
ELA

GENERALIZATIONS OF BRAUER’S EIGENVALUE

LOCALIZATION THEOREM∗

CHAOQIAN LI† AND YAOTANG LI†

Abstract. New eigenvalue inclusion regions are given by establishing the necessary and suf-

ficient conditions for two classes of nonsingular matrices, named double α1-matrices and double

α2-matrices. These results are generalizations of Brauer’s eigenvalue localization theorem and im-

provements over the results in [L. Cvetković, V. Kostić, R. Bru, and F. Pedroche. A simple gener-

alization of Geršgorin’s theorem. Adv. Comput. Math., 35:271–280, 2011.].
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1. Introduction. Let C
n×n denote the collection of all n× n complex matrices

and N = {1, 2, . . . , n}. For a matrix A = [aij ] ∈ C
n×n, we denote, for any i, j, k ∈ N ,

ri =
∑

k 6=i

|aik|, ci =
∑

k 6=i

|aki|,

Γi(A) = {z ∈ C : |z − aii| ≤ ri},

Γ̄i(A) = {z ∈ C : |z − aii| ≤ min{ri, ci}},

H = {i ∈ N : ri > ci}, L = {i ∈ N : ri < ci},

Γ̃i,j(A) = {z ∈ C : |z − aii|(cj − rj) + |z − ajj |(ri − ci) ≤ cjri − cirj , i ∈ H, j ∈ L},

Γ̂i,j(A) = {z ∈ C :
|z − aii|

ci

(

|z − ajj |

cj

)log cj
rj

ri
ci

≤ 1, i ∈ H\{k : ck = 0},

j ∈ L\{k : rk = 0}},
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Ki,j(A) = {z ∈ C : |z − aii||z − ajj | ≤ rirj}

and

K̄i,j(A) = {z ∈ C : |z − aii||z − ajj | ≤ min{rirj , cicj}}.

Eigenvalue localization has been a hot topic in matrix theory and its applications.

Many researchers have obtained lots of eigenvalue inclusion regions; for details, see

[1]–[7], [9]–[13]. We first recall the very well known eigenvalue localization theorem

of Geršgorin [6].

Theorem 1.1. [6] Let A = [aij ] ∈ C
n×n and σ(A) be the spectrum of A. Then

σ(A) ⊆ Γ(A) =
⋃

i∈N

Γi(A).

Here, Γ(A) is called the Geršgorin set of A. Recently, L. Cvetković et al. [4]

gave the following two eigenvalue inclusion regions by the characterizations of two

class of nonsingular H-matrices, and proved that these two regions stay within the

set Γ(A)
⋂

Γ(AT ), where AT is the transpose of A.

Theorem 1.2. [4, Theorem 6] Let A = [aij ] ∈ C
n×n, n ≥ 2. Then

σ(A) ⊆ A1(A) = Γ̄(A)
⋃

Γ̃(A),

where Γ̄(A) =
⋃

i∈N

Γ̄i(A) and Γ̃(A) =
⋃

i∈H,j∈L

Γ̃i,j(A).

Theorem 1.3. [4, Theorem 7] Let A = [aij ] ∈ C
n×n, n ≥ 2. Then

σ(A) ⊆ A2(A) = Γ̄(A)
⋃

Γ̂(A),

where Γ̄(A) =
⋃

i∈N

Γ̄i(A) and Γ̂(A) =
⋃

i∈H,j∈L

Γ̂i,j(A).

In [1], Brauer obtained the following eigenvalue localization theorem.

Theorem 1.4. [1] Let A = [aij ] ∈ C
n×n, n ≥ 2. Then

σ(A) ⊆ K(A) =
⋃

i,j∈N, i 6=j

Ki,j(A).

The set K(A) is called the Brauer set of A, and Ki,j(A) is called the (i, j)-th

Brauer Cassini oval. It is well known that K(A) ⊆ Γ(A) (see [12, 13]). Since A and
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its transpose AT have the same spectrum, we have that σ(A) = σ(AT ) ⊆ K(AT ) ⊆

Γ(AT ), and thus, σ(A) ⊆
(

K(A)
⋂

K(AT )
)

⊆
(

Γ(A)
⋂

Γ(AT )
)

.

