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ON AN EQUALITY AND FOUR INEQUALITIES FOR

GENERALIZED INVERSES OF HERMITIAN MATRICES∗
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Abstract. A Hermitian matrix X is called a g-inverse of a Hermitian matrix A, denoted by A−,

if it satisfies AXA = A. In this paper, a group of explicit formulas are established for calculating

the global maximum and minimum ranks and inertias of the difference A− − PN−P ∗, where both

A− and N− are Hermitian g-inverses of two Hermitian matrices A and N , respectively. As a

consequence, necessary and sufficient conditions are derived for the matrix equality A− = PN−P ∗

to hold, and the four matrix inequalities A− > (≥, <, ≤) PN−P ∗ in the Löwner partial ordering to

hold, respectively. In addition, necessary and sufficient conditions are established for the Hermitian

matrix equality A† = PN†P ∗ to hold, and the four Hermitian matrix inequalities A† > (≥, <

, ≤) PN†P ∗ to hold, respectively, where (·)† denotes the Moore-Penrose inverse of a matrix. As

applications, identifying conditions are given for the additive decomposition of a Hermitian g-inverse

C− = A− + B− (parallel sum of two Hermitian matrices) to hold, as well as the four matrix

inequalities C− > (≥, <, ≤) A− + B− in the Löwner partial ordering to hold, respectively.
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Parallel sum of matrices, Shorted matrix.

AMS subject classifications. 15A03, 15A09, 15A24, 15B57, 65K10, 65K15.

1. Introduction. Throughout this paper, Cm×n and Cm
H denote the collections

of all m×n complex matrices and all m×m complex Hermitian matrices, respectively.

The symbols A∗, r(A) and R(A) stand for the conjugate transpose, rank and range

(column space) of a complex matrix A, respectively; Im denotes the identity matrix of

order m; [ A, B ] denotes a partitioned matrix consisting of A and B. Two Hermitian

matrices A and B of the same size are said to be congruent if there is an invertible

matrix S such that SAS∗ = B. For an A ∈ Cm
H , we write A > 0 (A ≥ 0) if A

is positive definite (nonnegative definite). Two A, B ∈ Cm
H are said to satisfy the

inequality A > B (A ≥ B) in the Löwner partial ordering if A−B is positive definite

(nonnegative definite). The Moore-Penrose inverse of A ∈ Cm×n, denoted by A†, is

defined to be the unique solution X of the following four matrix equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.
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Further, define EA = Im − AA† and FA = In − A†A. A well-known property of the

Moore-Penrose inverse is (A†)∗ = (A∗)†. In addition, AA† = A†A if A = A∗. We

shall repeatedly use these facts in the latter part of this paper. A matrix X is called

a Hermitian g-inverse of A ∈ Cm
H , denoted by A−, if it satisfies

AXA = A and X = X∗.

The collection of all possible Hermitian g-inverses of A ∈ Cm
H is denoted by {A−}.

It is well known that the eigenvalues of a Hermitian matrix A ∈ Cm
H are all real,

and the inertia of A is defined to be the triplet

In(A) = ( i+(A), i−(A), i0(A) ),

where i+(A), i−(A) and i0(A) are the numbers of the positive, negative and zero

eigenvalues of A counted with multiplicities, respectively. Both i+(A) and i−(A),

usually called the partial inertia, can easily be computed by elementary congruence

matrix operations. For a Hermitian matrix A ∈ Cm
H , both r(A) = i+(A) + i−(A) and

i0(A) = m − r(A) hold.

The objective of this paper is to address the following problem:

Problem 1.1. For three given matrices A ∈ Cm
H , N ∈ Cn

H and P ∈ Cm×n, es-

tablish formulas for calculating the global maximum and minimum ranks and inertias

of the difference A−−PN−P ∗, where A− and N− are Hermitian g-inverses of A and

N , and use the formulas to derive necessary and sufficient conditions for the following

matrix equality and inequalities






A− = PN−P ∗,

A− > PN−P ∗, A− ≥ PN−P ∗,

A− < PN−P ∗, A− ≤ PN−P ∗

(1.1)

to hold, respectively.

Matrix equalities and inequalities with symmetric patterns that involve general-

ized inverses occur widely in matrix theory and applications. These equalities and

inequalities can generally be formulated as

{
p(A−

1 , . . . , A−
s ) = q(B−

1 , . . . , B−
t ),

p(A−
1 , . . . , A−

s ) > (≥, <, ≤) q(B−
1 , . . . , B−

t ),
(1.2)

where A−
1 , . . . , A−

s and B−
1 , . . . , B−

t are (Hermitian) g-inverses of matrices. One of the

fundamental and challenging research topics in the theory of generalized inverses is

to establish necessary and sufficient conditions for these equalities and inequalities to

hold. Obviously, (1.1) is a group of simplest forms of (1.2), while the equality A− =
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N− and inequality A− > (≥, <, ≤)N− for g-inverses of two Hermitian matrices,

the additive decomposition C− = A− + B− and the inequalities C− > (≥, <, ≤

)A− + B−, and the reverse-order law (PNP ∗)− = (P †)∗N−P † and the inequalities

(PNP ∗)− > (≥, <, ≤) (P †)∗N−P †, etc., are special cases of (1.1) as well.

In a recent paper [14], Liu and Tian considered the rank and inertia of the well-

known Schur complement D−B∗A−B, where both A and D are Hermitian and A− is

a Hermitian g-inverse of A, and obtained a group of explicit formulas for calculating

the maximum and minimum ranks and inertias of D − B∗A−B with respect to the

choice of A−. In this paper, we shall use these rank and inertia formulas to solve

Problem 1.1. As applications, we also derive necessary and sufficient conditions for

the following matrix equality and inequalities





C− = A− + B−,

C− > A− + B−, C− ≥ A− + B−,

C− < A− + B−, C− ≤ A− + B−

(1.3)

to hold, respectively, and consider their extensions to the sum of k matrices.

The following are some simple or well-known facts and formulas for ranks and

inertias of matrices and their consequences (see [32, 33] for their references), which

will be used in the latter part of this paper.

Lemma 1.2. Let S be a subset in Cm×n, and H be a subset in Cm
H . Then,

(a) Under m = n, S has a nonsingular matrix if and only if maxX∈S r(X) = m.

(b) Under m = n, all X ∈ S are nonsingular if and only if minX∈S r(X) = m.

(c) 0 ∈ S if and only if minX∈S r(X) = 0.

(d) S = {0} if and only if maxX∈S r(X) = 0.

(e) H has a matrix X > 0 (X < 0) if and only if

max
X∈H

i+(X) = m

(
max
X∈H

i−(X) = m

)
.

(f) All X ∈ H satisfy X > 0 (X < 0) if and only if

min
X∈H

i+(X) = m

(
min
X∈H

i−(X) = m

)
.

(g) H has a matrix X ≥ 0 (X ≤ 0) if and only if

min
X∈H

i−(X) = 0

(
min
X∈H

i+(X) = 0

)
.

(h) All X ∈ H satisfy X ≥ 0 (X ≤ 0) if and only if

max
X∈H

i−(X) = 0

(
max
X∈H

i+(X) = 0

)
.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 11-42, January 2012



ELA

14 Y. Tian

Lemma 1.3. Let A ∈ Cm
H , B ∈ Cn

H, Q ∈ Cm×n, and assume that P ∈ Cm×m is

nonsingular. Then,

i±(PAP ∗) = i±(A),(1.4)

A(A3)†A = A†, r(A3) = r(A),(1.5)

i±(A3) = i±(A), i±(A†) = i±(A),(1.6)

i±(λA) =

{
i±(A) if λ > 0

i∓(A) if λ < 0
,(1.7)

i±

[
A 0

0 B

]
= i±(A) + i±(B),(1.8)

i+

[
0 Q

Q∗ 0

]
= i−

[
0 Q

Q∗ 0

]
= r(Q).(1.9)

Lemma 1.4. Let A ∈ Cm
H , B ∈ Cn

H, and P, Q ∈ Cm×n. Then,

i±(P ∗AP ) ≤ i±(A).(1.10)

In particular,

(a) r(P ∗AP ) = r(A) if and only if i+(P ∗AP ) = i+(A) and i−(P ∗AP ) = i−(A).

(b) If P ∗AP = B and QBQ∗ = A, then i±(A) = i±(B) and r(A) = r(B).

