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Abstract. Let G be a weighted graph on n vertices. Let λn−1(G) be the second largest

eigenvalue of the Laplacian of G. For n ≥ 3, it is proved that λn−1(G) ≥ dn−2(G), where dn−2(G)

is the third largest degree of G. An upper bound for the second smallest eigenvalue of the signless

Laplacian of G is also obtained.
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1. Introduction. Let G =
(

E(G), V (G)
)

be a simple graph (a graph without

loops or multiple edges) with |V (G)| = n. We say that G is a weighted graph if it

has a weight (a positive number) associated with each edge. The weight of an edge
{

i, j
}

∈ E(G) will be denoted by wij . We define the adjacency matrix A(G) of G to

be a symmetric matrix which satisfies

aij =

{

0 if
{

i, j
}

/∈ E(G)

wij if
{

i, j
}

∈ E(G)
.

The Laplacian matrix L(G) is defined to be D(G)−A(G) with D(G) = diag
(

deg(v1),

deg(v2), . . . ,deg(vn)
)

, where deg(vi) is the sum of weights of all edges connected to

vi. The signless Laplacian matrix Q(G) is defined by D(G) + A(G). We denote by

0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) the eigenvalues of L(G), and by µ1(G) ≤ µ2(G) ≤

· · · ≤ µn(G) the eigenvalues of Q(G). We order the degrees of the vertices of G

as d1(G) ≤ d2(G) ≤ · · · ≤ dn(G). Various bounds for the Laplacian eigenvalues of

unweighted graphs, in terms of their degrees, were studied in the past (e.g., [1]). Li

and Pan [6] showed that for an unweighted connected graph G with n ≥ 3, λn−1(G) ≥

dn−1(G). It is interesting to ask whether there exists a similar bound for weighted

graphs. We will show it by using the following lemma ([5, p. 178]).

Lemma 1.1. Let A be a symmetric matrix with eigenvalues θ1(G) ≤ · · · ≤ θn(G).

Then θk(A) = max
{ 〈Af,f〉

〈f,f〉 |f⊥fk+1, fk+2, . . . , fn

}

= min
{ 〈Af,f〉

〈f,f〉 |f⊥f1, f2, . . . , fk−1

}

,
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when f1, f2, . . . , fn are eigenvectors of the eigenvalues θ1, θ2, . . . , θn, respectively.

2. The main result. We are ready now to present our main result.

Theorem 2.1. Let G be a simple weighted graph on n vertices with n ≥ 3. Then

λn−1(G) ≥ dn−2(G).

Proof. First we check the case λn−1(G) = λn(G). Let u be the vertex with the

largest degree in G. From Lemma 1.1,

λn(G) = max

{

〈L(G)f, f〉

〈f, f〉

}

.

Define a vector v by

vi =

{

0 if i 6= u

1 if i = u
.

Then we have

λn(G) ≥
〈L(G)v, v〉

〈v, v〉
= dn(G).

Hence, in this case, dn−2(G) ≤ dn(G) ≤ λn(G) = λn−1(G). Suppose then that

λn−1(G) < λn(G). Let h be an eigenvector that corresponds to λn(G). Using Lemma

1.1 we have

λn−1(G) = max

{

〈L(G)f, f〉

〈f, f〉
|f⊥h

}

.(2.1)

Let s, t, q be the vertices with the largest degrees in the graph. Then there are two

possibilities:

1) At least one of hs, ht, hq is zero.

2) All the numbers hs, ht, hq are different from zero.

In case 1), we assume without loss of generality that ht = 0. Define a vector g by

gi =

{

0 if i 6= t

1 if i = t
.

Since g is orthogonal to h, we get from (2.1) that λn−1(G) ≥ 〈L(G)g,g〉
〈g,g〉 , and hence,

λn−1(G) ≥
〈L(G)g, g〉

〈g, g〉
=

∑

uv∈E(G)

wuv(gu − gv)2

∑

z∈V (G)

g2
z

=

∑

tv∈E(G)

wtv(gt − gv)2

1
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=
∑

tv∈E(G)

wtv = deg(t) ≥ min
{

deg(s),deg(t),deg(q)
}

= dn−2(G),

and we are done.

In case 2), at least two of hs, ht, hq have the same sign. Suppose without loss of

generality that hs, ht have the same sign. Define a vector g by

gi =







0 if i 6= t, s

1 if i = t

−δ if i = s

with δ > 0 such that g is orthogonal to h (such a positive δ exists since hs and ht are

with the same sign). Therefore,

λn−1(G) ≥
〈L(G)g, g〉

〈g, g〉
=

∑

uv∈E(G)

wuv(gu − gv)2

∑

z∈V (G)

g2
z

=

∑

tv∈E(G),v 6=s

wtv(gt − gv)2 +
∑

us∈E(G),u 6=t

wus(gu − gs)
2 + wts(gt − gs)

2

1 + δ2
,

i.e.,

λn−1(G) ≥

∑

tv∈E(G),v 6=s

wtv + δ2

(

∑

us∈E(G),u 6=t

wus

)

+ wts(1 + 2δ + δ2)

1 + δ2

=
deg(t) − wts + δ2

(

deg(s) − wts

)

+ wts(1 + 2δ + δ2)

1 + δ2

=
deg(t) + δ2 deg(s) + 2wtsδ

1 + δ2
,

and since δ > 0 we have:

λn−1(G) ≥
deg(t) + deg(s)δ2 + 2wtsδ

1 + δ2
≥

deg(t) + deg(s)δ2

1 + δ2

≥ min
{

deg(s),deg(t)
}

≥ min
{

deg(s),deg(t),deg(q)
}

= dn−2(G)

and we are done.