We now let

K̄(A) =
⋃

i,j∈N,i 6=j

K̄i,j(A).(1.1)

Note that Ki,j(A) = Kj,i(A), K̄i,j(A) = K̄j,i(A), K̄i,j(A) ⊆ Ki,j(A) and K̄i,j(A) ⊆

Ki,j(A
T ) for i, j ∈ N, i 6= j. These show that K̄(A) ⊆ K(A) and K̄(A) ⊆ K(AT ), and

thus,

K̄(A) ⊆
(

K(A)
⋂

K(AT )
)

.

An interesting problem arises: whether K̄(A) includes all eigenvalues of A or not?

The following example provides a negative answer.

Example 1.5. Let

A =





1 1 1

1 2 0

2 0 3



 .

By calculation, we get

σ(A) = {−0.1149, 2.2541, 3.8608},

K̄1,2(A) = {z ∈ C : |z − 1||z − 2| ≤ 2},

K̄1,3(A) = {z ∈ C : |z − 1||z − 3| ≤ 3}

and

K̄2,3(A) = {z ∈ C : |z − 2||z − 3| ≤ 1}.

Obviously, −0.1149 /∈ K̄(A) =
(

K̄1,2(A)
⋃

K̄1,3(A)
⋃

K̄2,3(A)
)

.

In this paper, we also focus on the subject of eigenvalue localization. In Section 2,

we establish necessary and sufficient conditions for two classes of nonsingular matrices,

named double α1-matrices and double α2-matrices. In Section 3, new regions K1(A)

and K2(A) including all the eigenvalues of A are obtained, which include K̄(A) and

stay within the set K(A)
⋂

K(AT ). Specially, we compare the new eigenvalue inclusion

region K2(A) with A1(A) in Theorem 1.2 (Theorem 6 of [4]) and A2(A) in Theorem

1.3 (Theorem 7 of [4]), and prove K2(A) ⊆ A1(A) and K2(A) ⊆ A2(A).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 1168-1178, December 2011



ELA

Generalizations of Brauer’s Eigenvalue Localization Theorem 1171

2. Necessary and sufficient conditions of double α1-matrices and dou-

ble α2-matrices. In this section, double α1-matrices and double α2-matrices are

presented. And their characterizations are given.

Definition 2.1. A matrix A = [aij ] ∈ C
n×n is said to be a double α1-matrix, if

there is α ∈ [0, 1] such that for all i, j ∈ N, i 6= j,

|aii||ajj | > αrirj + (1 − α)cicj .

Definition 2.2. A matrix A = [aij ] ∈ C
n×n is said to be a double α2-matrix, if

there is α ∈ [0, 1] such that for all i, j ∈ N, i 6= j,

|aii||ajj | > (rirj)
α(cicj)

1−α.(2.1)

As shown in [8], double α2-matrices are nonsingular. And moreover, from the

generalized arithmetic-geometric mean inequality:

αa + (1 − α)b ≥ aαb1−α

where a, b ≥ 0 and 0 ≤ α ≤ 1, we easily get that double α1-matrices are also nonsin-

gular.

Now we establish necessary and sufficient conditions for double α1-matrices and

double α2-matrices, respectively. First, some notations are given. For a matrix A =

[aij ] ∈ C
n×n, n ≥ 2, we denote

R = {(i, j) : rirj > cicj , i 6= j, i, j ∈ N},

C = {(i, j) : cicj > rirj , i 6= j, i, j ∈ N},

E = {(i, j) : rirj = cicj , i 6= j, i, j ∈ N}.

Note here that (i, j) ∈ R (C or E) implies (j, i) ∈ R (C or E , respectively).

Theorem 2.3. A matrix A = [aij ] ∈ C
n×n, n ≥ 2, is a double α2-matrix if and

only if the following two conditions hold:

(i) |aii||ajj | > min{rirj , cicj} for all i, j ∈ N , i 6= j.