The two inequalities in (1.10) were first given in [25]; Theorem 1.4(a) and (b)

were given in [32, Lemma 1.6].

Lemma 1.5 ([16]). Let A ∈ Cm×n, B ∈ Cm×n and C ∈ Cl×n. Then, the

following rank expansion formulas hold

r[ A, B ] = r(A) + r(EAB) = r(B) + r(EBA),(1.11)

r

[
A

C

]
= r(A) + r(CFA) = r(C) + r(AFC),(1.12)

r

[
A B

C 0

]
= r(B) + r(C) + r(EBAFC).(1.13)

Lemma 1.6 ([32]). Let M1 =

[
A B

B∗ 0

]
and M2 =

[
A B

B∗ D

]
, where A ∈ Cm

H ,

B ∈ Cm×n and D ∈ Cn
H. Then, the following inertia expansion formulas

i+(M1) = r(B) + i+(EBAEB), i−(M1) = r(B) + i−(EBAEB),(1.14)

i±(M2) = i±(A) + i±

[
0 EAB

B∗EA D − B∗A†B

]
(1.15)
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hold. In particular,

(a) If A ≥ 0, then

i+(M1) = r[ A, B ], i−(M1) = r(B).(1.16)

(b) If A ≤ 0, then

i+(M1) = r(B), i−(M1) = r[ A, B ].(1.17)

(c) If R(B) ⊆ R(A), then

i±(M2) = i±(A) + i±(D − B∗A†B ).(1.18)

(d) r(M2) = r(A) ⇔ r[ A, B ] = r(A) and D = B∗A†B.

Let A ∈ C
m
H . Then, the general expression for the Hermitian g-inverse of A can

be written as

A− = A† + FAV + V ∗FA,(1.19)

where V ∈ Cm×m is arbitrary (see, e.g., [32]). For a partitioned Hermitian matrix

M =

[
A B

B∗ D

]
,

where A ∈ Cm
H and D ∈ Cn

H, the well-known Hermitian Schur complement of A in M

is defined by

D − B∗A−B.(1.20)

This expression usually occurs in some decompositions of M that involve generalized

inverses. The special case D−B∗A†B, as well as D−B∗A−1B when A is nonsingular,

was extensively studied in the literature. In particular, some expansion formulas

calculating for the rank and inertia of B∗A−B and D − B∗A−1B can be found,

e.g., in [5, 7, 8, 9, 10, 15, 26, 32, 38, 39]. Because the Hermitian g-inverse A− is

not necessarily unique, D − B∗A−B may vary with respect to the choice of A−.

Substituting the general expression of A− in (1.19) into (1.20) yields

D − B∗A−B = D − B∗A†B − B∗FAV B − B∗V ∗FAB,(1.21)

which means that (1.20) is in fact a Hermitian matrix function with a variable matrix

V and its conjugate transpose. It is easily seen from (1.21) that

D − B∗A−B is unique ⇔ R(B) ⊆ R(A).(1.22)
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Concerning the global maximum and minimum ranks and inertias of (1.20), Liu

and Tian [14] recently gave the following expansion formulas.

Theorem 1.7 ([14]). Let A ∈ Cm
H , B ∈ Cm×n and D ∈ Cn

H, and let M =[
A B

B∗ D

]
and N =

[
A 0 B

0 B∗ D

]
. Then,

max
A−

r(D − B∗A−B ) = min {r[ B∗, D ], r(M) − r(A)},(1.23)

min
A−

r(D − B∗A−B ) = r(A) + 2r[ B∗, D ] + r(M) − 2r(N),(1.24)

max
A−

i±(D − B∗A−B ) = i±(M) − i±(A),(1.25)

min
A−

i±(D − B∗A−B ) = i∓(A) + r[ B∗, D ] + i±(M) − r(N).(1.26)

Corollary 1.8. Let A, D ∈ Cm
H , and let M =

[
A Im

Im D

]
. Then,

max
A−

r(D − A− ) = min{m, r(M) − r(A) },(1.27)

min
A−

r(D − A− ) = r(A) + r(M) − 2m,(1.28)

max
A−

i±(D − A− ) = i±(M) − i±(A),(1.29)

min
A−

i±(D − A− ) = i∓(A) + i±(M) − m.(1.30)

2. The rank of A− − PN−P ∗ and the equality A− = PN−P ∗. In a recent

paper [35], Tian and Styan gave some closed-form formulas for calculating the maxi-

mum and minimum ranks of the difference A−−PN−Q, where A ∈ Cm×n, N ∈ Cl×k,

P ∈ C
n×k and Q ∈ C

l×m are given, and used these formulas to derive necessary and

sufficient conditions for the matrix equality A− = PN−Q to hold in different settings.

As a continuation, we consider in this section the following matrix equality

A− = PN−P ∗(2.1)

for the Hermitian g-inverses A− and N−, where A ∈ Cm
H , N ∈ Cn

H and P ∈ Cm×n

are given. Note that the two Hermitian g-inverses A− and N− are not necessarily

unique. Therefore, we can classify (2.1) as the following four reasonable cases:

{A−}∩{PN−P ∗} 6= ∅, {A−} ⊆ {PN−P ∗}, {A−} ⊇ {PN−P ∗}, {A−} = {PN−P ∗}.

In what follows, we first derive a group of formulas for calculating the global maximum

and minimum ranks of A−−PN−P ∗ with respect to A− and N−. We then use these
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formulas to derive necessary and sufficient conditions for the above four assertions to

hold, respectively.

Theorem 2.1. Let A ∈ Cm
H , N ∈ Cn

H and P ∈ Cm×n. Then,

max
N−

r(A − APN−P ∗A ) = min{ r(A), r(N − P ∗AP ) + r(A) − r(N) },(2.2)

min
N−

r(A − APN−P ∗A ) = r(N − P ∗AP ) + r(A) + r(N) − 2r[ N, P ∗AP ].(2.3)

As a consequence,

(a) {A−} ∩ {PN−P ∗} 6= ∅ ⇔ r(N − P ∗AP ) = 2r[ N, P ∗AP ] − r(A) − r(N).

(b) {PN−P ∗} ⊆ {A−} ⇔ r(N − P ∗AP ) = r(N) − r(A).

Proof. It can be seen from the definition of Hermitian g-inverse of a matrix that

(i) There exists an N− such that PN−P ∗ ∈ {A−} if and only if APN−P ∗A = A,

or equivalently by the rank of matrix, min
N−

r(A − APN−P ∗A ) = 0.

(ii) {PN−P ∗} ⊆ {A−} if and only if APN−P ∗A = A for any N−, or equivalently,

by the rank of matrix max
N−

r(A − APN−P ∗A ) = 0.

Applying (1.23) and (1.24) to A − APN−P ∗A and simplifying by elementary

matrix operations, we obtain

max
N−

r(A − APN−P ∗A )(2.4)

= min

{
r[ AP, A ], r

[
N P ∗A

AP A

]
− r(N)

}

= min{ r(A), r(N − P ∗AP ) + r(A) − r(N) },

min
N−

r(A − APN−P ∗A )(2.5)

= r(N) + 2r[ AP, A ] + r

[
N P ∗A

AP A

]
− 2r

[
N 0 P ∗A

0 AP A

]

= r(N − P ∗AP ) + r(A) + r(N) − 2r[ N, P ∗AP ],

establishing (2.2) and (2.3). Setting the right-hand sides of (2.2) and (2.3) to zero

leads to (a) and (b), respectively.

Setting N = P ∗AP in Theorem 2.1 leads to the following consequence.

Corollary 2.2. Let A ∈ Cm
H and P ∈ Cm×n. Then,

(a) The rank of A − AP (P ∗AP )−P ∗A is invariant with respect to the choice of

(P ∗AP )−.

(b) {P (P ∗AP )−P ∗} ⊆ {A−} if and only if r(P ∗AP ) = r(A).
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Proof. Setting N = P ∗AP in (2.2) and (2.3) yields the following result,

max
(P∗AP )−

r[ A − AP (P ∗AP )−P ∗A ] = min
(P∗AP )−

r[ A − AP (P ∗AP )−P ∗A ]

= r(A) − r(P ∗AP ).

Then, (a) and (b) follow, respectively.

