A LOWER BOUND FOR THE SECOND LARGEST LAPLACIAN EIGENVALUE OF WEIGHTED GRAPHS*

ABRAHAM BERMAN ${ }^{\dagger}$ AND MIRIAM FARBER ${ }^{\dagger}$

Abstract

Let G be a weighted graph on n vertices. Let $\lambda_{n-1}(G)$ be the second largest eigenvalue of the Laplacian of G. For $n \geq 3$, it is proved that $\lambda_{n-1}(G) \geq d_{n-2}(G)$, where $d_{n-2}(G)$ is the third largest degree of G. An upper bound for the second smallest eigenvalue of the signless Laplacian of G is also obtained.

Key words. Weighted graph, Laplacian matrix, Second largest eigenvalue, Lower bound, Signless Laplacian, Merris graph.

AMS subject classifications. 15A42, 05C50, 05C69.

1. Introduction. Let $G=(E(G), V(G))$ be a simple graph (a graph without loops or multiple edges) with $|V(G)|=n$. We say that G is a weighted graph if it has a weight (a positive number) associated with each edge. The weight of an edge $\{i, j\} \in E(G)$ will be denoted by $w_{i j}$. We define the adjacency matrix $A(G)$ of G to be a symmetric matrix which satisfies

$$
a_{i j}=\left\{\begin{array}{cl}
0 & \text { if }\{i, j\} \notin E(G) \\
w_{i j} & \text { if }\{i, j\} \in E(G)
\end{array} .\right.
$$

The Laplacian matrix $L(G)$ is defined to be $D(G)-A(G)$ with $D(G)=\operatorname{diag}\left(\operatorname{deg}\left(v_{1}\right)\right.$, $\left.\operatorname{deg}\left(v_{2}\right), \ldots, \operatorname{deg}\left(v_{n}\right)\right)$, where $\operatorname{deg}\left(v_{i}\right)$ is the sum of weights of all edges connected to v_{i}. The signless Laplacian matrix $Q(G)$ is defined by $D(G)+A(G)$. We denote by $0=\lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{n}(G)$ the eigenvalues of $L(G)$, and by $\mu_{1}(G) \leq \mu_{2}(G) \leq$ $\cdots \leq \mu_{n}(G)$ the eigenvalues of $Q(G)$. We order the degrees of the vertices of G as $d_{1}(G) \leq d_{2}(G) \leq \cdots \leq d_{n}(G)$. Various bounds for the Laplacian eigenvalues of unweighted graphs, in terms of their degrees, were studied in the past (e.g., [1]). Li and Pan [6] showed that for an unweighted connected graph G with $n \geq 3, \lambda_{n-1}(G) \geq$ $d_{n-1}(G)$. It is interesting to ask whether there exists a similar bound for weighted graphs. We will show it by using the following lemma ([5, p. 178]).

Lemma 1.1. Let A be a symmetric matrix with eigenvalues $\theta_{1}(G) \leq \cdots \leq \theta_{n}(G)$. Then $\theta_{k}(A)=\max \left\{\left.\frac{\langle A f, f\rangle}{\langle f, f\rangle} \right\rvert\, f \perp f_{k+1}, f_{k+2}, \ldots, f_{n}\right\}=\min \left\{\left.\frac{\langle A f, f\rangle}{\langle f, f\rangle} \right\rvert\, f \perp f_{1}, f_{2}, \ldots, f_{k-1}\right\}$,

[^0]when $f_{1}, f_{2}, \ldots, f_{n}$ are eigenvectors of the eigenvalues $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$, respectively.
2. The main result. We are ready now to present our main result.

Theorem 2.1. Let G be a simple weighted graph on n vertices with $n \geq 3$. Then $\lambda_{n-1}(G) \geq d_{n-2}(G)$.