(ii) log rirj

cicj

|aii||ajj |
cicj

> log cmcn
rmrn

cmcn

|amm||ann| for (i, j) ∈ R\{(l, k) : clck = 0}, and

(m,n) ∈ C\{(l, k) : rlrk = 0}.
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Proof. Firstly, suppose that A is a double α2-matrix. Then there is α ∈ [0, 1]

such that

|aii||ajj | > (rirj)
α(cicj)

1−α

for all i, j ∈ N , i 6= j. Condition (i) follows from the fact

(rirj)
α(cicj)

1−α ≥ min{rirj , cicj}.

Now, for (i, j) ∈ R\{(l, k) : clck = 0}, we have

|aii||ajj |

cicj

>

(

rirj

cicj

)α

.

Note that rirj > cicj , taking the logarithm of the above inequality for the base
rirj

cicj
> 1, and using the monotonicity, we obtain that

log rirj

cicj

|aii||ajj |

cicj

> α.

Similarly, for (m,n) ∈ C\{(l, k) : rlrk = 0}, we obtain that

log cmcn
rmrn

cmcn

|amm||ann|
< α.

Thus, condition (ii) holds.

Conversely, suppose that the conditions (i) and (ii) hold. For each (i, j) ∈ E ,

condition (i) directly implies inequality (2.1). And for (i, j) ∈ R such that cicj = 0, or

(m,n) ∈ C such that rmrn = 0, inequality (2.1) follows immediately. Thus, it remains

to prove that inequality (2.1) holds for all (i, j) ∈ (R\{(l, k) : clck = 0})
⋃

(C\{(l, k) :

rlrk = 0}).

For each (i, j) ∈ R\{(l, k) : clck = 0}, we have rirj > cicj , which, from condition

(i), leads to |aii||ajj | > cicj . Using the properties of the log function for the base

greater than one, we obtain

log rirj

cicj

|aii||ajj |

cicj

> 0.(2.2)

Similarly, for each (m,n) ∈ C\{(l, k) : rlrk = 0}, we have

log cmcn
rmrn

cmcn

|amm||ann|
< 1.(2.3)

From inequalities (2.2), (2.3) and condition (ii), we have that there is α such that,

for each (i, j) ∈ R\{(l, k) : clck = 0} and each (m,n) ∈ C\{(l, k) : rlrk = 0},

max

{

0, log cmcn
rmrn

cmcn

|ammann|

}

< α < min

{

log rirj

cicj

|aiiajj |

cicj

, 1

}

.(2.4)
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From the left inequality and right inequality of inequality (2.4), we get, respectively,

that for each (i, j) ∈ R\{(l, k) : clck = 0},

|aiiajj |

cicj

>

(

rirj

cicj

)α

and for each (m,n) ∈ C\{(l, k) : rlrk = 0},

cmcn

|ammann|
>

(

cmcn

rmrm

)α

.

Thus, the proof is completed.

Similar to the proof of Theorem 2.3, we can obtain the following necessary and

sufficient conditions for double α1-matrices, and its proof is omitted.

Theorem 2.4. A matrix A = [aij ] ∈ C
n×n, n ≥ 2, is a double α1-matrix if and

only if the following two conditions hold:

(i) |aii||ajj | > min{rirj , cicj} for all i, j ∈ N , i 6= j.

(ii)
|aii||ajj |−cicj

rirj−cicj
> cmcn−|amm||ann|

cmcn−rmrn
for all (i, j) ∈ R, and all (m,n) ∈ C.

3. Eigenvalue localizations. By the necessary and sufficient conditions of dou-

ble α1-matrices and double α2-matrices in Section 2, we give two new eigenvalue

inclusion regions.

Theorem 3.1. Let A = [aij ] ∈ C
n×n, n ≥ 2, and σ(A) be the spectrum of A.

Then

σ(A) ⊆ K2(A) = K̄(A)
⋃

K̂(A),(3.1)

where K̄(A) is given by (1.1), K̂(A) =
⋃

(i,j)∈R,(m,n)∈C

K̂i,j,m,n(A) and

K̂i,j,m,n(A) = {z ∈ C :
|λ − aii||λ − ajj |

cicj

(

|λ − amm||λ − ann|

cmcn

)log cmcn
rmrn

rirj

cicj

≤ 1,

(i, j) ∈ R\{(l, k) : clck = 0}, (m,n) ∈ C\{(l, k) : rlrk = 0}}.