The rank subtractivity equality for a pair of matrices A and B of the same order

is defined by r(B − A ) = r(B) − r(A). This relation is usually called a minus

partial ordering and is denoted by A ≤− B. A well-known rank subtractivity equality

associated with the difference A − AP (P ∗AP )−P ∗A is

r[ A − AP (P ∗AP )−P ∗A ] = r(A) − r[AP (P ∗AP )−P ∗A];(2.6)

see [6, 26, 28, 29]. It can be derived from (1.23) and (1.24) that

max
(P∗AP )−

r[AP (P ∗AP )−P ∗A] = 2r(AP ) − r(P ∗AP ),(2.7)

min
(P∗AP )−

r[AP (P ∗AP )−P ∗A] = r(P ∗AP ).(2.8)

Combining (2.6), (2.7) and (2.8) leads to the following result.

Corollary 2.3. Let A ∈ Cm
H and P ∈ Cm×n. Then, there exists a (P ∗AP )−

such that (2.6) holds if and only if r(P ∗AP ) = r(AP ). As a consequence, (2.6) holds

for any (P ∗AP )−.

In order to derive necessary and sufficient conditions for the set inclusion {A−} ⊆

{PN−P ∗} to hold, we assume that P has full row rank because the maximum rank

of A− is equal to the size of A. It is obvious that {A−} ⊆ {PN−P ∗} is equivalent to

max
A−

min
N−

r(A− − PN−P ∗ ) = 0.

Applying (1.23) and (1.24) to A− − PN−P ∗ gives the following result.

Theorem 2.4. Let A ∈ Cm
H , N ∈ Cn

H and P ∈ Cm×n be given with r(P ) = m.

Then,

max
A−

min
N−

r(A− − PN−P ∗ ) = min{m + r(N) − r[ N, P ∗ ],(2.9)

2m + r(N − P ∗AP ) + r(N) − r(A) − 2r[ N, P ∗ ] }.

As a consequence, the set inclusion {A−} ⊆ {PN−P ∗} holds if and only if

R(N) ∩ R(P ∗) = {0} or r(N − P ∗AP ) = 2r[ N, P ∗ ] − r(N) + r(A) − 2m.(2.10)
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Proof. Under the given conditions, applying (1.24) to A− − PN−P ∗ gives

min
N−

r(A− − PN−P ∗ ) = r(N) + 2r[ P, A− ] + r

[
N P ∗

P A−

]
− 2r

[
N 0 P ∗

0 P A−

]

= r(N) − 2r[ N, P ∗ ] + r

[
N P ∗

P A−

]
,

so that

max
A−

min
N−

r(A− − PN−P ∗ ) = r(N) − 2r[ N, P ∗ ] + max
A−

r

[
N P ∗

P A−

]
.(2.11)

Further, applying (1.23) and simplifying by elementary matrix operations, we obtain

max
A−

r

[
N P ∗

P A−

]
= max

A−

r

([
N P ∗

P 0

]
+

[
0

Im

]
A− [0, Im]

)
(2.12)

= min




r

[
N P ∗ 0

P 0 Im

]
, r




−A 0 Im

0 N P ∗

Im P 0



 − r(A)






= min {m + r[ N, P ∗ ], r(N − P ∗AP ) − r(A) + 2m } .

Combining (2.11) and (2.12) yields (2.9). Setting the right-hand of (2.9) to zero yields

(2.10).

Note that the first condition in (2.10) has no relation with A. Also note that

{A−} = Cm
H for A = 0. This implies {PN−P ∗} = Cm

H under first condition in (2.10).

Conversely, if {PN−P ∗} = C
m
H , then {PN−P ∗} = {0−}. In this case, applying

Theorem 2.4 leads to the first condition in (2.10). Thus, the first condition in (2.10)

is a necessary and sufficient condition such that {PN−P ∗} = Cm
H . In what follows,

we assume that

R(N) ∩ R(P ∗) 6= {0}.(2.13)

Theorem 2.5. Let A ∈ Cm
H , N ∈ Cn

H and P ∈ Cm×n be given with r(P ) = m.

Then,

{A−} = {PN−P ∗}(2.14)

if and only if

r

[
N P ∗

P 0

]
= r[ N, P ∗ ] + r(P ) and A = −[ 0, Im ]

[
N P ∗

P 0

]−[
0

Im

]
.(2.15)

In this case,

r(A) = dim[ R(N) ∩ R(P ∗) ].(2.16)
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Proof. Suppose first that (2.14) holds. Then, this implies that

min
A−

r(A−) = min
N−

r(PN−P ∗).(2.17)

It can be derived from (1.24) that

min
A−

r(A−) = r(A) and min
N−

r(PN−P ∗) = r(N) − 2r[ N, P ∗ ] + r

[
N P ∗

P 0

]
.

Substituting these two equalities into (2.17) yields

r(A) = r(N) − 2r[ N, P ∗ ] + r

[
N P ∗

P 0

]
.(2.18)

On the other hand, (2.14) implies {A−} ⊆ {PN−P ∗}. Thus, the second condition in

(2.10) holds. Substituting (2.18) into the second condition in (2.10) gives

r(N − P ∗AP ) = r

[
N P ∗

P 0

]
− 2m,(2.19)

which is equivalent to

r




N P ∗ 0

P 0 Im

0 Im −A



 = r

[
N P ∗

P 0

]
.(2.20)

Applying Lemma 1.6(d) to (2.20) gives (2.15). Substituting the first rank equality in

(2.15) into (2.18) results in (2.16).

Conversely, if (2.15) holds, we can see from Lemma 1.6(d) that (2.20), or equiva-

lently, (2.19) holds. Combining the first rank equality in (2.15), (2.16) and (2.19), we

see that N −P ∗AP satisfies r(N −P ∗AP ) = r(N)−r(A) and the second rank equal-

ity in (2.10). This means by Theorems 2.1(b) and 2.4 that both {A−} ⊆ {PN−P ∗}

and {A−} ⊇ {PN−P ∗} hold. Thus, the set equality in (2.14) holds.

It can be seen from (2.15) that the set equality in (2.14) is characterized by a

rank additivity condition and a Hermitian g-inverse of the bordered matrix consisting

of N and P . It is obvious that the rank additivity condition is easy to satisfy, for

example,

(i) If

[
N P ∗

P 0

]
is nonsingular, then the first rank equality in (2.15) holds.

(ii) If N is nonnegative definite, then the first rank equality in (2.15) holds.
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In particular, we have the following result.

Corollary 2.6. Let N ∈ Cn
H, and assume that P ∈ Cn×n is nonsingular. Then,

the set equality {(PNP ∗)−} = {(P−1)∗N−P−1} holds.

Corollary 2.7. Let A, B ∈ Cm
H . Then, {A−} = {B−} if and only if A = B.

3. The inertia of A−−PN−P ∗ and the inequalities A− > (≥, <,≤)PN−P ∗.

In this section, we establish a group of formulas for calculating the extremum inertias

of the difference A−−PN−P ∗, and then use the formulas to characterize the following

four inequalities

A− > PN−P ∗, A− ≥ PN−P ∗, A− < PN−P ∗, A− ≤ PN−P ∗,(3.1)

where A ∈ Cm
H , N ∈ Cn

H and P ∈ Cm×n are given.

Theorem 3.1. Let A ∈ C
m
H , N ∈ C

n
H and P ∈ C

m×n. Then,

max
A−, N−

i±(A− − PN−P ∗ ) = m + i∓(P ∗AP − N ) − i∓(A) − i±(N),(3.2)

min
A−, N−

i±(A− − PN−P ∗ ) = i∓(P ∗AP − N ) + i±(A)(3.3)

+ i∓(N) − r[ P ∗AP, N ],

max
N−

min
A−

i±(A− − PN−P ∗ ) = i∓(P ∗AP − N ) + i±(A) − i±(N),(3.4)

min
N−

max
A−

i±(A− − PN−P ∗ ) = m + i∓(P ∗AP − N ) + i∓(N)(3.5)

− r[ P ∗AP, N ] − i∓(A).