Proof. First we check the case $\lambda_{n-1}(G)=\lambda_{n}(G)$. Let u be the vertex with the largest degree in G. From Lemma 1.1,

$$
\lambda_{n}(G)=\max \left\{\frac{\langle L(G) f, f\rangle}{\langle f, f\rangle}\right\} .
$$

Define a vector v by

$$
v_{i}= \begin{cases}0 & \text { if } i \neq u \\ 1 & \text { if } i=u\end{cases}
$$

Then we have

$$
\lambda_{n}(G) \geq \frac{\langle L(G) v, v\rangle}{\langle v, v\rangle}=d_{n}(G)
$$

Hence, in this case, $d_{n-2}(G) \leq d_{n}(G) \leq \lambda_{n}(G)=\lambda_{n-1}(G)$. Suppose then that $\lambda_{n-1}(G)<\lambda_{n}(G)$. Let h be an eigenvector that corresponds to $\lambda_{n}(G)$. Using Lemma 1.1 we have

$$
\begin{equation*}
\lambda_{n-1}(G)=\max \left\{\left.\frac{\langle L(G) f, f\rangle}{\langle f, f\rangle} \right\rvert\, f \perp h\right\} \tag{2.1}
\end{equation*}
$$

Let s, t, q be the vertices with the largest degrees in the graph. Then there are two possibilities:

1) At least one of h_{s}, h_{t}, h_{q} is zero.
2) All the numbers h_{s}, h_{t}, h_{q} are different from zero.

In case 1), we assume without loss of generality that $h_{t}=0$. Define a vector g by

$$
g_{i}= \begin{cases}0 & \text { if } i \neq t \\ 1 & \text { if } i=t\end{cases}
$$

Since g is orthogonal to h, we get from (2.1) that $\lambda_{n-1}(G) \geq \frac{\langle L(G) g, g\rangle}{\langle g, g\rangle}$, and hence,

$$
\lambda_{n-1}(G) \geq \frac{\langle L(G) g, g\rangle}{\langle g, g\rangle}=\frac{\sum_{u v \in E(G)} w_{u v}\left(g_{u}-g_{v}\right)^{2}}{\sum_{z \in V(G)} g_{z}^{2}}=\frac{\sum_{t v \in E(G)} w_{t v}\left(g_{t}-g_{v}\right)^{2}}{1}
$$

ELA

A Lower Bound for the Second Largest Laplacian Eigenvalue of Weighted Graphs

$$
=\sum_{t v \in E(G)} w_{t v}=\operatorname{deg}(t) \geq \min \{\operatorname{deg}(s), \operatorname{deg}(t), \operatorname{deg}(q)\}=d_{n-2}(G)
$$

and we are done.
In case 2), at least two of h_{s}, h_{t}, h_{q} have the same sign. Suppose without loss of generality that h_{s}, h_{t} have the same sign. Define a vector g by

$$
g_{i}=\left\{\begin{array}{cl}
0 & \text { if } i \neq t, s \\
1 & \text { if } i=t \\
-\delta & \text { if } i=s
\end{array}\right.
$$

with $\delta>0$ such that g is orthogonal to h (such a positive δ exists since h_{s} and h_{t} are with the same sign). Therefore,

$$
\begin{gathered}
\lambda_{n-1}(G) \geq \frac{\langle L(G) g, g\rangle}{\langle g, g\rangle}=\frac{\sum_{u v \in E(G)} w_{u v}\left(g_{u}-g_{v}\right)^{2}}{\sum_{z \in V(G)} g_{z}^{2}} \\
=\frac{\sum_{t v \in E(G), v \neq s} w_{t v}\left(g_{t}-g_{v}\right)^{2}+\sum_{u s \in E(G), u \neq t} w_{u s}\left(g_{u}-g_{s}\right)^{2}+w_{t s}\left(g_{t}-g_{s}\right)^{2}}{1+\delta^{2}}
\end{gathered}
$$

i.e.,

$$
\begin{gathered}
\lambda_{n-1}(G) \geq \frac{\sum_{t v \in E(G), v \neq s} w_{t v}+\delta^{2}\left(\sum_{u s \in E(G), u \neq t} w_{u s}\right)+w_{t s}\left(1+2 \delta+\delta^{2}\right)}{1+\delta^{2}} \\
=\frac{\operatorname{deg}(t)-w_{t s}+\delta^{2}\left(\operatorname{deg}(s)-w_{t s}\right)+w_{t s}\left(1+2 \delta+\delta^{2}\right)}{1+\delta^{2}} \\
=\frac{\operatorname{deg}(t)+\delta^{2} \operatorname{deg}(s)+2 w_{t s} \delta}{1+\delta^{2}}
\end{gathered}
$$