Remark 2.2. As we mentioned before, for connected unweighted graphs with

n ≥ 3, λn−1(G) ≥ dn−1(G) ([6]). This is not true for weighted graphs as is shown by

Figure 2.1:
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 G= 1

6

9

Fig. 2.1.

Note that the eigenvalues of L(G) are 0, 9, 23, so 9 = λn−1(G) < dn−1(G) = 10.

3. Application. For a weighted graph G, we define mL(G)(I) to be the number

of the eigenvalues of L(G) that fall inside an interval I (counting multiplicities).

The independence number of G is denoted by α(G). Merris [7] showed that if G is

a simple unweighted graph on n vertices, then mL(G)([d1(G), n]) ≥ α(G). Graphs

which attain equality in the expression above were studied by Goldberg and Shapiro

[4]. By similar technique to the one used by Merris in [7], we can show the following

version for weighted graphs.

Theorem 3.1. Let G be a simple weighted graph on n vertices. Then we have

mL(G)([d1(G),∞]) ≥ α(G).

Various examples of weighted graphs that attain equality can be found, and some

of them are mentioned in [4] (for the special case of unweighted graph). This suggests

the following question: Does there exist a graph for which there is no way to assign

weights to the edges so that mL(G)([d1(G),∞]) = α(G)?

A first simple example is Kn (n ≥ 3). There is no way to assign weights to the

edges of the complete graph so that mL(Kn)([d1(Kn),∞]) = 1. This follows from

Theorem 2.1, since

λn(Kn) ≥ λn−1(Kn) ≥ dn−2(Kn) ≥ d1(Kn).

Hence, for any weighting of Kn, mL(Kn)([d1(Kn),∞]) ≥ 2. Are there other examples?

The answer is still yes. Using Theorem 2.1, we can construct a family of such graphs

in the following way: First, we take two graphs G and H, each one of them is on at

least four vertices, such that α(G), α(H) ≤ 2. We obtain a new graph K by adding an

edge between one vertex of G and one vertex of H. If α(K) ≤ 3, then there is no way to

put weights on its edges such that mL(K)([d1(K),∞]) = α(K). To show it, suppose in

contradiction that there is such way. We look at the graph G∪H with weights induced

by K (i.e., all the edges in G∪H have the same weight as they have in K). Recall that
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n ≥ 4, hence from Theorem 2.1 we have λn−1(G) ≥ d2(G), λn−1(H) ≥ d2(H), and

hence G∪H has at least four eigenvalues greater than or equal to min
{

d2(G), d2(H)
}

.

Since d1(K) ≤ min
{

d2(G), d2(H)
}

, using the interlacing theorem for adding an edge

(which could be found in [3, p. 291] for unweighted graphs, but it is also true in the

weighted case), we get that there are at least four eigenvalues of L(K) which are above

d1(K), so α(K) ≥ 4, contradicting the assumption that α(K) ≤ 3. To construct such

graphs K, we can take G and H to be complete graphs (see Figure 3.1).

Fig. 3.1.

G and H can be chosen also to be noncomplete, but here one has to be careful in

choosing the vertices. Since α(G ∪ H)=4, we must add an edge that will reduce the

independence number of K to 3 (see Figure 3.2).

Fig. 3.2.

4. The signless Laplacian. It was proven in [2] that for a simple unweighted

noncomplete graph G with n vertices (n ≥ 2), µn−1(G) ≥ λ2(G). In this section, we

deal with the relations between µ2(G) and λn−1(G). First, using techniques similar

to those of the proof of Theorem 2.1, we prove the following:

Theorem 4.1. Let G be a simple weighted graph on n vertices. Then µ2(G) ≤

d3(G).
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Proof. For the signless Laplacian, we have

〈Q(G)g, g〉

〈g, g〉
=

∑

uv∈E(G)

wuv(gu + gv)2

∑

z∈V (G)

g2
z

.

Here we denote by h an eigenvector that corresponds to µ1(G), and hence from Lemma

1.1,

µ2(G) = min

{

〈Q(G)f, f〉

〈f, f〉
| f⊥h

}

.

We denote by s, t, q be the three vertices with the smallest degrees in G, and again,

at least two of hs, ht, hq have the same sign. We construct the vector g in the same

way as in Theorem 2.1, and conclude with

µ2(G) ≤
〈Q(G)g, g〉

〈g, g〉

=

∑

tv∈E(G),v 6=s

wtv(1 + 0)2 +
∑

us∈E(G),u 6=t

wus(0 + (−δ))2 + wts(1 + (−δ))2

1 + δ2

=
deg(t) + δ2 deg(s) − 2wtsδ

1 + δ2
≤

deg(t) + δ2 deg(s)

1 + δ2
≤ d3(G).

We conclude the paper with the following corollary, which follows directly from

Theorems 2.1 and 4.1.

Corollary 4.2. Let G be a simple weighted graph on n vertices, n ≥ 5. Then

µ2(G) ≤ λn−1(G).
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