As a consequence,

(a) There exist A− and N− such that A− > PN−P ∗ (A− < PN−P ∗ ) if and

only if

i−(P ∗AP − N ) = i−(A) + i+(N) ( i+(P ∗AP − N ) = i+(A) + i−(N) ) .(3.6)

(b) A− > PN−P ∗ (A− < PN−P ∗ ) for all A− and N− if and only if

i−(P ∗AP − N ) = r[ P ∗AP, N ] − i+(A) − i−(N) + m(3.7)

( i+(P ∗AP − N ) = r[ P ∗AP, N ] − i−(A) − i+(N) + m ).(3.8)

(c) There exist A− and N− such that A− ≥ PN−P ∗ (A− ≤ PN−P ∗ ) if and

only if

i+(P ∗AP − N ) = r[ P ∗AP, N ] − i−(A) − i+(N)(3.9)

( i−(P ∗AP − N ) = r[ P ∗AP, N ] − i+(A) − i−(N) ).(3.10)
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(d) A− ≥ PN−P ∗ (A− ≤ PN−P ∗ ) for all A− and N− if and only if

i+(P ∗AP − N ) = i+(A) + i−(N) − m(3.11)

( i−(P ∗AP − N ) = i−(A) + i+(N) − m ) .(3.12)

(e) For any N−, there exists an A− such that A− > PN−P ∗ (A− < PN−P ∗ )

if and only if

i−(P ∗AP − N ) = r[ P ∗AP, N ] + i−(A) − i−(N)(3.13)

( i+(P ∗AP − N ) = r[ P ∗AP, N ] + i+(A) − i+(N) ) .(3.14)

(f) For any N−, there exists an A− such that A− ≥ PN−P ∗ (A− ≤ PN−P ∗ )

if and only if

i−(N − P ∗AP ) = i−(N) − i−(A) ( i+(N − P ∗AP ) = i+(N) − i+(A) ) .(3.15)

Proof. Note from Lemma 1.2 that there exist A− and PN−P ∗ such that A− >

PN−P ∗ (A− < PN−P ∗ ) if and only if

max
A−, N−

i+(A− − PN−P ∗ ) = m

(
max

A−, N−

i−(A− − PN−P ∗ ) = m

)
;(3.16)

A− > PN−P ∗ (A− < PN−P ∗ ) for all A− and N− if and only if

min
A−, N−

i+(A− − PN−P ∗ ) = m

(
min

A−, N−

i−(A− − PN−P ∗ ) = m

)
;(3.17)

there exist A− and PN−P ∗ such that A− ≥ PN−P ∗ (A− ≤ PN−P ∗ ) if and only if

min
A−, N−

i−(A− − PN−P ∗ ) = 0

(
min

A−, N−

i+(A− − PN−P ∗ ) = 0

)
;(3.18)

A− ≥ PN−P ∗ (A− ≤ PN−P ∗ ) for all A− and N− if and only if

max
A−, N−

i−(A− − PN−P ∗ ) = 0

(
max

A−, N−

i+(A− − PN−P ∗ ) = 0

)
;(3.19)

for any N−, there exists an A− such that A− > PN−P ∗ (A− < PN−P ∗ ) if and

only if

min
N−

max
A−

i+(A− − PN−P ∗ ) = m

(
min
N−

max
A−

i−(A− − PN−P ∗ ) = m

)
;(3.20)
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for any N−, there exists an A− such that A− ≥ PN−P ∗ (A− ≤ PN−P ∗ ) if and

only if

max
N−

min
A−

i−(A− − PN−P ∗ ) = 0

(
max
N−

min
A−

i+(A− − PN−P ∗ ) = 0

)
.(3.21)

Applying (1.29) and (1.30) gives

max
A−

i±(A− − PN−P ∗ ) = i∓(M) − i∓(A),(3.22)

min
A−

i±(A− − PN−P ∗ ) = i∓(M) + i±(A) − m,(3.23)

where

M =

[
A Im

Im PN−P ∗

]
=

[
A Im

Im 0

]
+

[
0

P

]
N−[ 0, P ∗ ].(3.24)

Applying (1.25) and (1.26) to the M and simplifying by elementary matrix operations

and congruence matrix operations, and (1.15), we obtain

max
N−

i±(M) = max
N−

i±

([
A Im

Im 0

]
+

[
0

P

]
N−[ 0, P ∗ ]

)
(3.25)

= i±




−N 0 P ∗

0 A Im

P Im 0



 − i∓(N)

= i±




P ∗AP − N 0 0

0 0 Im

0 Im 0



 − i∓(N)

= m + i±(P ∗AP − N ) − i∓(N),

min
N−

i±(M) = min
N−

i±

([
A Im

Im 0

]
+

[
0

P

]
N−[ 0, P ∗ ]

)
(3.26)

= i±(N) + i±




−N 0 P ∗

0 A Im

P Im 0



 + r

[
0 A Im

P Im 0

]

− r




−N 0 0 P ∗

0 0 A Im

0 P Im 0





= m + i±(P ∗AP − N ) + i±(N) − r[ P ∗AP, N ].

Substituting (3.25) and (3.26) into (3.22) and (3.23) gives (3.2)–(3.5). Setting the

right-hand sides of (3.2)–(3.5) to zero leads to the results in (a)–(f).

Corollary 3.2. Let 0 ≤ A ∈ Cm
H , 0 ≤ N ∈ Cn

H and P ∈ Cm×n. Then,
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(a) There exist A− and N− such that A− > PN−P ∗ (A− < PN−P ∗ ) if and

only if

i−(P ∗AP − N ) = r(N) ( i+(P ∗AP − N ) = r(A) ) .(3.27)

(b) A− > PN−P ∗ (A− < PN−P ∗ ) for all A− and N− if and only if

i−(P ∗AP − N ) = r[ P ∗A, N ] − r(A) + m(3.28)

( i+(P ∗AP − N ) = r[ P ∗A, N ] − r(N) + m ) .(3.29)

(c) There exist A− and N− such that A− ≥ PN−P ∗ (A− ≤ PN−P ∗ ) if and

only if

i+(P ∗AP − N ) = r[ P ∗A, N ] − r(N)(3.30)

( i−(P ∗AP − N ) = r[ P ∗A, N ] − r(A) ) .(3.31)

(d) A− ≥ PN−P ∗ (A− ≤ PN−P ∗ ) for all A− and N− if and only if

i+(P ∗AP − N ) = r(A) − m ( i−(P ∗AP − N ) = r(N) − m ) .(3.32)

(e) For any N−, there exists an A− such that A− > PN−P ∗ (A− < PN−P ∗ )

if and only if

N ≥ P ∗AP and r(P ∗AP − N ) = r[ P ∗AP, N ](3.33)

( i+(P ∗AP − N ) = r[ P ∗AP, N ] + r(A) − r(N) ) .(3.34)

(f) For any N−, there exists an A− such that A− ≥ PN−P ∗ (A− ≤ PN−P ∗ )

if and only if

N ≥ P ∗AP ( i+(N − P ∗AP ) = r(N) − r(A) ) .(3.35)

Setting N = P ∗AP in Theorem 3.1 leads to the following consequence.

Corollary 3.3. Let A ∈ Cm
H and P ∈ Cm×n. Then,

(a) The following statements are equivalent:

(i) There exist A− and (P ∗AP )− such that

A− > P (P ∗AP )−P ∗
(
A− < P (P ∗AP )−P ∗

)
.
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(ii) For any (P ∗AP )−, there exists an A− such that

A− > P (P ∗AP )−P ∗ (A− < P
(
P ∗AP )−P ∗

)
.

(iii) A ≥ 0 and AP = 0 (A ≤ 0 and AP = 0 ).

(b) The following statements are equivalent:

(i) There exist A− and (P ∗AP )− such that

A− ≥ P (P ∗AP )−P ∗
(
A− ≤ P (P ∗AP )−P ∗

)
.

(ii) For any (P ∗AP )−, there exists an A− such that

A− ≥ P (P ∗AP )−P ∗
(
A− ≤ P (P ∗AP )−P ∗

)
.

(iii) i−(P ∗AP ) = i−(A) ( i+(P ∗AP ) = i+(A) ).

(c) A− > P (P ∗AP )−P ∗ (A− < P (P ∗AP )−P ∗ ) for all A− and (P ∗AP )− if and

only if A > 0 and P = 0 (A < 0 and P = 0 ).

(d) A− ≥ P (P ∗AP )−P ∗ (A− ≤ P (P ∗AP )−P ∗ ) for all A− and (P ∗AP )− if and

only if i+(A) + i−(P ∗AP ) = m ( i−(A) + i+(P ∗AP ) = m ).

The partial inertia of difference of two Hermitian generalized inverses of Hermi-

tian matrices of the same size, as well as the Löwner partial ordering of Hermitian

generalized inverses of two Hermitian matrices were studied by some authors; see,

e.g., [2, 3, 4, 11, 12, 13, 18, 24, 36, 37]. Setting P = Im in Theorem 3.1, we obtain

the following results on the partial inertia of A− − B− and their consequences.