Proof. For any λ ∈ σ(A), λI − A is singular. Note that the moduli of every

off-diagonal entry of λI −A is the same as A. Hence, the sets R and C for the matrix

λI − A remain the same. If λ /∈ K2(A), then λI − A satisfies conditions (i) and (ii)

of Theorem 2.3, hence λI − A is a double α2-matrix, which implies that λI − A is

nonsingular. This is a contradiction. Hence, λ ∈ K2(A), that is, σ(A) ⊆ K2(A).
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Remark 3.2. (i) From the original definition of double α2-matrices, we can

derive directly the following eigenvalue inclusion region (see [9]):

K2(A) =
⋂

0≤α≤1

⋃

i,j∈N,i 6=j

{

z ∈ C : |z − aii||z − ajj | ≤ (rirj)
α(cicj)

1−α
}

.(3.2)

Obviously, the form of K2(A) obtained in (3.1) is much more convenient than that in

(3.2).

(ii) Since K2(A) = K2(A
T ), we have that K2(A) ⊆

(

K(A)
⋂

K(AT )
)

.

Similar to the proof of Theorem 3.1, we can obtain easily the following eigenvalue

localization theorem.

Theorem 3.3. Let A = [aij ] ∈ C
n×n, n ≥ 2, and σ(A) be the spectrum of A.

Then

σ(A) ⊆ K1(A) = K̄(A)
⋃

K̃(A),

where K̄(A) is given by (1.1), K̃(A) =
⋃

(i,j)∈R,(m,n)∈C

K̃i,j,m,n(A) and

K̃i,j,m,n(A) = {z ∈ C :|λ − aii||λ − ajj |(cmcn − rmrn) + |λ − amm||λ − ann|(rirj

−cicj) ≤ cmcnrirj − cicjrmrn, (i, j) ∈ R, (m,n) ∈ C}.

Similar to Remark 3.2, we also obtain that K1(A) ⊆
(

K(A)
⋂

K(AT )
)

. Next, we

compare K2(A) in Theorem 3.1 with A1(A) in Theorem 1.2 (Theorem 6 of [4]) and

A2(A) in Theorem 1.3 (Theorem 7 of [4]).

Theorem 3.4. Let A = [aij ] ∈ C
n×n, n ≥ 2. And A2(A) and K2(A) are defined

in Theorems 1.3, and 3.1, respectively. Then

K2(A) ⊆ A2(A).

Proof. We prove K2(A) ⊆ A2(A). Equivalently, we prove that if z /∈ A2(A), then

z /∈ K2(A). In fact, if z /∈ A2(A), from Theorem 1.3, we have that for any i ∈ N ,

|z − aii| > min{ri, ci},(3.3)

and for i ∈ H\{k : ck = 0} and j ∈ L\{k : rk = 0},

|z − aii|

ci

(

|z − ajj |

cj

)log cj
rj

ri
ci

> 1.(3.4)
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From Theorems 5 and 7 of [4], inequalities (3.3) and (3.4) imply that for any i ∈ N ,

|z − aii| > (ri)
α(ci)

1−α

for some α ∈ [0, 1]. Hence, for any i, j ∈ N and i 6= j, we have

|z − aii||z − ajj | > (ri)
α(ci)

1−α(rj)
α(cj)

1−α = (rirj)
α(cicj)

1−α

for some α ∈ [0, 1]. This implies that zI − A is a double α2-matrix. From Theorem

2.3, the following two inequalities hold:

|z − aii||z − ajj | > min{rirj , cicj}(3.5)

for all i, j ∈ N , i 6= j, and

log rirj

cicj

|z − aii||z − ajj |

cicj

> log cmcn
rmrn

cmcn

|z − amm||z − ann|
(3.6)

for (i, j) ∈ R\{(l, k) : clck = 0}, and (m,n) ∈ C\{(l, k) : rlrk = 0}. Moveover,

inequality (3.6) is written equivalently as

|z − aii||z − ajj |

cicj

(

|z − amm||z − ann|

cmcn

)log cmcn
rmrn

rirj

cicj

> 1.(3.7)

Hence, from inequalities (3.5) and (3.7), z /∈ K̄(A) and z /∈ K̂(A), that is, z /∈ K2(A).