and since $\delta>0$ we have:

$$
\begin{array}{r}
\lambda_{n-1}(G) \geq \frac{\operatorname{deg}(t)+\operatorname{deg}(s) \delta^{2}+2 w_{t s} \delta}{1+\delta^{2}} \geq \frac{\operatorname{deg}(t)+\operatorname{deg}(s) \delta^{2}}{1+\delta^{2}} \\
\geq \min \{\operatorname{deg}(s), \operatorname{deg}(t)\} \geq \min \{\operatorname{deg}(s), \operatorname{deg}(t), \operatorname{deg}(q)\}=d_{n-2}(G)
\end{array}
$$

and we are done.
REMARK 2.2. As we mentioned before, for connected unweighted graphs with $n \geq 3, \lambda_{n-1}(G) \geq d_{n-1}(G)([6])$. This is not true for weighted graphs as is shown by Figure 2.1:

Fig. 2.1.

Note that the eigenvalues of $L(G)$ are $0,9,23$, so $9=\lambda_{n-1}(G)<d_{n-1}(G)=10$.
3. Application. For a weighted graph G, we define $m_{L(G)}(I)$ to be the number of the eigenvalues of $L(G)$ that fall inside an interval I (counting multiplicities). The independence number of G is denoted by $\alpha(G)$. Merris [7] showed that if G is a simple unweighted graph on n vertices, then $m_{L(G)}\left(\left[d_{1}(G), n\right]\right) \geq \alpha(G)$. Graphs which attain equality in the expression above were studied by Goldberg and Shapiro [4]. By similar technique to the one used by Merris in [7], we can show the following version for weighted graphs.

Theorem 3.1. Let G be a simple weighted graph on n vertices. Then we have $m_{L(G)}\left(\left[d_{1}(G), \infty\right]\right) \geq \alpha(G)$.

Various examples of weighted graphs that attain equality can be found, and some of them are mentioned in [4] (for the special case of unweighted graph). This suggests the following question: Does there exist a graph for which there is no way to assign weights to the edges so that $m_{L(G)}\left(\left[d_{1}(G), \infty\right]\right)=\alpha(G)$?

A first simple example is $K_{n}(n \geq 3)$. There is no way to assign weights to the edges of the complete graph so that $m_{L\left(K_{n}\right)}\left(\left[d_{1}\left(K_{n}\right), \infty\right]\right)=1$. This follows from Theorem 2.1, since

$$
\lambda_{n}\left(K_{n}\right) \geq \lambda_{n-1}\left(K_{n}\right) \geq d_{n-2}\left(K_{n}\right) \geq d_{1}\left(K_{n}\right)
$$

Hence, for any weighting of $K_{n}, m_{L\left(K_{n}\right)}\left(\left[d_{1}\left(K_{n}\right), \infty\right]\right) \geq 2$. Are there other examples? The answer is still yes. Using Theorem 2.1, we can construct a family of such graphs in the following way: First, we take two graphs G and H, each one of them is on at least four vertices, such that $\alpha(G), \alpha(H) \leq 2$. We obtain a new graph K by adding an edge between one vertex of G and one vertex of H. If $\alpha(K) \leq 3$, then there is no way to put weights on its edges such that $m_{L(K)}\left(\left[d_{1}(K), \infty\right]\right)=\alpha(K)$. To show it, suppose in contradiction that there is such way. We look at the graph $G \cup H$ with weights induced by K (i.e., all the edges in $G \cup H$ have the same weight as they have in K). Recall that
$n \geq 4$, hence from Theorem 2.1 we have $\lambda_{n-1}(G) \geq d_{2}(G), \lambda_{n-1}(H) \geq d_{2}(H)$, and hence $G \cup H$ has at least four eigenvalues greater than or equal to $\min \left\{d_{2}(G), d_{2}(H)\right\}$. Since $d_{1}(K) \leq \min \left\{d_{2}(G), d_{2}(H)\right\}$, using the interlacing theorem for adding an edge (which could be found in [3, p. 291] for unweighted graphs, but it is also true in the weighted case), we get that there are at least four eigenvalues of $L(K)$ which are above $d_{1}(K)$, so $\alpha(K) \geq 4$, contradicting the assumption that $\alpha(K) \leq 3$. To construct such graphs K, we can take G and H to be complete graphs (see Figure 3.1).