Corollary 3.4. Let A, B ∈ Cm
H . Then,

max
A−, B−

i±(A− − B− ) = m + i∓(A − B ) − i∓(A) − i±(B),(3.36)

min
A−, B−

i±(A− − B− ) = i∓(A − B ) + i±(A) + i∓(B) − r[ A, B ],(3.37)

max
B−

min
A−

i±(A− − B− ) = i∓(A − B ) + i±(A) − i±(B),(3.38)

min
B−

max
A−

i±(A− − B− ) = m + i∓(A − B ) + i∓(B) − r[ A, B ] − i∓(A).(3.39)

As a consequence,

(a) There exist A− and B− such that A− > B− (A− < B− ) if and only if

i−(A − B ) = i−(A) + i+(B) ( i+(A − B ) = i+(A) + i−(B) ).

(b) A− > B− (A− < B− ) for all A− and B− if and only if i−(A − B ) =

r[ A, B ] − i+(A) − i−(B) + m ( i+(A − B ) = r[ A, B ] − i−(A) − i+(B) + m ).
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(c) There exist A− and B− such that A− ≥ B− (A− ≤ B− ) if and only if

i+(A − B ) = r[ A, B ] − i−(A) − i+(B) ( i−(A − B ) = r[ A, B ] − i+(A) − i−(B) ).

(d) A− ≥ B− (A− ≤ B− ) for all A− and B− if and only if i+(A − B ) =

i+(A) + i−(B) − m ( i−(A − B ) = i−(A) + i+(B) − m ).

(e) For any B−, there exists an A− such that A− > B− (A− < B− ) if and only

if i−(A−B ) = r[ A, B ]+ i−(A)− i−(B) (i+(A − B ) = r[ A, B ] + i+(A) − i+(B)).

(f) For any B−, there exists an A− such that A− ≥ B− (A− ≤ B− ) if and only

if i−(B − A ) = i−(B) − i−(A) ( i+(B − A ) = i+(B) − i+(A) ).

Under the conditions that A ≥ 0 and B ≥ 0,

(g) There exist A− and B− such that A− > B− (A− < B− ) if and only if

i−(A − B ) = r(B) ( i+(A − B ) = r(A) ).

(h) A− > B− (A− < B− ) for all A− and B− if and only if

i−(A − B ) = r[ A, B ] − r(A) + m ( i+(A − B ) = r[ A, B ] − r(B) + m ) .

(i) There exist A− and B− such that A− ≥ B− (A− ≤ B− ) if and only if

i+(A − B ) = r[ A, B ] − r(B) ( i−(A − B ) = r[ A, B ] − r(A) ).

(j) A− ≥ B− (A− ≤ B− ) for all A− and B− if and only if A ≤ B (A ≥ B ).

(k) For any B−, there exists an A− such that A− > B− (A− < B− ) if and only

if i−(A − B ) = r[ A, B ] ( i+(A − B ) = r[ A, B ] + r(A) − r(B) ).

(l) For any B−, there exists an A− such that A− ≥ B− (A− ≤ B−) if and only

if B ≥ A ( i+(B − A ) = r(B) − r(A) ).

4. The rank and inertia of A† − PN †P ∗, the equality A† = PN †P ∗ and

the inequalities A† > (≥, <≤)PN †P ∗. For the special cases of (2.1) and (3.1)

corresponding to the Moore-Penrose inverses, we have the following several results.

Theorem 4.1. Let A ∈ Cm
H , P ∈ Cm×n and N ∈ Cn

H, and let

M =




A3 0 A

0 −N3 NP ∗

A PN 0



.(4.1)

Then, the following expansion formulas

i±(A† − PN †P ∗ ) = i∓(M) − i∓(A) − i±(N),(4.2)

r(A† − PN †P ∗ ) = r(M) − r(A) − r(N)(4.3)

hold. As a consequence,
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(a) A† > PN †P ∗ if and only if i−(M) = i−(A) + i+(N) + m.

(b) A† ≥ PN †P ∗ if and only if i+(M) = i+(A) + i−(N).

(c) A† < PN †P ∗ if and only if i+(M) = i+(A) + i−(N) + m.

(d) A† ≤ PN †P ∗ if and only if i−(M) = i−(A) + i+(N).

(e) A† = PN †P ∗ if and only if r(M) = r(A) + r(N).

Proof. Note that R(A) = R(A3) and R(N) = R(N3). Then, applying (1.16)

and (1.18) to (4.1) and simplifying by (1.4)–(1.8), we obtain

i±(M) = i±




A3 0 A

0 −N3 NP ∗

A PN 0



 = i±




A3 0 0

0 −N3 0

0 0 −A(A3)†A + PN(N3)†NP ∗





= i±(A) + i∓(N) + i∓(A† − PN †P ∗ ),

establishing (4.2) and (4.3). Setting the right-hand sides of (4.2) and (4.3) equal to

m or zero, respectively, leads to (a)–(e).

Setting N = P ∗AP in (4.1) and applying congruence operations and (1.9), we

obtain

i±(M) = i±




A3 0 A

0 −P ∗APP ∗APP ∗AP P ∗APP ∗

A PP ∗AP 0





= i±




0 0 A

0 0 P ∗APP ∗

A PP ∗AP 0



 = r[ A, PP ∗AP ].

Thus, Theorem 4.1 reduces to the following result.

Corollary 4.2 ([32]). Let A ∈ Cm
H and P ∈ Cm×n. Then,

(a) The following expansion formulas

i±[ A† − P (P ∗AP )†P ∗ ] = r[ A, PP ∗AP ] − i∓(A) − i±(P ∗AP ),(4.4)

r[ A† − P (P ∗AP )†P ∗ ] = 2r[ A, PP ∗AP ] − r(A) − r(P ∗AP )(4.5)

hold. As a consequence,

(i) A† > P (P ∗AP )†P ∗ if and only if A > 0 and P = 0.

(ii) A† ≥ P (P ∗AP )†P ∗ if and only if r[ A, PP ∗AP ] = i+(A) + i−(P ∗AP ).

(iii) A† < P (P ∗AP )†P ∗ if and only if A < 0 and P = 0.

(iv) A† ≤ P (P ∗AP )†P ∗ if and only if r[ A, PP ∗AP ] = i−(A) + i+(P ∗AP ).

(v) A† = P (P ∗AP )†P ∗ if and only if R(A) = R(PP ∗AP ).

(b) Under the condition A ≥ 0, the following expansion formulas

i+[ A† − P (P ∗AP )†P ∗ ] = r[ A, PP ∗A ] − r(AP ),(4.6)
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i−[ A† − P (P ∗AP )†P ∗ ] = r[ A, PP ∗A ] − r(A),(4.7)

r[ A† − P (P ∗AP )†P ∗ ] = 2r[ A, PP ∗A ] − r(A) − r(AP )(4.8)

hold. As a consequence,

(i) A† ≥ P (P ∗AP )†P ∗ ⇔ R(PP ∗A) ⊆ R(A).

(ii) A† ≤ P (P ∗AP )†P ∗ ⇔ A† = P (P ∗AP )†P ∗ ⇔ R(PP ∗A) = R(A).

Theorem 4.3. Let A, B ∈ Cm
H . Then,

(a) The following equalities hold

i±(A† − B† ) = i±(A) − i±(B) + i±

[
0 EAB

BEA B3 − BAB

]
,(4.9)

i±(A† − B† ) = r(A† − B† ) − i∓(A) + i∓(B) − i∓

[
0 EAB

BEA B3 − BAB

]
,(4.10)

r(A† − B† ) = r(A) − r(B) + r

[
0 EAB

BEA B3 − BAB

]
.(4.11)

(b) The following inequalities hold

max{ s1, s2 } ≤ i±(A† − B† ) ≤ min{ s3, s4},(4.12)

max{ t1, t2 } ≤ r(A† − B† ) ≤ min{ t3, t4 },(4.13)

where

s1 = r[ A, B ] − i∓(A) − i±(B),

s2 = i±(B3 − BAB ) + i±(A) − i±(B),

s3 = r(A† − B† ) + i∓(A) + i∓(B) − r[ A, B ],

s4 = i±(B3 − BAB ) + r[ A, B ] − i∓(A) − i±(B),

t1 = 2r[ A, B ] − r(A) − r(B),

t2 = r(B3 − BAB ) + r(A) − r(B),

t3 = 2r(A† − B† ) + r(A) + r(B) − 2r[ A, B ],

t4 = r(B3 − BAB ) + 2r[ A, B ] − r(A) − r(B).

