 4.12, suggest that it may serve to further exploit other Bruhat orders and
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weak orders of Coxeter groups and see if their incidence matrices and cover matrices

are always conjugate to each other in the corresponding incidence algebras. To this

end, a good knowledge of the structure of these posets may be crucial. We close

this paper by noting that a detailed description of the underlying graph of the Hasse

diagrams of the weak orders of the Coxeter groups of types Bn and Ã2 can be found

in [15].
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