The proof is completed.

Lemma 3.5. Let A = [aij ] ∈ C
n×n, n ≥ 2. And A1(A) and A2(A) are defined

in Theorems 1.2, and 1.3, respectively. Then

A2(A) ⊆ A1(A).

Proof. Similar to the proof of Theorem 3.4 and from the fact that if

|z − aii| > αri + (1 − α)ci, i ∈ N

for some α ∈ [0, 1], then

|z − aii| > rα
i c1−α

i ,

we can easily get that if z /∈ A1(A), then z /∈ A2(A), that is, A2(A) ⊆ A1(A).

From Theorem 3.4 and Lemma 3.5, we have easily the following result.

Corollary 3.6. Let A = [aij ] ∈ C
n×n, n ≥ 2. And A1(A) and K2(A) are

defined in Theorems 1.2 and 3.1, respectively. Then

K2(A) ⊆ A1(A).
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Similar to the proof of Lemma 3.5, we can establish easily the following compar-

ison result.

Theorem 3.7. Let A = [aij ] ∈ C
n×n, n ≥ 2. And K1(A) and K2(A) are defined

in Theorems 3.3, and 3.1, respectively. Then

K2(A) ⊆ K1(A).

Remark 3.8. In Theorem 3.7, it is proved that K2(A) ⊆ K1(A). However, K2(A)

is determined with more difficultly than K1(A) because it is difficult to compute

exactly log cmcn
rmrn

rirj

cicj
in some cases.

Example 3.9. Let

A =









1 0.5 0.5 0

1 −1 0.5 0

0.5 0 i 0.05

0.1 0 0.1i i









.

The eigenvalue inclusion regions of Theorems 1.2, 1.3, 1.4, 3.3 and 3.1 are given,

respectively, by Figs. 3.1, 3.2, 3.3, 3.8 and 3.9. And K̃(A), K̄(A) and K̂(A) are shown

in Figs. 3.5, 3.6 and 3.7, respectively. Note that the exact eigenvalues are plotted

with asterisks. As we can see, K̄(A) fails to capture all the eigenvalues of A, so, the

necessity of K̃(A) or K̂(A) is evident. Also, it is easy to see that K1(A) ⊂ A1(A),

K2(A) ⊂ A2(A) ⊂ A1(A) and K2(A) ⊂ K1(A) ⊂
(

K(A)
⋂

K(AT )
)

. This example

shows that the two new eigenvalue inclusion regions are smaller than the intersection

of the Brauer sets of a matrix and its transpose, and the region of Theorem 3.1 is

smaller than those of Theorem 6 and Theorem 7 in [4].

Fig. 3.1. A1(A) Fig. 3.2. A2(A)
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Fig. 3.3. K(A) Fig. 3.4. K(AT )

Fig. 3.5. K̃(A) Fig. 3.6. K̄(A) Fig. 3.7. K̂(A)

Fig. 3.8. K1(A) = K̄(A)
⋃

K̃(A) Fig. 3.9. K2(A) = K̄(A)
⋃

K̂(A)
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[6] S. Geršgorin. Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR Ser.

Mat., 7:749–754, 1931.

[7] T.Z. Huang. A note on generalized diagonally dominant matrices. Linear Algebra Appl.,

225:237–242, 1995.

[8] A. Ostrowski. Uber das Nichverschwinder einer Klasse von Determinanten und die Lokalisierung

der charakterischen Wurzeln von Matrizen. Compos. Math., 9:209–226, 1951.

[9] M.X. Pang. Spectral Theory of Matrices. Jilin University Press, Changchun, China, 1990.

[10] R.S. Varga. Minimal Gerschgorin sets. Pacific J. Math., 15:719–729, 1965.
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