In particular,

(c) If R(B) ⊆ R(A), then

i±(A† − B† ) = i∓(BAB − B3 ) + i±(A) − i±(B),(4.14)

r(A† − B† ) = r(BAB − B3 ) + r(A) − r(B).(4.15)
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(d) If BAB = B3, then

i±(A† − B† ) = r[ A, B ] − i∓(A) − i±(B),

r(A† − B† ) = 2r[ A, B ] − r(A) − r(B).

(e) [24] If R(A) = R(B), then

i±(A† − B† ) = i∓(A − B ) + i±(A) − i±(B),(4.16)

r(A† − B† ) = r(A − B ) + r(A) − r(B).(4.17)

Therefore, A† ≥ B† (A† ≤ B†) if and only if

i−(B − A ) = i−(B) − i−(A) ( i+(B − A ) = i+(B) − i+(A) ) .

(f) i+(A†−B† ) = i+(A)−i+(B) if and only if R(B) ⊆ R(A) and B3−BAB ≤ 0.

(g) i−(A†−B† ) = i−(A)−i−(B) if and only if R(B) ⊆ R(A) and B3−BAB ≥ 0.

(h) Both i+(A† − B† ) = i+(A) − i+(B) and i−(A† − B† ) = i−(A) − i−(B) ⇔

r(A† − B† ) = r(A) − r(B) ⇔ R(B) ⊆ R(A) and BAB = B3.

(i) If A ≥ 0 and B ≥ 0, then

i−(A† − B† ) = i−

[
0 EAB

BEA B3 − BAB

]
.(4.18)

Therefore, A† ≥ B† if and only if R(B) ⊆ R(A) and B3 − BAB ≥ 0.

(j) If A ≥ B ≥ 0, then

i+(A† − B† ) = r(A) − r(B),(4.19)

i−(A† − B† ) = r(B3 − BAB ),(4.20)

r(A† − B† ) = r(B3 − BAB ) + r(A) − r(B).(4.21)

Therefore, A† ≥ B† if and only if B3 = BAB.

(k) [27] If A and B are nonsingular, then

i±(A−1 − B−1 ) = i∓(A − B ) + i±(A) − i±(B).(4.22)

Therefore, A−1 ≥ B−1 (A−1 ≤ B−1 ) if and only if

i−(B − A ) = i−(B) − i−(A) ( i+(B − A ) = i+(B) − i+(A) ) .

(l) i+(A−1−B−1 ) = i+(A)− i+(B) if and only if B−A ≤ 0 ( i−(A−1−B−1 ) =

i−(A) − i−(B) if and only if B − A ≥ 0 ).

(m) [18, 36] Under the condition A ≥ 0 and B ≥ 0, any two of the following

conditions:
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(i) A ≥ B ≥ 0,

(ii) B† ≥ A† ≥ 0,

(iii) r(A) = r(B)

imply the third condition.

Proof. Applying (1.15) to the matrix

[
A† B†

B† B†

]
and simplifying by (1.6) and

(1.8), we obtain the following equalities

i±

[
A† B†

B† B†

]
= i±(A) + i±

[
0 EAB†

B†EA B† − B†AB†

]
,(4.23)

i±

[
A† B†

B† B†

]
= i±

[
A† − B† 0

0 B†

]
= i±(A† − B† ) + i±(B).(4.24)

It is easy to see from Lemma 1.4(b) that

i±

[
0 EAB†

B†EA B† − B†AB†

]
= i±

[
0 EAB

BEA B3 − BAB

]
,(4.25)

r

[
0 EAB†

B†EA B† − B†AB†

]
= r

[
0 EAB

BEA B3 − BAB

]
.(4.26)

Substituting (4.25) and (4.26) into (4.23) and (4.24) yields (4.9)–(4.11). Results (c)–

(m) follow from (4.9)–(4.11) and Lemma 1.2, and the details are omitted.

Assume that A, B ∈ Cm
H are given such that A + B is nonsingular. Then it can

be derived from (4.14) and (4.15) that

i±[ (A + B )−1 − A† ] = i±(A + B ) − i±(A) + i∓(ABA ),

r[ (A + B )−1 − A† ] = m − r(A) + r(ABA).

5. The rank of C− − A− − B− and the additive decomposition C− =

A− + B−. It is well known that the parallel sum of a pair of Hermitian nonnegative

definite matrices A and B of the same size is defined to be

A : B
def
= A(A + B )†B;

see [1]. Later, the parallel sum was also extended to any pair of matrices A and B of

the same size as

p(A, B)
def
= A(A + B )−B

whenever this product is invariant with respect to the choice of (A + B )−. Parallel

sums of matrices and various related topics were widely investigated; see, e.g., [17, 19,
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20, 21, 22, 23, 30, 35]. One of the well-known properties of the parallel sum p(A, B)

is

{p−(A, B)} = {A− + B− };

see [23]. In a recent paper [35], the matrix equality C− = A− + B− was studied and

a variety of results on parallel sum of matrices were derived through some expansion

formulas for ranks of matrices. As a continuation, we consider in this section the

matrix equality

C− = A− + B−(5.1)

for Hermitian generalized inverses of Hermitian matrices A, B and C.

Lemma 5.1. The set equality

{A− + B− } = {PN−P ∗}(5.2)

holds for any A, B ∈ Cm
H , where P = [ Im, Im ] and N = diag{A, B }.

Proof. From (1.19), the general expression of A− + B− can be written as

A− + B− = A† + B† + FAV + V ∗FA + FBW + W ∗FB ,(5.3)

where V and W are arbitrary, while the general expression of N− is

N− = N † + FNS + S∗FN

=

[
A† 0

0 B†

]
+

[
FA 0

0 FB

][
S1 S2

S3 S4

]
+

[
S∗

1 S∗
3

S∗
2 S∗

4

][
FA 0

0 FB

]

=

[
A† + FAS1 + S∗

1FA FAS2 + S∗
3FB

S∗
2FA + FBS3 B† + FBS4 + S∗

4FB

]
,

where S1, . . . , S4 are arbitrary. Hence, we obtain

PN−P ∗ = A† + B† + FA(S1 + S2) + (S∗
1 + S∗

2 )FA + FB(S3 + S4) + (S∗
3 + S∗

4 )FB ,

which is the same as (5.3). Thus, (5.2) holds.

Applying the results in Section 3 and Lemma 5.1 to {C−} and {PN−P ∗} in (5.2)

gives the following results. The proofs are omitted.

Theorem 5.2. Let A, B, C ∈ Cm
H . Then,

(5.4)

max
A−, B−

r[ C − C(A− + B− )C ] = min

{
r(C), r

[
C A

B A + B

]
+ r(C) − r(A) − r(B)

}
,
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min
A−, B−

r[ C − C(A− + B− )C ] = min
C−, A−, B−

r(C− − A− − B− )(5.5)

= r(A) + r(B) + r(C) + r

[
C A

B A + B

]
− 2r

[
A 0 C

0 B C

]
.

As a consequence,

(a) There exist A− and B− such that A− + B− ∈ {C−} if and only if

r

[
C A

B A + B

]
= 2r

[
A 0 C

0 B C

]
− r(A) − r(B) − r(C).(5.6)

(b) The following statements are equivalent:

(i) {A− + B−} ⊆ {C−}.

(ii) r

[
C A

B A + B

]
= r(A) + r(B) − r(C).

(iii) r




A 0 C

0 B C

C C C



 = r

[
A 0

0 B

]
.

(iv) R(C) ⊆ R(A), R(C) ⊆ R(B) and C = CA−C + CB−C.

Theorem 5.3. Let A, B, C ∈ Cm
H . Then, {C−} ⊆ {A− + B−} if and only if

R(A) ∩ R(B) = {0} or r

[
C A

B A + B

]
= 2r[ A, B ] + r(C) − r(A) − r(B).(5.7)

A special case of Theorem 5.3 is

R(A) ∩ R(B) = {0} ⇔ {A− + B−} = {0−} = C
m
H .(5.8)

In what follows, we assume that

R(A) ∩ R(B) 6= {0}.(5.9)

In this case, combining Theorems 5.2 and 5.3 yields the following result.