Fig. 3.1.
G and H can be chosen also to be noncomplete, but here one has to be careful in choosing the vertices. Since $\alpha(G \cup H)=4$, we must add an edge that will reduce the independence number of K to 3 (see Figure 3.2).

Fig. 3.2.
4. The signless Laplacian. It was proven in [2] that for a simple unweighted noncomplete graph G with n vertices $(n \geq 2)$, $\mu_{n-1}(G) \geq \lambda_{2}(G)$. In this section, we deal with the relations between $\mu_{2}(G)$ and $\lambda_{n-1}(G)$. First, using techniques similar to those of the proof of Theorem 2.1, we prove the following:

Theorem 4.1. Let G be a simple weighted graph on n vertices. Then $\mu_{2}(G) \leq$ $d_{3}(G)$.

Proof. For the signless Laplacian, we have

$$
\frac{\langle Q(G) g, g\rangle}{\langle g, g\rangle}=\frac{\sum_{u v \in E(G)} w_{u v}\left(g_{u}+g_{v}\right)^{2}}{\sum_{z \in V(G)} g_{z}^{2}}
$$

Here we denote by h an eigenvector that corresponds to $\mu_{1}(G)$, and hence from Lemma 1.1,

$$
\mu_{2}(G)=\min \left\{\left.\frac{\langle Q(G) f, f\rangle}{\langle f, f\rangle} \right\rvert\, f \perp h\right\} .
$$

We denote by s, t, q be the three vertices with the smallest degrees in G, and again, at least two of h_{s}, h_{t}, h_{q} have the same sign. We construct the vector g in the same way as in Theorem 2.1, and conclude with

$$
\begin{gathered}
\mu_{2}(G) \leq \frac{\langle Q(G) g, g\rangle}{\langle g, g\rangle} \\
=\frac{\sum_{t v \in E(G), v \neq s} w_{t v}(1+0)^{2}+\sum_{u s \in E(G), u \neq t} w_{u s}(0+(-\delta))^{2}+w_{t s}(1+(-\delta))^{2}}{1+\delta^{2}} \\
=\frac{\operatorname{deg}(t)+\delta^{2} \operatorname{deg}(s)-2 w_{t s} \delta}{1+\delta^{2}} \leq \frac{\operatorname{deg}(t)+\delta^{2} \operatorname{deg}(s)}{1+\delta^{2}} \leq d_{3}(G) .
\end{gathered}
$$

We conclude the paper with the following corollary, which follows directly from Theorems 2.1 and 4.1.

Corollary 4.2. Let G be a simple weighted graph on n vertices, $n \geq 5$. Then $\mu_{2}(G) \leq \lambda_{n-1}(G)$.

REFERENCES

[1] A.E. Brouwer and W.H. Haemers. A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo. Linear Algebra Appl., 429:2131-2135, 2008.
[2] D. Cvetkovic and S.K. Simic. Towards a spectral theory of graphs based on the signless Laplacian, I. Publ. Inst. Math.(Beograd), 85(99):19-33, 2009.
[3] C.D. Godsil and G.F. Royle. Algebraic Graph Theory. Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001.
[4] F. Goldberg and G. Shapiro. The Merris index of a graph. Electron. J. Linear Algebra, 10:212222, 2003.
[5] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985
[6] J.-S. Li and Y.-L. Pan. A note on the second largest eigenvalue of the Laplacian matrix of a graph. Linear Multilinear Algebra, 48:117-121, 2000.
[7] R. Merris. Laplacian matrices of graphs: A survey. Linear Algebra Appl., 197/198:143-176, 1994.

[^0]: *Received by the editors on June 5, 2011. Accepted for publication on November 20, 2011. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ Mathematics Department, Technion-IIT, Haifa 32000, Israel (berman@techunix.technion.ac.il, miriamf@techunix.technion.ac.il).