Theorem 5.4. Let A, B, C ∈ C
m
H . Then,

{A− + B−} = {C−}(5.10)

if and only if

R(A) ⊆ R(A + B ), R(B) ⊆ R(A + B ) and C = A(A + B )−B.(5.11)
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In this case,

r(C) = r(A) + r(B) − r(A + B ) and R(C) = R(A) ∩ R(B).(5.12)

Theorems 5.2, 5.3 and 5.4 can be used to derive various additive decompositions

of Hermitian g-inverses of matrices. For example, if A + B is nonsingular and C =

A(A + B)−1B, then (5.10) holds. Setting C = A + B in Theorems 5.2, 5.3 and 5.4

gives the following consequences.

Corollary 5.5. Let A, B ∈ Cm
H . Then,

(a) There exist A− and B− such that A− + B− ∈ { (A + B )− } if and only if

r

[
A + B A

B A + B

]
= 2r

[
A 0 B

0 B A

]
− r(A + B) − r(A) − r(B).

(b) Under A + B 6= 0, the following statements are equivalent:

(i) { (A + B )− } ⊇ {A− + B− }.

(ii) r

[
A + B A

B A + B

]
= r(A) + r(B) − r(A + B ).

(iii) R(A) = R(B) and A + B = − 1
2 (AB−A + BA−B ).

(c) {(A + B )−} ⊆ {A− + B− } if and only if R(A) ∩ R(B) = {0} or

r

[
A + B A

B A + B

]
= 2r[ A, B ] + r(A + B ) − r(A) − r(B).

Theorem 5.4 can be used to derive some additive decompositions for Hermitian

g-inverses of matrices. For example, applying Theorem 5.4 to A − A2 and Im − A2

gives the following consequences.

Corollary 5.6. Let A ∈ Cm
H . Then,

(a) The set equality { (A − A2 )− } = {A− + ( Im − A )− } always holds.

(b) The set equality { 2( Im−A2 )− } = { ( Im +A )−+( Im−A )− } always holds.

6. The matrix inequalities C− > (≥, <,≤ )A−+B−. Applying Theorem 3.1

to C− and PN−P ∗ in (5.2) yields the following result.

Theorem 6.1. Let A, B, C ∈ Cm
H . Then,
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(a) There exist A−, B− and C− such that C− > A− + B− (C− < A− + B− ) if

and only if

i−

[
C − A C

C C − B

]
= i+(A) + i+(B) + i−(C)

(
i+

[
C − A C

C C − B

]
= i−(A) + i−(B) + i+(C)

)
.

(b) C− > A− + B− (C− < A− + B− ) for all A−, B− and C− if and only if

i−

[
C − A C

C C − B

]
= r

[
A 0 C

0 B C

]
− i−(A) − i−(B) − i+(C) + m

(
i+

[
C − A C

C C − B

]
= r

[
A 0 C

0 B C

]
− i+(A) − i+(B) − i−(C) + m

)
.

(c) There exist A−, B− and C− such that C− ≥ A− + B− (C− ≤ A− + B− )

if and only if

i+

[
C − A C

C C − B

]
= r

[
A 0 C

0 B C

]
− i+(A) − i+(B) − i−(C)

(
i−

[
C − A C

C C − B

]
= r

[
A 0 C

0 B C

]
− i−(A) − i−(B) − i+(C)

)
.

(d) C− ≥ A− + B− (C− ≤ A− + B− ) for all A−, B− and C− if and only if

i+

[
C − A C

C C − B

]
= i−(A) + i−(B) + i+(C) − m

(
i−

[
C − A C

C C − B

]
= i+(A) + i+(B) + i−(C) − m

)
.

(e) For any A− and B−, there exists a C− such that

C− > A− + B−
(
C− < A− + B−

)

if and only if

i−

[
C − A C

C C − B

]
= r

[
A 0 C

0 B C

]
+ i−(C) − i−(A) − i−(B)

(
i+

[
C − A C

C C − B

]
= r

[
A 0 C

0 B C

]
+ i+(C) − i+(A) − i+(B)

)
.
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(f) For any A− and B−, there exists a C− such that

C− ≥ A− + B−
(
C− ≤ A− + B−

)

if and only if

i+

[
C − A C

C C − B

]
= i−(A) + i−(B) − i−(C)

(
i−

[
C − A C

C C − B

]
= i+(A) + i+(B) − i+(C)

)
.

Corollary 6.2. Let A, B ∈ Cm
H . Then,

(a) There exist A−, B− and (A + B )− such that

(A + B )− > A− + B− ( (A + B )− < A− + B− )

if and only if

i−

[
A A + B

A + B B

]
= i+(A) + i+(B) + i−(A + B )

(
i+

[
A A + B

A + B B

]
= i−(A) + i−(B) + i+(A + B )

)
.

(b) (A + B )− > A− + B− ( (A + B )− < A− + B− ) for all A−, B− and

(A + B )− if and only if

i−

[
A A + B

A + B B

]
= r

[
A 0 B

0 B A

]
− i−(A) − i−(B) − i+(A + B ) + m

(
i+

[
A A + B

A + B B

]
= r

[
A 0 B

0 B A

]
− i+(A) − i+(B) − i−(A + B ) + m

)
.

(c) There exist A−, B− and (A + B )− such that

(A + B )− ≥ A− + B−
(
(A + B )− ≤ A− + B−

)

if and only if

i+

[
A A + B

A + B B

]
= r

[
A 0 B

0 B A

]
− i+(A) − i+(B) − i−(A + B )

(
i−

[
A A + B

A + B B

]
= r

[
A 0 B

0 B A

]
− i−(A) − i−(B) − i+(A + B )

)
.
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(d) (A+B )− ≥ A−+B− ( (A+B )− ≤ A−+B− ) for all A−, B− and (A+B )−

if and only if

i+

[
A A + B

A + B B

]
= i−(A) + i−(B) + i+(A + B ) − m

(
i−

[
A A + B

A + B B

]
= i+(A) + i+(B) + i−(A + B ) − m

)
.

(e) For any A− and B−, there exists a (A + B)− such that

(A + B)− > A− + B− ( (A + B)− < A− + B− )

if and only if

i−

[
A A + B

A + B B

]
= r

[
A 0 B

0 B A

]
+ i−(A + B ) − i−(A) − i−(B)

(
i+

[
A A + B

A + B B

]
= r

[
A 0 B

0 B A

]
+ i+(A + B ) − i+(A) − i+(B)

)
.

(f) For any A− and B−, there exists a (A + B)− such that

(A + B)− ≥ A− + B− ( (A + B)− ≤ A− + B− )

if and only if

i+

[
A A + B

A + B B

]
= i−(A) + i−(B) − i−(A + B )

(
i−

[
A A + B

A + B B

]
= i+(A) + i+(B) − i+(A + B)

)
.

7. The additive matrix decomposition A− = A−
1 + · · · + A−

k . The results

in Sections 5 and 6 can easily be extended to the sum of k Hermitian g-inverses of

Hermitian matrices. In fact, it is easy to verify that

{A−
1 + · · · + A−

k } = {PN−P ∗},(7.1)

where N = diag(A1, . . . , Ak ) and P = [ Im, . . . , Im ]. A useful formula for the dimen-

sion of intersection of ranges of k matrices is given below.

Lemma 7.1 ([31]). Let [ A1, . . . , Ak ] ∈ Cm×t, and N and P be as given in (7.1).

Then, the dimension of intersection of the ranges of A1, . . . , Ak is

dim [ R(A1) ∩ · · · ∩ R(Ak) ] = r(N) + r(P ∗) − r[ N, P ∗ ].(7.2)
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In particular,

R(A1) ∩ · · · ∩ R(Ak) = {0} ⇔ R(N) ∩ R(P ∗) = {0}.(7.3)

Applying the results in Section 2 to {A−} and {PN−P ∗} in (7.1) gives the fol-

lowing results. The proofs are omitted.

Theorem 7.2. Let A1, . . . , Ak, A ∈ Cm
H , and N and P be as given in (7.1).

Then,

max
A

−

1
, ..., A

−

k

r[ A − A(A−
1 + · · · + A−

k )A ](7.4)

= min { r(A), r(N − P ∗AP ) + r(A) − r(N)} ,

min
A−

1
, ..., A−

k

r[ A − A(A−
1 + · · · + A−

k )A ](7.5)

= r(A) + r(N) + r(N − P ∗AP ) − 2r[ N, P ∗A ],

max
A−

min
A

−

1
, ..., A

−

k

r(A− − A−
1 − · · · − A−

k ) = min { r(N) + m − r[ N, P ∗ ],(7.6)

2m + r(N − P ∗AP ) + r(N) − r(A) − 2r[ N, P ∗ ]}.

As a consequence,

(a) {A−
1 + · · · + A−

k } ∩ {A−} 6= ∅ if and only if r(N − P ∗AP ) = 2r[ N, P ∗A ] −

r(N) − r(A).

(b) The following statements are equivalent:

(i) {A−
1 + · · · + A−

k } ⊆ {A−}.

(ii) r(N − P ∗AP ) = r(N) − r(P ∗AP ).

(iii) r

[
N P ∗A

AP A

]
= r(N).

(iv) R(A) ⊆ R(Ai), R(A∗) ⊆ R(A∗
i ), i = 1, . . . , k, and A = APN−P ∗A.

(c) {A−
1 + · · · + A−

k } ⊇ {A−} if and only if

R(A1) ∩ · · · ∩ R(Ak) = {0} or r(N − P ∗AP ) = 2r[ N, P ∗ ] − r(N) + r(A) − 2m.

Theorem 7.2(c) implies the following special case.

Corollary 7.3. Let A1, . . . , Ak ∈ Cm
H be given. Then, {A−

1 + · · · + A−
k } = Cm

H

if and only if R(A1) ∩ · · · ∩ R(Ak) = {0}.

In what follows, we assume that
⋂k

i=1 R(Ai) 6= {0}.

Theorem 7.4. Let A1, . . . , Ak, A ∈ Cm
H be given, and N and P be as given in
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(7.1). Then,

{A−
1 + · · · + A−

k } = {A−}(7.7)

if and only if

r

[
N P ∗

P 0

]
= r[ N, P ∗ ] + r(P ) and A = −[ 0, Im ]

[
N P ∗

P 0

]−[
0

Im

]
.(7.8)

In this case,

r(A) = dim

[
k⋂

i=1

R(Ai)

]
and R(A) = R(Ai) ∩ · · · ∩ R(Ak).(7.9)

By Theorem 7.4, we now are able to define the parallel sums of k Hermitian

matrices of the same size.

Definition 7.5. Matrices A1, . . . , Ak ∈ Cm
H are said to be parallel summable if

the matrix product

− [ 0, Im ]

[
N P ∗

P 0

]−[
0

Im

]
(7.10)

is invariant with respect to the choice of the Hermitian g-inverse, where N and P are

as given in (7.1). In this case, (7.10) is called the parallel sum of A1, . . . , Ak and is

denoted by p(A1, . . . , Ak ).

Applying (1.22) to (7.10) leads to the following result.

Theorem 7.6. Non-null matrices A1, . . . , Ak ∈ Cm
H are parallel summable if and

only if

R

[
0

Im

]
⊆ R

[
N P ∗

P 0

]
,(7.11)

or equivalently,

r

[
N P ∗

P 0

]
= r[ N, P ∗ ] + r(P ),(7.12)

where N and P are as given in (7.1). In particular, k nonnegative definite matrices

of the same size are always parallel summable.

We next examine the relations between the parallel sum of k Hermitian matrices

and shorted matrices. Let

V = {X ∈ C
m
H | R(X) ⊆ R(B) }.(7.13)
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The shorted matrix of A ∈ Cm
H relative to R(B), denoted by S[ A |R(B) ], is defined

to be a matrix

X0 = argmin
X∈V

r(A − X ).(7.14)

Note that X ∈ V can be written as X = BZB∗ for some Z ∈ Cn
H. Hence, S[ A |R(B) ]

can be written as

S[ A |R(B) ] = BZB∗, Z = argmin
Z∈Cn

H

r(A − BZB∗ ).(7.15)

The general expressions of the matrices Z and BZB∗ satisfying (7.15) were given in

[34]. It was shown in [34] that the matrix BZB∗, i.e., the shorted matrix S[ A |R(B) ],

is unique if and only if A and B satisfy the rank additivity condition

r

[
A B

B∗ 0

]
= r[ A, B ] + r(B).(7.16)

In this case, the unique shorted matrix can be written as

S[ A |R(B) ] = −[ 0, B ]

[
A B

B∗ 0

]−[
0

B∗

]
= A − [ A, 0 ]

[
A B

B∗ 0

]−[
A

0

]
.(7.17)

Applying these results to Theorem 7.6, we immediately obtain the following result.

Theorem 7.7. Assume that A1, . . . , Ak ∈ Cm
H are all non-null, and let N and P

be as given in (7.1). Then, A1, . . . , Ak are parallel summable if and only if the shorted

matrix of N relative to R(P ∗) is unique. In this case, the parallel sum p(A1, . . . , Ak )

and the shorted matrix S[ N |R(P ∗) ] satisfy the equalities

S[ N |R(P ∗) ] = P ∗p(A1, . . . , Ak )P,(7.18)

p(A1, . . . , Ak ) =
1

k2
PS[ N |R(P ∗) ]P ∗,(7.19)

p(A1, . . . , Ak ) =
1

k2




A − [ A1, . . . , Ak, 0 ]

[
N P ∗

P 0

]−




A1

...

Ak

0








,(7.20)

where A = A1 + · · · + Ak.

Proof. Eq. (7.18) follows from contrasting (7.10) with S[ A |R(P ∗) ] in the first

equality in (7.17). Pre- and post-multiplying P and P ∗ on the both sides of (7.18)

and noticing that PP ∗ = kIm, we obtain (7.19) from (7.18). Finally, substituting the

S[ A |R(P ∗) ] in the second equality in (7.17) into (7.19) yields (7.20).

Theorem 7.8. Assume that A1, . . . , Ak ∈ Cm
H are all non-null, and parallel

summable. Then,
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(a) { [ p(A1, . . . , Ak ) ]− } = {A−
1 + · · · + A−

k }.

(b) p(A1, . . . , Ak ) = p(Ai1 , . . . , Aik
), where i1, . . . , ik are any permutation of

1, . . . , k.

Proof. Result (a) follows from Theorems 7.4 and 7.6. Result (b) follows from

Corollary 2.7 and {A−
1 + · · · + A−

k } = {A−
i1

+ · · · + A−
ik
}.

Theorem 7.9. Assume that A1, . . . , Ak ∈ Cm
H are all non-null, and let B ∈

Cm×m be a nonsingular matrix. Then, A1, . . . , Ak are parallel summable if and only

if BA1B
∗, . . . , BAkB∗ are parallel summable. In this case,

p(BA1B
∗, . . . , BAkB∗ ) = Bp(A1, . . . , Ak )B∗.(7.21)

Proof. Denote B̂ = diag(B, . . . , B ). Since B is nonsingular, B̂ is nonsingular,

too. Thus, it is easy to verify that

r

[
B̂NB̂∗ P ∗

P 0

]
= r

[
N B̂−1P ∗

P (B̂∗)−1 0

]

= r

[
N B̂−1P ∗B

B∗P (B̂∗)−1 0

]
= r

[
N P ∗

P 0

]
,

r[ B̂NB̂∗, P ∗ ] = r[ N, B̂−1P ∗ ] = r[ N, B̂−1P ∗B ] = r[ N, P ∗ ].

Combining these two rank equalities with (7.12) shows that A1, . . . , Ak are paral-

lel summable if and only if BA1B
∗, . . . , BAkB∗ are parallel summable. From the

nonsingularity of B, we also see that

[
B̂NB̂∗ P ∗

P 0

]−

=

[
(B̂∗)−1 0

0 B

][
N P ∗

P 0

]−[
B̂−1 0

0 B∗

]
.

Thus, it follows from (7.10) that

p(BA1B
∗, . . . , BAkB∗ ) = −[ 0, Im ]

[
B̂NB̂∗ P ∗

P 0

]−[
0

Im

]

= −[ 0, Im ]

[
(B̂∗)−1 0

0 B

][
N P ∗

P 0

]−[
B̂−1 0

0 B∗

][
0

Im

]

= −B[ 0, Im ]

[
N P ∗

P 0

]−[
0

Im

]
B∗ = Bp(A1, . . . , Ak )B∗,

establishing (7.21).
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It is also easy to establish formulas for calculating the extremum inertias of A−−

A−
1 − · · · − A−

k , and to extend the results in Section 6 to the matrix inequalities

A− > (≥, <,≤)A−
1 + · · ·+A−

k in the Löwner partial ordering. The details are left for

the reader.
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